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Abstract	

Hypothesis	testing	in	neuroimaging	studies	relies	heavily	on	treating	named	anatomical	

regions	(e.g.,	“the	amygdala”)	as	unitary	entities.	Though	data	collection	and	analyses	

are	conducted	at	the	voxel	level,	inferences	are	often	based	on	anatomical	regions.	The	

discrepancy	between	the	unit	of	analysis	and	the	unit	of	inference	leads	to	ambiguity	

and	flexibility	in	analyses	that	can	create	a	false	sense	of	reproducibility.	For	example,	

hypothesizing	effects	on	“amygdala	activity”	does	not	provide	a	falsifiable	and	

reproducible	definition	of	precisely	which	voxels	or	which	patterns	of	activation	should	

be	observed.	Rather,	it	comprises	a	large	number	of	unspecified	sub-hypotheses,	leaving	

room	for	flexible	interpretation	of	findings,	which	we	refer	to	as	“model	degrees	of	

freedom.”	From	a	survey	of	135	functional	Magnetic	Resonance	Imaging	studies	in	

which	researchers	claimed	replications	of	previous	findings,	we	found	that	42.2%	of	the	

studies	did	not	report	any	quantitative	evidence	for	replication	such	as	activation	peaks.	

Only	14.1%	of	the	papers	used	exact	coordinate-based	or	a	priori	pattern-based	models.	

Of	the	studies	that	reported	peak	information,	42.9%	of	the	‘replicated’	findings	had	

peak	coordinates	more	than	15	mm	away	from	the	‘original’	findings,	suggesting	that	

different	brain	locations	were	activated,	even	when	studies	claimed	to	replicate	prior	

results.	To	reduce	the	flexible	and	qualitative	region-level	tests	in	neuroimaging	studies,	

we	recommend	adopting	quantitative	spatial	models	and	tests	to	assess	the	spatial	

reproducibility	of	findings.	Techniques	reviewed	here	include	permutation	tests	on	

peak	distance,	Bayesian	MANOVA,	and	a	priori	multivariate	pattern-based	models.	

These	practices	will	help	researchers	to	establish	precise	and	falsifiable	spatial	

hypotheses,	promoting	a	cumulative	science	of	neuroimaging.	

Keywords:	Spatial	models,	replication,	flexibility,	model	degree-of-freedom,	region-

level	tests	
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Introduction	

Along	with	other	fields	(Baker,	2016;	Collaboration,	2015;	Hutson,	2018;	

Ioannidis,	2005),	human	neuroscience—and	functional	Magnetic	Resonance	Imaging	

(fMRI)	in	particular—has	been	facing	a	replication	crisis.	A	meta-analysis	in	2009	

estimated	the	false	positive	rates	in	neuroimaging	studies	to	be	up	to	40%	(Wager	et	al.,	

2009).	Another	recent	study	suggested	that	more	than	50%	of	neuroimaging	findings	

are	likely	to	be	false	positives	(Szucs	and	Ioannidis,	2017).	To	resolve	the	current	

replication	crisis	in	neuroimaging,	many	researchers	have	discussed	the	problems	

related	to	small	sample	size,	low	statistical	power,	publication	bias,	data	sharing,	and	p-

hacking	(Button	et	al.,	2013;	Cremers	et	al.,	2017;	Munafò	et	al.,	2017;	Nord	et	al.,	2017;	

Pernet	and	Poline,	2015;	Reddan	et	al.,	2017;	Szucs	and	Ioannidis,	2017;	Turner	et	al.,	

2018).	However,	there	is	an	additional	important	issue	related	to	our	common	practice	

in	neuroimaging	studies—the	pervasive	practice	of	presenting	hypotheses	and	research	

findings	in	terms	of	gross	anatomical	region	descriptors—that	results	in	substantial	

flexibility	in	testing	hypotheses.	The	problem	of	flexibility	in	data	collection	and	analysis	

have	been	discussed	in	other	contexts	(e.g.,	researcher	degrees	of	freedom;	Simmons	et	

al.,	2011),	and	here	we	extend	these	discussions	to	neuroimaging	studies,	focusing	on	

spatial	models.	 	

In	neuroimaging	studies,	gross	anatomical	region-level	descriptors	are	

commonly	used	to	describe	hypotheses	and	compare	current	findings	with	previous	

ones.	For	example,	we	can	easily	find	the	following	statements	in	neuroimaging	studies:	

“We	hypothesize	that	[task	A]	would	activate	[region	X],”	or	“We	replicated	a	previous	

study	in	which	[region	Y]	was	associated	with	the	cognitive	[function	B].”	The	problem	

is	that	gross	anatomical	regions,	such	as	amygdala	or	anterior	cingulate	cortex,	do	not	

have	exact	voxel-level	definitions	about	their	locations	and	usually	contain	more	than	

1,000	voxels	(Woo	et	al.,	2014b).	There	could	be	tens	of	thousands	of	possible	patterns	

that	constitute	“activation	of”	a	single	region.	Therefore,	hypotheses	based	on	gross	

anatomical	regions	subsume	thousands	of	possible	ways	of	finding	a	positive	effect.	This	

permits	a	high	degree	of	flexibility	in	determining	what	can	count	as	a	positive	finding,	

which	we	refer	to	as	“model	degrees	of	freedom.”	Unfortunately,	current	standard	

mapping	approaches	and	major	software	packages	do	not	provide	any	analysis	methods	

to	explicitly	test	which	locations	and	patterns	of	voxel-level	activation	should	be	
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observed.	Without	voxel-level	specifications	and	tests	of	topographical	information	of	

activation	(e.g.,	locations	and	patterns),	most	hypotheses	in	existing	neuroimaging	

studies	cannot	be	prevented	from	being	qualitative	and	exploratory	(or	hypothesis-

generating;	Ioannidis,	2005),	even	though	they	seem	quantitative	and	confirmatory	on	

the	surface.	Qualitative	and	exploratory	hypotheses	render	research	findings	

unfalsifiable	and	resulting	in	high	false	positive	rates	(Simmons	et	al.,	2011).	

The	larger	the	hypothesized	region,	the	worse	the	problem	of	model	flexibility	

becomes.	For	example,	as	previously	shown	in	Woo	et	al.	(2014b),	cluster	extent-based	

thresholding	often	provides	large	clusters	that	cover	multiple	anatomical	brain	regions	

(e.g.,	Fig.	1B	of	Woo	et	al.	[2014b]	showed	an	example	result	in	which	one	cluster	

contained	more	than	11	distinct	anatomical	regions).	However,	the	cluster	extent	

thresholding	only	tells	us	that	there	is	“at	least	one	non-null	voxel	somewhere	in	the	

cluster,”	which	may	not	be	falsifiable	at	all	for	large	clusters,	though	the	hypotheses	

could	be	highly	reproducible.	The	key	issue	here	is	low	spatial	specificity	of	an	implicit	

spatial	model—i.e.,	poor	localization	ability	and	resulting	lack	of	confidence	in	which	

brain	structure(s)	are	really	activated.	It	is	understandable	that	researchers	prefer	

methods	with	high	spatial	sensitivity	to	ones	with	high	spatial	specificity	because	

sensitive	methods	can	provide	better-looking	results.	In	addition,	the	sizes	and	shapes	

of	brain	regions	vary	across	participants,	and	registration	methods	are	far	from	perfect.	

Therefore,	defining	exact	locations	across	brains	is	very	challenging.	In	this	sense,	

region-	and	cluster-level	hypotheses	can	be	useful.	However,	with	these	hypotheses,	one	

can	conclude	that	two	very	distinct	maps	are	replications	of	one	another;	for	example,	

two	maps	may	have	very	distinct	patterns	of	activity	or	have	peak	activations	in	the	

opposite	ends	of	a	large	brain	structure	(e.g.,	the	anterior	hippocampus	bordering	on	

the	amygdala	vs.	the	posterior	hippocampus	centimeters	away,	bordering	on	the	

caudate	tail).	Therefore,	we	need	methods	to	quantify	whether	two	studies	activate	

similar	locations	or	produce	similar	maps.	

A	corollary	effect	of	using	region-	or	cluster-based	spatial	hypotheses	is	low	

psychological	specificity.	One	brain	region	(or	even	one	voxel)	typically	contains	

multiple	subpopulations	of	neurons	that	are	functionally	distinct	(Ito	et	al.,	2003;	

Kvitsiani	et	al.,	2013;	Park	et	al.,	2017)	and	thus	many	different	tasks	and	mental	

processes	can	activate	the	same	brain	region.	Therefore,	spatial	models	based	on	gross	
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anatomical	regions	cannot	achieve	a	fine-grained	understanding	of	brain-to-function	

relationships	without	further	specification.	For	example,	the	dorsal	anterior	cingulate	

cortex	(dACC;	or	anterior	midcingulate	cortex)	is	one	of	the	most	frequently	reported	

brain	regions	in	the	literature	(Behrens	et	al.,	2013)	with	its	base	rate	of	significant	

activation	exceeding	20%	across	tasks	and	paper	topics	in	human	neuroimaging	studies	

(Wager	et	al.,	2016;	Yarkoni	et	al.,	2011).	It	is	recruited	by	many	different	tasks	and	

mental	events	including	emotional	pictures	(Ochsner	and	Gross,	2005),	painful	stimuli	

(Wager	et	al.,	2013),	emotional	pain	(Eisenberger	et	al.,	2003),	conflict	monitoring	

(Botvinick	et	al.,	1999),	prediction	error	(Hayden	et	al.,	2011),	decision	making	(Kolling	

et	al.,	2016),	and	many	others	(cf.	also	see	Kragel	et	al.,	2018a;	Shackman	et	al.,	2011).	

Even	if	these	processes	activate	different	subsets	of	neurons	within	the	dACC	and	can	be	

distinguished	with	multivariate	patterns	of	fMRI	activity	(Kragel	et	al.,	2018a;	Krishnan	

et	al.,	2016;	Woo	et	al.,	2014a),	they	may	all	still	produce	activity	in	the	dACC	overall.	

Therefore,	even	if	an	a	priori	hypothesis	based	on	the	whole	dACC	region	(e.g.,	“dACC	

activation”)	is	highly	reproducible,	it	is	unlikely	to	provide	specific	and	useful	

information	about	brain-to-function	mapping.	For	these	reasons,	hypotheses	based	on	

gross	anatomical	region	descriptors	cannot	provide	a	robust	foundation	for	cumulative	

and	reproducible	neuroscience;	rather,	they	obscure	functional	differences	and	limit	

their	interpretability	and	falsifiability.	

Coordinate-based	models,	such	as	a	direct	comparison	of	peak	coordinates	or	

spherical	regions-of-interest	around	peak	coordinates	from	previous	studies,	can	

potentially	reduce	the	level	of	flexibility	in	assessing	hypotheses	and	replications	by	

providing	tests	with	better	precision	compared	to	region-level	models	(though	they	do	

little	to	address	the	issues	of	functional	specificity	raised	above).	However,	there	are	

several	fundamental	limitations	in	this	practice.	First,	most	packages	use	ad	hoc	

algorithms	for	identifying	peak	activation	locations	and	provide	no	inferences	about	the	

location	or	location	uncertainty	(Kang	et	al.,	2011a;	Samartsidis	et	al.,	2017).	Most	

researchers	do	not	specify	spatial	hypotheses	about	where	brain	activations	should	lie	

and	how	uncertain	those	locations	are.	This	makes	testing	the	‘replication’	of	a	

hypothesis	that	was	not	specified	in	the	original	study	a	somewhat	ambiguous	venture.	

In	addition,	previous	studies	have	shown	that	peak	locations	vary	widely	across	

different	tasks,	individuals,	and	analysis	pipelines	(Carp,	2012;	Kober	et	al.,	2008).	For	
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example,	peak	activations	from	studies	on	emotional	experience	are	highly	distributed	

across	multiple	brain	regions	(Fig.	1A;	Kober	et	al.,	2008).	Second,	coordinate-based	

models	tell	us	nothing	about	the	patterns	of	brain	activity	around	the	peaks.	Two	

studies	with	exactly	same	peak	coordinates	can	have	very	different	patterns	of	brain	

activity	surrounding	those	peaks.	Third,	group-level	analyses	in	fMRI	studies	usually	

produce	smooth	and	diffuse	brain	activation	maps	(Cremers	et	al.,	2017),	which	make	it	

intrinsically	difficult	to	locate	peak	coordinates	with	certainty	and	render	the	

coordinate-based	models	less	meaningful.	Finally,	the	use	of	peak	coordinates	also	

provides	model	flexibility.	Currently,	there	is	no	consensus	on	how	close	peak	

coordinates	from	two	studies	should	be	in	order	to	count	as	replicates	of	one	another.	

With	the	widely	spread	distribution	of	peak	activations	(Fig.	1A),	researchers	can	easily	

find	previous	studies	that	contain	peak	coordinates	near	their	current	peak	activation	

anywhere	in	the	brain,	allowing	a	spurious,	post-hoc	justification	of	‘replicating	previous	

work’.	For	these	reasons,	coordinate-based	models	also	cannot	provide	a	solid	

foundation	for	the	assessment	of	a	priori	hypothesis	and	replication.	

Multivariate	pattern-based	models	and	tests	provide	a	powerful	alternative	to	

region-	and	coordinate-based	approaches.	Multivariate	pattern-based	models	are	

increasingly	used	in	fMRI	studies	to	predict	behaviors	and	task	parameters	due	to	its	

high	predictive	power	based	on	rich	information	distributed	across	multiple	voxels	and	

regions.	Modeling	multivariate	pattern	information	is	analogous	to	analysing	neural	

population	codes	(Kriegeskorte,	2009).	A	number	of	studies	show	convincingly	that	

multivariate	pattern-based	analysis	can	capture	fine-grained	functional	information	of	

the	brain	activity	(Alink	et	al.,	2013;	Kamitani	and	Tong,	2005;	Shmuel	et	al.,	2010;	

Swisher	et	al.,	2010)	and	can	more	accurately	predict	perceptions	and	behaviors	than	

univariate	brain	maps	(Peelen	et	al.,	2006;	Woo	et	al.,	2017b;	Woo	et	al.,	2014a).	More	

importantly,	the	pattern-based	approach	has	a	potential	to	provide	a	precise	and	

quantitative	voxel-level	specification	of	the	activation	locations	and	the	relative	levels	of	

activity	patterns.	For	example,	a	predictive	modeling	approach (Kragel	et	al.,	2018b;	

Woo	et	al.,	2017a)	aims	to	develop	pattern-based	models	that	are	predictive	of	mental	

or	behavioral	outcomes	across	individuals.	These	pattern-based	models	(a.k.a.	brain	

“signatures”	[Wager	et	al.,	2013]	or	“neuromarkers”	[Gabrieli	et	al.,	2015])	precisely	

specify	voxel-level	weights	and	define	how	to	integrate	new	fMRI	data	from	a	new	
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individual	to	produce	a	single	prediction	about	the	outcome.	The	pattern-based	models	

can	serve	as	a	priori	voxel-level,	quantitative,	and	falsifiable	spatial	models	for	testing	

replications	on	new	brain	data	from	new	individuals.	This	type	of	multivariate	pattern-

based	models	ensures	high	statistical	power	because	it	does	not	involve	any	further	

optimization	or	multiple	comparisons (Gilron	et	al.,	2017;	Woo	et	al.,	2017a).	It	also	can	

remove	any	wiggle	room	for	further	interpretation	or	redefinition	of	the	models	by	

eliminating	any	possibility	of	exploiting	ways	to	find	a	positive	effect.	 	

In	the	current	study,	we	first	illustrate	the	problems	of	using	gross	anatomical	

region-level	descriptors	as	a	priori	hypotheses	with	an	fMRI	dataset	from	a	study	

comparing	somatic	pain	and	social	rejection	(N	=	59)	(Woo	et	al.,	2014a),	highlighting	

that	two	very	distinct	maps	of	voxel-level	tests	can	be	concluded	as	being	replicates	of	

one	another	based	on	region-level	inferences.	Second,	from	a	survey	of	135	fMRI	studies	

that	claimed	a	replication	of	previous	findings,	we	show	that	a	majority	of	the	current	

fMRI	studies	(85.3%)	rely	heavily	on	region-level	hypotheses,	and	a	high	proportion	of	

those	studies	(48.7%)	provide	no	quantitative	evidence	(e.g.,	peak	coordinates)	at	all	for	

replication.	In	addition,	when	we	compared	the	peak	coordinates	between	the	original	

and	‘replication’	studies,	42.9%	of	‘replicated’	findings	had	peak	coordinates	more	than	

15	mm	away.	Thus,	the	activation	maps	that	have	been	counted	as	‘replications’	are	

actually	quite	different	from	the	original	results	they	claimed	to	replicate.	Third,	we	

highlight	the	limitation	of	coordinate-based	tests	through	simulations	showing	that	

peak	coordinates	cannot	provide	a	reliable	and	stable	measure	for	the	underlying	

patterns	of	brain	activity.	The	exactly	same	underlying	activation	pattern	can	yield	

multiple	different	peaks	when	noise	is	added,	and	two	maps	that	have	similar	peak	

coordinates	can	have	distinct	activation	patterns.	Finally,	we	propose	some	

recommendations	for	more	quantitative	testing	of	hypothesis	and	replication	in	

neuroimaging	studies:	(1)	Provide	quantitative	evidence	when	claiming	replications	

and	(2)	use	explicit	and	quantitative	spatial	models	and	tests,	such	as	permutation	tests	

on	peak	distance	and	a	priori	multivariate	pattern-based	models.	These	will	help	to	

build	testable	spatial	models	in	neuroimaging	and	promote	the	cumulative	science	of	

neuroimaging.	 	

Methods	
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Illustration	and	simulations	

To	illustrate	potential	pitfalls	of	using	region-level	spatial	models,	we	used	an	

fMRI	dataset	(N	=	59)	from	a	previous	study	(Woo	et	al.,	2014a).	The	experiment	

consisted	of	two	tasks:	First,	in	the	somatic	pain	task,	participants	experienced	painful	

heat	(pain	condition)	or	non-painful	warmth	(warmth	condition).	In	the	social	rejection	

task,	participants	viewed	their	ex-partner’s	photos	(rejection	condition)	or	their	friends’	

photos	(friend	condition).	After	we	obtained	the	first-level	contrast	maps	for	[pain	vs.	

warmth]	and	[rejection	vs	friend]	for	all	subjects,	we	divided	the	data	into	two	groups	of	

sequentially	acquired	participants:	An	‘original	cohort’	of	30	subjects,	and	a	subsequent	

‘replication	cohort’	of	29	subjects.	We	compared	their	group-level	contrast	maps	for	

these	two	cohorts	using	dACC	(anterior	midcingulate	cortex	in	particular)	as	a	region-

of-interest	(ROI).	We	used	the	dACC	ROI	mask	from	the	previous	study	(Woo	et	al.,	

2014a)	that	showed	overlapping	activation	between	the	pain	and	rejection	conditions.	

We	additionally	smoothed	the	dACC	mask	with	a	0.5-mm	FWHM	Gaussian	kernel	to	

make	the	mask	large	enough	for	analyzing	pattern	similarity.	We	chose	to	use	the	ROI	

test	approach	to	demonstrate	the	potential	pitfalls	of	the	most	common	approach	in	the	

replication	studies.	We	also	used	the	same	dataset	for	a	simulation,	in	which	we	

randomly	split	the	fMRI	data	into	halves	(n	=	30	vs.	n	=	29)	10,000	times	and	examined	

whether	closely	located	peak	coordinates	ensure	a	high	degree	of	pattern	similarity	

between	two	group-level	maps	(Fig.	4).	Lastly,	the	same	data	were	used	to	provide	

some	examples	of	the	recommended	methods	(Fig.	5).	

We	also	conducted	another	simulation	to	examine	the	reliability	of	peak	

distance	and	pattern	correlation	as	a	similarity	measure	of	two	maps.	As	shown	in	Fig.	

3A,	we	first	created	a	pair	of	100	×	100	matrices	(original	and	replication	data)	by	

adding	random	noise	to	the	underlying	ground	truth	signal	pattern	(the	activity	value	

ranged	from	0.2	to	2.0).	We	combined	the	signal	and	the	noise	to	create	different	levels	

of	signal-to-noise	ratio	ranging	from	0.1	to	1.1.	In	more	detail,	the	noise	was	added	by	

adding	Gaussian	noise	with	mean	=	0	and	standard	deviation	=	maximum	signal	

intensity	over	the	ground	truth	pattern	(i.e.,	2.0)	divided	by	the	desired	SNR	value.	For	

example,	if	the	SNR	was	0.5,	the	noise	was	created	with	random	numbers	from	normal	

distribution	with	mean	=	0,	standard	deviation	=	4.0;	Matlab	example,	noise = 

normrnd(0,2/snr,100,100).	After	we	smoothed	the	data,	peak	distance	and	pattern	
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correlation	were	calculated.	We	repeated	this	process	10,000	times.	Fig.	3B	shows	an	

example	data	from	one	iteration.	You	can	see	the	simulation	code	at	

https://gist.github.com/wanirepo/f34f24e86e49e1f86badfa7c31383e32	

Survey	

We	surveyed	135	fMRI	papers	that	contain	claims	of	replicating	previous	

findings	published	between	January	2010	and	April	2017.	To	find	the	papers,	we	used	

the	following	search	terms	for	PubMed	database:	“fMRI”	or	“functional	magnetic	

resonance	imaging”	in	the	Title/Abstract;	“replicate”,	“replication”,	“replicated”,	or	

“replicates”	in	the	All	Fields.	We	initially	acquired	482	papers,	which	were	then	filtered	

with	the	following	exclusion	criteria:	(1)	articles	that	replicated	behavioral	results	or	

tasks;	(2)	articles	that	used	other	imaging	modalities,	such	as	EEG,	PET,	or	fNIRS;	(3)	

articles	that	simply	mentioned	replication	(e.g.,	as	a	future	direction);	(4)	articles	that	

replicated	connectivity	studies;	(5)	review	articles;	(6)	genetic	studies.	The	final	

number	of	selected	papers	was	135.	 	

The	135	replication	studies	were	then	categorized	into	the	following	seven	

groups:	1)	No	specific	report:	studies	that	contain	no	specific	spatial	information	(e.g.,	

peak	coordinates	or	image	files	to	compare)	to	support	their	claims	of	replication.	2)	

Qualitative	region-level	comparisons	with	no	report	of	peak	coordinates:	studies	that	

used	the	whole	brain	search	and	suggested	replication	based	on	qualitative	region-level	

comparisons	and	did	not	report	peak	coordinates.	3)	Qualitative	region-level	

comparisons	with	peak	coordinate	information.	4)	Predefined	anatomical	ROI	test	with	

no	report	of	peak	coordinates:	studies	that	used	ROIs	as	prior	models	and	did	not	report	

peak	coordinates	in	the	paper.	5)	Predefined	anatomical	ROI	test	with	peak	coordinate	

information.	6)	Coordinate-based	ROI	test:	studies	that	used	coordinate-based	prior	

models	(e.g.,	5-mm	sphere	around	a	peak	coordinate	from	a	previous	study).	7)	Pattern-

based	prior	models:	studies	that	used	multivariate	pattern-based	prior	models.	 	

We	also	recorded	peak	coordinates	from	replication	studies	(#$%&, ($%&, )$%&)	 if	

the	peak	coordinate	information	was	available.	We	then	searched	through	their	original	

studies	that	were	referenced	in	the	replication	studies	and	extracted	peak	coordinate	

information	from	the	original	studies	if	the	information	was	available	

(#+$,-, (+$,-, )+$,-).	If	the	replication	cited	multiple	original	studies,	we	used	the	peak	
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coordinates	that	were	closest	to	those	in	replication	studies.	Thus,	the	coordinate	

distances	can	be	described	as	assessing	the	distance	to	the	nearest	replicate.	Talairach	

coordinates	were	converted	to	Montreal	Neurological	Institute	(MNI)	coordinates	using	

the	Matlab	function,	tal2mni.m	(Brett	et	al.,	2001).	Next,	we	calculated	the	Euclidean	

distance	between	the	peak	coordinates	using	the	following	equation:	

peak	distance	=	 .(#$%& − #+$,-)1 + (($%& − (+$,-)1 + ()$%& − )+$,-)1.	 	

In	this	manuscript,	we	use	“locations”	only	in	an	anatomical	sense,	as	

coordinates	in	standard	MNI	anatomical	space,	though	in	some	applications	locations	

can	be	defined	based	on	brain	functional	properties	as	well.	 	

Recommended	analysis	methods	

	 In	the	Discussion,	we	provide	some	recommendations	to	promote	the	use	of	

quantitative	and	less	flexible	spatial	models	and	tests,	which	include	permutation	tests	

for	peak	distance	and	pattern	similarity,	confidence	region,	multivariate	analysis	of	

variance	(MANOVA),	and	multivariate	pattern-based	classification	method.	 	

Permutation	test	for	peak	distance.	A	permutation	test	can	be	used	to	compare	a	

peak	location	in	a	new	study	to	a	fixed	reference	point	from	a	prior	study,	i.e.,	peak	

distance.	For	an	example	analysis,	we	generated	a	null	distribution	of	the	peak	distance	

between	original	and	replication	study	data	by	shuffling	the	condition	labels	(in	this	

example,	‘rejection’	and	‘friend’,	or	‘pain’	and	‘warmth’)	within	each	participant.	The	

null	of	the	permutation	test	here	posits	that	no	reliable	difference	exists	for	the	

condition	contrast	(and	therefore	no	reliable	peak	location)	across	subjects.	The	

permutation	test	procedure	is	as	follows:	(a)	take	a	fixed	peak	location	from	the	original	

study,	(b)	obtain	a	peak	location	from	a	group-level	contrast	image	(e.g.,	‘rejection’	vs.	

‘friend’)	of	the	replication	study	and	calculate	the	peak	distance	between	the	original	

and	replication	studies,	(c)	randomly	shuffle	the	condition	labels	of	the	replication	

study	(in	this	case,	‘rejection’	and	‘friend’)	and	calculate	peak	distance	for	each	iteration,	

(d)	repeat	(c)	for	multiple	iterations	(in	this	example,	10,000	times),	and	(e)	calculate	

the	probability	of	observing	the	peak	distance	between	the	original	and	replication	

studies	given	the	null	distribution	of	permuted	peak	distance.	If	the	probability	of	

observing	the	current	peak	distance	is	small	enough	(e.g.,	p	<	.05),	we	reject	the	null	

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted March 27, 2019. ; https://doi.org/10.1101/514521doi: bioRxiv preprint 

https://doi.org/10.1101/514521
http://creativecommons.org/licenses/by-nc-nd/4.0/


FALSE-POSITIVE	NEUROIMAGING	 	 11	

hypothesis	and	conclude	that	the	original	and	replication	studies	have	peak	locations	

significantly	close	to	each	other.	 	

Permutation	test	for	pattern	similarity.	A	permutation	test	can	also	be	used	to	

compare	an	activation	map	from	a	new	study	to	a	fixed	activation	pattern	map	from	a	

prior	study.	The	null	of	this	permutation	test	posits	that	there	is	no	reliable	difference	

between	conditions	(and	therefore	no	similarity	between	contrast	maps)	across	

subjects.	As	a	measure	of	the	spatial	pattern	similarity	of	two	maps,	we	used	Pearson’s	

correlation	(r):	 	

3 =
∑ (#, − #̅)((, − (7)
8
,9:

.∑ (#, − #̅)
18

,9: .∑ ((, − (7)
18

,9:

	

where	n	is	the	number	of	voxels	included	in	the	map,	xi	and	yi	are	the	voxel-level	data	

vectors	for	two	maps	(elements	are	voxels),	and	 #̅	 and	 (7	 are	the	mean	of	the	voxel-

level	data	vectors.	The	permutation	test	procedure	for	pattern	similarity	is	similar	to	

the	one	for	peak	distance:	(a)	take	a	fixed	contrast	map	(e.g.,	‘rejection’	vs.	‘friend’)	from	

an	original	study,	(b)	obtain	a	new	group-level	contrast	image	from	a	replication	study	

and	calculate	the	pattern	similarity	between	those	two	maps,	(c)	randomly	shuffle	the	

condition	labels	for	the	replication	study	(in	this	case,	‘rejection’	and	‘friend’)	and	

calculate	pattern	similarity	for	each	iteration,	(d)	repeat	(c)	for	multiple	iterations	(e.g.,	

10,000	times),	and	(e)	calculate	the	probability	of	observing	the	pattern	similarity	

between	the	original	and	replication	studies	given	the	null	distribution	of	permuted	

pattern	similarity.	If	the	probability	of	observing	the	current	pattern	similarity	is	small	

enough	(e.g.,	p	<	.05),	we	reject	the	null	hypothesis	and	conclude	that	the	original	and	

replication	studies	have	significantly	similar	activation	patterns.	 	

Confidence	region.	To	construct	a	confidence	region	based	on	multiple	peak	

coordinates,	we	used	the	method	described	in	Johnson	and	Wichern	(2007;	p.	220).	The	

axes	of	the	confidence	region	in	p-dimensional	space	are	defined	as:	

±.<,=
&(8>:)

8(8>&)
?&,8>&(@)	A, ,	where	i	=	1,	2,	…,	p	

where	n	is	the	number	of	peak	coordinates,	and	p	is	the	number	of	dimensions,	which	is	

three	(i.e.,	x,	y,	z)	in	our	case,	and	i	is	a	particular	dimension.	 ?&,8>&(@)	 is	the	upper	
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(100	@)th	percentile	of	the	 ?&,8>&	 distribution.	In	the	example	case,	we	construct	a	95%	

confidence	region	with	p	=	3,	and	therefore	the	term	should	be	 ?B,8>B(0.95).	 <, 	 and	 A, 	

are	the	eigenvalues	and	eigenvectors	of	the	sample	covariance	matrix	S,	respectively,	

and	S	is	defined	by	 	

G = 	
:

(8>:)
∑ (HI − H7)(HI − H7)′
8
I9: 	 	

where	 H:, H1, … , H8	 are	the	sample	observations,	and	 H7 =
:

8
∑ HI
8
I9: .	

This	has	been	implemented	in	the	following	Matlab	functions,	conf_region.m	

and	confidence_volume.m	(which	are	available	at	

https://github.com/canlab/CanlabCore	and	

https://github.com/canlab/Canlab_MKDA_MetaAnalysis,	respectively).	With	these	

functions,	one	can	draw	a	confidence	region	using	the	following	lines	of	Matlab	code:	

>> results = confidence_volume(xyz); 

>> surf(results.xP, results.yP, results.zP);	 

Bayes	Factor	calculation	for	multivariate	analysis	of	variance	(MANOVA).	With	

MANOVA,	we	can	test	whether	two	independent	sets	of	peak	coordinates	are	from	the	

same	or	different	distributions	by	comparing	their	multivariate	means	on	the	x,	y,	z	

space.	The	null	hypothesis	of	the	MANOVA	test	is	that	two	sets	of	peak	activations	are	

from	the	same	distribution,	and	it	can	be	rejected	when	the	two	sets	of	peak	coordinates	

are	located	separately.	In	the	context	of	testing	replication,	a	Bayes	factor	provides	

better	tests	for	confirming	replication	because	it	can	quantify	the	likelihood	probability	

of	a	null	hypothesis	(i.e.,	replication	success)	against	an	alternative	hypothesis	(i.e.,	

replication	failure)	(Rouder	et	al.,	2012;	Rouder	et	al.,	2009).	We	implemented	the	

Bayesian	MANOVA	and	Bayes	factor	calculation	using	the	BRMS	package	in	R	(Bürkner,	

2017)	and	also	made	a	website	to	provide	a	web-based	Bayes	factor	calculation	at	

http://cocoanlab.skku.edu/bayes_factor_bayesian_manova.	For	the	accurate	calculation	

of	Bayes	factors,	it	is	crucial	to	use	the	correct	priors,	and	in	the	implementation,	we	

used	weakly-informative	priors	recommended	by	Gelman	and	Hill	(2007)	Chapters	13	

and	17	and	STAN	manual	[v2.17.0]	9.13	and	9.15	(Carpenter	et	al.,	2017).	The	R-code	

for	the	bayes	factor	calculation	is	available	at	

https://github.com/cocoanlab/falsepositiveneuroimaging.	In	this	analysis,	higher	
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Bayes	factors	in	favor	of	null	hypothesis	(BF01)	provides	supporting	evidence	for	

replication.	 	

Multivariate	pattern-based	classification.	If	an	a	priori	pattern-based	model	is	

available,	one	can	calculate	the	pattern	expression	values	using	dot-product,	but	other	

similarity	metric	(e.g.,	Pearson’s	correlation,	Spearman	correlation,	cosine	similarity,	

etc.)	can	also	be	used:	

LMNNO3P	O#Q3ORRSTP = UVV⃑ ∙ #⃑ = Y U,#,

8

,9:
	

where	n	is	the	number	of	voxels	within	the	pattern-based	model,	w	is	the	voxel-level	

predictive	weights,	and	x	is	the	test	data.	An	a	priori	pattern-based	model	is	composed	

of	predictive	weights	(UVV⃑ )	across	voxels,	specifying	locations	and	patterns	of	activation.	

The	weights	tell	us	how	to	integrate	fMRI	data	into	a	single	prediction,	which	then	can	

be	used	for	classification	tests	or	regression	analyses.	In	our	example	analysis,	we	

calculated	the	dot	product	between	the	a	priori	pattern-based	model	for	[rejection	vs.	

friend]	and	[pain	vs.	warmth]	trained	on	the	original	data,	n	=	30,	and	the	test	image	

data	from	the	replication	data,	n	=	29.	Then,	we	conducted	a	classification	test	on	the	

pattern	expression	values	with	the	forced-choice	test	and	the	binomial	test	to	determine	

whether	the	observed	accuracy	is	significant.	

Results	

Illustration	of	the	issues	related	to	region-level	tests	

As	illustrated	in	Fig.	1B,	when	relying	only	on	a	region-level	hypothesis	such	as	

“significant	activation	within	dACC,”	one	can	easily	conclude	that	the	previous	findings	

are	successfully	replicated	even	with	two	very	distinct	activation	maps	at	the	voxel-

level.	For	the	[rejection	vs.	friend]	contrast,	both	original	(n	=	30)	and	replication	(n	=	

29)	data	contain	significantly	activated	dACC	voxels	while	their	peaks	are	located	far	

away	from	each	other,	d	=	43.1	mm,	and	the	patterns	of	activations	between	two	maps	

are	uncorrelated,	r	=	-0.06.	For	the	[pain	vs.	warmth]	contrast,	two	maps	from	the	

original	and	replication	data	show	peak	activations	that	are	relatively	close	to	each	

other,	d	=	14.7	mm,	and	a	high	degree	of	pattern	similarity,	r	=	0.72	(quantitative	tests	

on	these	values	will	be	proposed	in	the	Discussion).	If	we	make	conclusions	based	only	
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on	the	region-level	evidence,	we	should	conclude	that	findings	for	both	contrasts,	i.e.,	

[rejection	vs.	friend]	and	[pain	vs.	warmth],	are	successfully	replicated,	but	voxel-level	

evidence	provides	a	different	conclusion	for	the	[rejection	vs.	friend]	contrast,	which	is	

not	highly	replicable	at	the	voxel-level.	

The	same	issue	can	occur	when	comparing	two	different	psychological	states	

based	on	fMRI	activation	maps.	If	a	researcher	relies	only	on	a	region-level	test,	one	can	

conclude	that	social	rejection	and	physical	pain	share	neural	representations	within	the	

dACC	based	on	significant	activations	within	the	region	across	two	datasets.	However,	

the	voxel-level	examination	comparing	the	two	contrast	maps	(i.e.,	one	for	[rejection	vs.	

friend]	and	the	other	for	[pain	vs.	warmth])	suggests	a	different	conclusion.	In	the	first	

dataset	(n	=	30),	two	maps	had	peaks	close	to	each	other,	d	=	8.5	mm,	and	similar	

activation	patterns,	r	=	0.49,	supporting	shared	brain	representation	across	rejection	

and	pain	within	the	dACC.	However,	in	the	replication	dataset	(n	=	29),	the	peaks	from	

two	maps	were	located	far	from	each	other,	d	=	46.0	mm,	and	the	activation	patterns	

were	negatively	correlated,	r	=	-0.19,	suggesting	that	pain	and	rejection	do	not	share	

neural	representations.	 	

Survey	results	

	 As	shown	in	Fig.	2A,	we	found	that	a	majority	of	the	current	fMRI	replication	

studies	rely	heavily	on	region-level	assessment	(qualitative	region-level	comparison	

and	predefined	anatomical	ROI	test):	24.5%	and	60.8%	of	the	135	surveyed	studies	

respectively	used	the	qualitative	region-level	comparison	and	the	predefined	

anatomical	ROI	test	for	the	replication	assessment.	Note	that	the	currently	most	popular	

method	(60.8%)	for	the	replication	assessment	is	the	predefined	anatomical	ROI	test,	

which	might	look	like	a	positive	sign	for	good	analysis	practice.	However,	Fig.	2B	

suggests	that	it	is	not	the	case:	The	qualitative	region-level	comparison	and	the	

predefined	anatomical	ROI	test	did	not	differ	in	their	peak	distances	between	original	

and	replication	studies	(t44.8	=	0.57,	p	=	.569,	two	sample	t-test),	suggesting	that	both	

approaches	are	similarly	liberal	in	assessing	replication	(see	below	for	more	detailed	

comparisons).	 	

Importantly,	42.2%	of	the	135	replication	studies	(dark	red	line	outside	of	the	

pie	chart)	did	not	even	report	peak	coordinates,	indicating	that	these	studies	claimed	
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replication	without	any	quantitative	voxel-level	evidence.	6.7%	of	the	studies	used	a	

coordinate-based	ROI	test,	in	which	spatial	hypotheses	are	formed	using	peak	

coordinates	from	previous	studies,	and	7.4%	of	the	studies	used	a	priori	pattern-based	

models.	 	

Fig.	2B	displays	distances	between	peak	coordinates	from	original	vs.	

replication	studies	(peak	distance)	across	different	study	categories.	The	studies	that	

used	the	qualitative	region-level	comparison	and	the	predefined	anatomical	ROI	test	

showed	similarly	long	peak	distances	(for	the	qualitative	region-level	comparison	

studies,	mean	=	25.0	mm,	median	=	15.7	mm,	SD	=	23.4	mm;	for	the	predefined	

anatomical	ROI	studies,	mean	=	22.2	mm,	median	=	12.8	mm,	SD	=	24.4	mm).	By	

contrast,	the	coordinate-based	ROI	test	studies	fared	somewhat	better,	showing	peak	

distances	significantly	closer	than	the	other	two	study	categories	(mean	=	12.2	mm,	

median	=	1.7	mm,	SD	=	18.1	mm,	t62.7	=	-2.87,	p	=	.006,	two	sample	t-test).	 	

We	additionally	compared	distributions	of	the	peak	distances	across	three	

groups	using	the	Kullback-Leibler	(KL)	divergence;	lower	KL	divergence	indicates	more	

similar	distributions.	With	the	probability	density	function	using	the	bin	size	of	4	mm,	

KL	divergence	for	the	qualitative	region-level	comparison	vs.	predefined	anatomical	ROI	

groups	showed	smaller	KL	divergence,	KL	=	3.84,	than	the	KL	divergence	for	the	

predefined	anatomical	ROI	vs.	coordinate-based	ROI	groups	(KL	=	5.47)	and	for	the	

qualitative	region-level	vs.	coordinate-based	ROI	groups	(KL	=	9.13),	suggesting	that	the	

difference	between	the	qualitative	region-level	comparison	and	the	predefined	

anatomical	ROI	groups	was	smaller	than	their	differences	with	the	coordinate-based	

ROI	group.	The	mean	and	median	peak	distance	across	all	three	groups	were	

respectively	20.8	mm	and	12.8	mm	with	standard	deviation	of	23.5	mm.	 	

	 In	Fig.	2C,	we	used	the	amygdala,	the	average	diameter	of	which	is	16.3	mm	

(Brabec	et	al.,	2010),	to	provide	a	reference	point	for	the	peak	distances	of	the	surveyed	

studies.	48.3%	of	the	qualitative	region-level	comparison	studies,	41.3%	of	the	

predefined	anatomical	ROI	test	studies,	and	23.5%	of	the	coordinate-based	ROI	test	

studies	(overall	39.1%)	had	peak	distances	longer	than	the	amygdala’s	diameter,	

highlighting	the	fact	that	around	40%	of	the	replication	studies	in	the	neuroimaging	

field	claimed	replication	even	with	peak	differences	larger	than	the	size	of	amygdala.	 	
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Limitation	of	coordinate-based	models	in	evaluating	replications	

Though	assessing	peak	coordinates	between	the	original	vs.	replication	studies	

(e.g.,	peak	distance)	could	serve	as	a	quantitative	method	for	evaluating	replications,	

peak	coordinates	provide	a	suboptimal	metric,	in	part	because	peak	locations	are	not	a	

measure	of	central	tendency	and	thus	suffer	from	a	poor	basis	of	support	in	the	data.	

The	simulation	results	shown	in	Fig.	3C	and	Fig.	4	clearly	show	the	limitations	of	using	

peak	distance	as	an	evaluation	method	for	replication.	 	

First,	peak	coordinates	cannot	provide	a	reliable	and	stable	measure	for	the	

underlying	patterns	of	brain	activity	because	peaks	are	more	vulnerable	to	noise	than	

multivariate	pattern	information.	The	exactly	same	underlying	ground	truth	activation	

pattern	can	yield	multiple	different	peaks	when	noise	is	added.	For	the	simulation	

shown	in	Fig.	3,	we	created	a	pair	of	matrices	by	combining	one	ground-truth	activation	

pattern	with	different	random	noises	at	each	iteration	and	compared	two	data	matrices	

using	peak	distance	and	pattern	correlation	after	smoothing.	We	combined	the	signal	

and	the	noise	with	different	levels	of	signal-to-noise	ratio	(SNR)	that	ranged	from	0.1	to	

1.1,	increasing	by	0.2.	As	expected,	the	average	peak	distance	was	decreased	and	the	

pattern	correlation	was	increased	as	the	SNR	increased.	However,	the	peak	distance	

values	were	highly	variable	across	all	levels	of	SNR,	whereas	the	pattern	correlation	

values	had	much	lower	variance	than	peak	distance.	To	quantify	this,	we	compared	the	

effect	sizes	of	SNR	increases	on	peak	distance	and	pattern	correlation	using	Cohen’s	d	(a	

mean	difference	between	two	adjacent	levels	of	SNR	divided	by	pooled	standard	

deviation).	Peak	distance	showed	small	effect	sizes;	absolute	Cohen’s	d	for	the	decreases	

of	peak	distance	ranged	from	0.19	to	0.23	with	mean	d	=	0.21.	In	contrast,	pattern	

correlation	showed	large	effect	sizes	ranging	from	1.71	to	1.83	with	mean	d	=	1.80.	 	

Second,	we	did	a	simulation	with	real	data	and	found	that	closely	located	peaks	

cannot	ensure	the	high	degree	of	pattern	similarity.	As	shown	in	Fig.	4,	we	compared	

peak	distance	and	pattern	similarity	within	the	dACC	between	two	group-level	contrast	

maps	for	[rejection	vs.	friend]	constructed	from	10,000	iterations	of	random	split-half	

samples.	If	the	maps	are	reproducible,	two	contrast	maps	from	split-half	samples	should	

show	closely	located	peaks	(i.e.,	short	peak	distance)	and	high	degree	of	pattern	

similarity.	The	results	showed	that	the	maps	for	the	contrast	of	[rejection	vs.	friend]	are	
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not	highly	reproducible:	The	average	peak	distance	over	10,000	iterations	was	27.9	mm	

and	the	mean	pattern	similarity	was	r	=	-0.058.	A	linear	regression	analysis	with	peak	

distance	as	a	predictor	and	pattern	correlation	as	an	outcome	showed	that	peak	

distance	was	a	weak,	but	significant,	negative	predictor	for	pattern	correlation	(Z[=	-

0.0019,	p	<	0.001).	However,	the	peak	distance	explained	only	2.03%	variance	in	the	

pattern	similarity	values.	In	addition,	the	model	intercept	was	negative	(intercept	=	-

0.006),	suggesting	that	a	peak	distance	close	to	0	cannot	guarantee	a	positive	pattern	

correlation.	Fig.	4B	highlights	an	example	case	where	the	peak	distance	between	two	

half-split	data	was	very	short	(d	=	4.9	mm),	but	still	showed	negative	pattern	

correlation	(r	=	-0.15).	Therefore,	it	is	possible	that	two	brain	maps	with	very	different	

brain	activation	topography	can	be	considered	to	be	same	if	we	examine	only	peak	

coordinates.	 	

We	also	conducted	the	same	simulation	for	the	[pain	vs.	warmth]	contrast.	As	

shown	in	the	bottom	panel	of	Fig.	4A,	the	[pain	vs.	warmth]	contrast	showed	a	

significantly	lower	average	peak	distance	(6.9	mm)	compared	to	the	[rejection	vs.	

friend]	contrast	(27.9	mm).	This	suggests	that	peak	distance	could	be	an	adequate	

measure	in	some	cases	(e.g.,	when	the	spatial	variability	is	low).	However,	the	linear	

regression	results	using	the	simulated	data	for	[pain	vs.	warmth]	were	quite	similar	to	

the	one	for	[rejection	vs.	friend]:	Peak	distance	was	a	weak	predictor	of	pattern	

similarity,	 Z[=	-0.0015	and	was	able	to	explain	only	0.6%	variance	in	pattern	similarity,	

supporting	the	idea	that	peak	distance	is	not	a	good	predictor	of	pattern	similarity.	 	

Discussion	

Region-level	models	allow	flexibility	in	determining	what	can	count	as	positive	findings	

	 From	the	survey	of	135	fMRI	studies	that	contain	claims	about	replication	of	

previous	studies,	we	found	that	the	currently	most	popular	spatial	models	are	region-

level	models	(85.3%;	Fig.	2A).	This	is	important	to	note	because,	with	these	models,	

many	combinations	(likely	thousands)	of	different	activation	patterns	can	be	

interpreted	as	positive	findings	of	a	region-level	hypothesis,	such	as	“amygdala	activity.”	

Anatomical	brain	regions	usually	contain	more	than	1,000	voxels,	and	thus	the	actual	

number	of	hypotheses	becomes	the	number	of	possible	combinations	among	voxels	

within	the	regions.	In	other	words,	when	we	test	a	hypothesis	based	on	a	gross	
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anatomical	region,	we	are	testing	not	just	the	“cover”	hypothesis,	but	also	a	large	

number	of	unspecified	“hidden”	hypotheses	that	can	all	lead	to	positive	findings.	The	

unspecified	sub-hypotheses	make	the	cover	hypothesis	less	falsifiable,	leading	to	false	

positive	findings	and	replication	failure	in	the	long	run.	In	addition,	it	is	difficult	to	

establish	sensitive	and	specific	links	between	brain	measures	and	mental	categories—a	

central	goal	of	cognitive	neuroscience—without	more	precise	specification	of	which	

voxels	and	patterns	(i.e.,	relative	values	across	voxels)	should	be	activated.	

This	concern	is	well	supported	by	our	survey	results.	The	studies	that	employed	

qualitative	region-level	comparisons	or	predefined	anatomical	ROI	tests	showed	a	peak	

distance	to	the	nearest	claimed	“replicating	finding”	greater	than	22.6	mm	on	average,	

and	around	40%	of	these	studies	had	peak	distances	greater	than	the	amygdala’s	

average	diameter	(16.3mm),	suggesting	that	region-level	tests	indeed	allowed	

presenting	very	different	activation	maps	as	being	replicated.	This	was	only	among	

studies	reporting	peak	distances;	almost	half	(42.2%)	of	the	surveyed	studies	did	not	

even	report	quantitative	voxel-level	(peak	or	pattern)	evidence	for	replications.	

To	reduce	false	positives	and	the	false	sense	of	reproducibility	in	neuroimaging	

studies,	researchers	need	to	develop	and	use	formal	statistical	analysis	methods	to	

support	quantitative	and	explicit	spatial	models	and	hypotheses.	These	methods	should	

provide	statistical	inferences	about	where	brain	activations	are	located	and	how	

uncertain	those	locations	are.	Then,	tests	of	replication	should	be	based	on	these	

quantitative	spatial	models	and	hypotheses.	As	a	step	towards	developing	quantitative	

assessment	of	replications	and	spatial	hypotheses,	here	we	propose	some	specific	

recommendations:	1)	Provide	quantitative	voxel-level	evidence	(i.e.,	peak	or	pattern)	

when	claiming	replications	and	2)	use	explicit	spatial	models	and	tests.	If	peak	locations	

are	the	only	information	available,	we	recommend	using	explicit	models	and	tests	for	

peak	coordinates,	such	as	permutation	tests	on	peak	distance	and	Bayesian	MANOVA	

tests	on	peak	distributions.	These	could	provide	statistical	inferences	about	where	a	

peak	coordinate	is	likely	to	lie	and	whether	two	or	more	conditions	activate	same	or	

different	peak	locations.	However,	as	we	highlighted	through	simulations	shown	in	Figs.	

3-4,	peak	locations	provide	only	a	suboptimal	way	to	evaluate	replications,	and	

therefore	spatial	pattern-based	analyses	should	be	a	major	direction	in	future	

replication	studies.	We	explain	each	recommendation	in	more	detail	below,	summarize	
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our	recommendations	in	Fig.	5	and	the	Appendix,	and	describe	several	useful	test	

procedures	in	the	Methods.	 	

Provide	quantitative	voxel-level	evidence	when	claiming	replications	

As	proposed	in	Fig.	5	(violet	font	color),	one	can	provide	voxel-level	evidence	

for	replication	using	peak	coordinates,	confidence	regions,	peak	distance,	pattern	

similarity,	or	pattern	expression	values.	More	details	about	the	calculation	of	these	

values	are	included	in	the	Methods.	To	determine	which	types	of	voxel-level	

information	to	provide,	one	needs	to	consider	which	type	of	spatial	models	is	available	

from	the	original	study	first.	Fig.	5	provides	recommendations	and	examples	for	

different	cases.	

When	one	or	only	a	small	number	of	peak	coordinates	are	available	from	a	

previous	study,	one	can	provide	peak	distance	along	with	individual	peak	coordinates	

and	a	95%	confidence	region.	As	our	survey	results	showed,	the	studies	that	used	the	

coordinate-based	ROI	tests	reported	significantly	shorter	peak	distances	than	other	

study	categories	(Fig.	2B),	indicating	that	the	coordinate-based	ROI	tests	provide	more	

precise	models	compared	to	other	region-level	tests	maybe	because	the	coordinate-

based	tests	have	a	more	limited	search	space	than	others.	However,	going	beyond	the	

coordinate-based	ROI	tests,	researchers	should	be	able	to	report	and	systematically	

compare	peak	coordinates	from	their	current	study	against	the	peaks	from	previous	

studies	using	peak	distance.	If	multiple	peak	coordinates	are	available	from	previous	

studies	(e.g.,	from	meta-analyses	or	from	first-level	contrast	maps),	one	can	provide	a	

peak	distribution	along	with	95%	confidence	regions	for	the	previous	and	current	

studies.	A	confidence	region	from	the	original	study	could	potentially	serve	as	a	

replication	target,	and	overlapping	confidence	regions	can	be	an	evidence	for	successful	

replication.	However,	one	should	interpret	results	with	large	confidence	regions	with	

caution	because	large	confidence	regions	indicate	that	the	results	are	spatially	variable	

and	have	poor	spatial	specificity.	Thus,	in	addition	to	whether	a	study	spatially	

replicates	an	earlier	finding,	the	size	of	the	spatial	confidence	region	and	resulting	

implications	for	the	precision	of	localization	should	be	an	important	consideration.	

	 If	unthresholded	activation	maps	or	a	priori	pattern-based	models	are	available	

from	previous	studies	(e.g.,	from	NeuroVault.org	[Gorgolewski	et	al.,	2015]),	one	can	use	
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similarity	metric,	such	as	pattern	similarity	and	pattern	expression	values.	This	

provides	a	quantitative	way	to	measure	the	similarity	of	activation	patterns	across	

voxels	between	an	original	study	and	a	replication	study.	Such	measures	are	becoming	

increasingly	popular	also	as	measures	of	representational	similarity	(Haxby	et	al.,	2014;	

Kriegeskorte	and	Kievit,	2013).	

Use	quantitative	spatial	models	and	tests	for	peak	locations	

Though	peak	locations	have	many	limitations	in	assessing	replication	(Figs.	3-

4),	researchers	might	have	no	choice	other	than	using	peak	information.	In	that	case,	we	

recommend	using	a	permutation	test	or	Bayesian	MANOVA.	 	

First,	when	peak	distance	is	used	as	a	voxel-level	evidence,	one	can	use	a	

permutation	test	to	examine	whether	the	observed	peak	distance	is	shorter	than	the	

null	distribution	of	permuted	peak	distances	under	null	hypothesis.	Here,	the	null	

hypothesis	is	that	there	is	no	reliable	peak	location	exists	for	the	condition	contrast	

across	subjects.	The	permutation	test	can	resolve	the	issue	of	having	no	standard	

criterion	for	how	short	the	peak	distance	should	be	to	count	as	replication.	For	the	

example	analysis	(Fig.	5A),	we	generated	null	distributions	of	peak	distance	by	shuffling	

the	condition	labels	(e.g.,	‘rejection’	and	‘friend’)	within	each	participant	(for	more	

details,	see	Methods).	The	permuted	data	showed	the	intrinsic	distribution	of	the	peak	

distance	within	the	dACC	ROI,	which	was	not	a	normal	distribution.	The	test	results	

showed	that	the	observed	peak	distance	for	[rejection	vs.	friend]	(d	=	43.1	mm,	see	Fig.	

1B)	was	not	significantly	shorter	than	the	permuted	peak	distance,	p	=	0.617,	

suggesting	that	the	replication	study	failed	to	reproduce	the	brain	activation	map	more	

closely	compared	to	random	(null)	maps.	The	test	result	for	[pain	vs.	warmth]	(d	=	14.7	

mm)	also	suggested	replication	failure,	p	=	0.223.	This	may	be	a	function	of	the	poor	

measurement	properties	of	peak	distance,	as	discussed	above,	rather	than	a	failure	to	

find	reproducible	activation,	considering	other	test	results	presented	below.	

Second,	when	multiple	peak	coordinates	are	available	from	previous	studies,	

one	can	run	Bayesian	MANOVA	or	meta-analysis.	Bayesian	MANOVA	can	provide	

evidence	for	and	against	the	hypothesis	that	a	new	study	produces	peak	activation	

locations	consistent	with	prior	studies	(a	web-based	Bayes	factor	calculation	is	

available	at	http://cocoanlab.skku.edu/bayes_factor_bayesian_manova).	Multivariate	
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confidence	regions	are	useful	to	visualize	the	peak	distributions	around	the	peak	center	

along	with	the	results	of	Bayesian	MANOVA	(for	more	details	of	how	to	construct	

confidence	region,	see	Methods).	In	our	example,	as	shown	in	Fig.	5B,	the	Bayes	factor	

in	favor	of	null	hypothesis	(BF01)	suggested	that	the	peak	distributions	of	the	original	

and	replication	studies	are	distinct	for	the	[rejection	vs.	friend]	contrast,	BF01	=	0.08.	

The	Bayes	factor	for	the	[pain	vs	warmth]	contrast	supported	null	hypothesis,	BF01	=	

2.56,	suggesting	successful	replication.	Note	that,	similar	to	the	use	of	confidence	

regions,	one	should	be	cautious	about	interpreting	MANOVA	results	when	peak	

coordinates	are	highly	variable	because	high	variance	indicates	that	the	peak	locations	

are	not	reliable.	

In	addition	to	MANOVA,	conducting	coordinate-based	meta-analysis	is	strongly	

recommended	to	combine	multiple	peak	coordinates	(Samartsidis	et	al.,	2017).	Meta-

analysis	provides	a	principled	way	of	constructing	a	priori	hypotheses,	preventing	an	

arbitrary	cherrypicking	of	prior	studies	to	favor	current	findings.	Particularly,	with	

model-based	meta-analysis	such	as	Bayesian	Spatial	Point	Process	(BSPP)	model	(Kang	

et	al.,	2011b;	Wager	et	al.,	2015),	one	can	calculate	the	posterior	probability	of	

observing	the	current	data	based	on	the	peak	information	from	previous	studies.	We	do	

not	provide	a	full	description	of	this	method	in	this	paper	because	it	is	also	beyond	the	

scope	of	the	current	study.	

Multivariate	pattern-based	tests	 	

A	multivariate	pattern-based	approach	provides	a	powerful	alternative	to	the	

region-	and	coordinate-based	approaches	in	reducing	flexibility	in	hypothesis	testing.	In	

addition	to	its	ability	to	capture	information	distributed	across	multiple	voxels	and	

regions,	the	pattern-based	approach	can	provide	a	precisely	defined	a	priori	model,	

which	contains	specific	information	about	the	activation	location	and	relative	patterns	

of	activity	levels.	The	pattern-based	a	priori	model	removes	any	wiggle	room	for	further	

interpretation	or	redefinition	of	the	model,	eliminating	the	possibility	of	hiding	a	large	

number	of	hidden	hypotheses.	Researchers	can	even	save	their	pattern	model	as	an	

image	file	(e.g.,	a	nifti	file),	allowing	easy	sharing	of	the	model	across	researchers	and	

laboratories.	In	addition,	the	models	can	be	easily	applied	and	tested	across	studies	and	

datasets	with	no	further	modification,	minimizing	flexibility	in	testing	and	replicating	
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effects	in	new	individuals	and	studies	and	making	the	tests	confirmatory,	falsifiable,	

cumulative,	and	transparent.	

As	shown	in	Fig.	5C,	when	unthresholded	maps	are	available	from	the	previous	

studies,	one	can	use	permutation	tests	for	pattern	similarity	between	two	brain	

activation	maps	(defined	by	Pearson’s	correlation	coefficients	across	voxels).	In	our	

example	analysis,	we	generated	null	distributions	of	pattern	similarity	between	the	

dACC	activation	patterns	of	two	group-level	contrast	maps	by	shuffling	the	condition	

labels	within	each	participant	(for	more	details,	see	Methods).	The	test	results	showed	

that	the	observed	pattern	similarity	for	the	[rejection	vs.	friend]	contrast	(r	=	-0.06,	see	

Fig.	1B)	was	not	higher	than	the	permuted	pattern	similarity,	p	=	0.672,	suggesting	that	

the	replication	study	failed	to	reproduce	the	brain	activation	map.	The	test	result	for	the	

[pain	vs.	warmth]	contrast	(r	=	0.72)	showed	that	the	observed	pattern	similarity	was	

significantly	higher	than	the	permuted	pattern	similarity,	p	<	0.0001,	suggesting	a	

successful	replication.	 	

Finally,	Fig.	5D	provides	an	example	analysis	for	multivariate	pattern-based	

marker	approach.	In	the	example	analysis,	we	trained	pattern	classifiers	(using	linear	

support	vector	machines)	based	on	the	original	data	(n	=	30),	one	for	[rejection	vs.	

friend]	and	the	other	for	[pain	vs.	warmth].	Then	we	tested	the	exactly	same	classifier	

models	(without	any	modifications)	on	the	replication	data	(n	=	29)	(for	more	detailed	

test	procedure,	see	Methods).	The	classification	accuracy	for	the	[rejection	vs.	friend]	

contrast	was	59%,	which	was	not	different	from	chance,	p	=	0.46,	suggesting	a	

replication	failure.	Conversely,	the	classification	results	for	the	[pain	vs.	warmth]	

contrast	showed	a	significant	accuracy,	83%,	p	<	0.0001,	suggesting	a	successful	

replication.	 	

Despite	its	advantages,	the	multivariate	pattern-based	approach	that	uses	a	

priori	pattern-based	models	also	has	a	limitation:	A	priori	pattern	models	can	utilize	

only	the	voxel-level	information	that	is	consistent	and	conserved	across	people	and	

studies.	The	amount	of	information	conserved	across	individuals	and	studies	could	be	

small	depending	on	the	target	mental	events,	study	populations,	and	even	differences	in	

preprocessing	pipelines.	To	address	this	limitation,	researchers	can	build	and	test	their	

hypotheses	on	the	representational	space,	not	on	the	brain	space,	using	methods	such	
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as	hyper-alignment	(Haxby	et	al.,	2011)	or	representational	similarity	analysis	

(Kriegeskorte	and	Kievit,	2013).	However,	even	for	the	representational	space-based	

approach,	the	same	caution	should	be	given	to	make	hypothesis	testing	and	replication	

assessment	more	falsifiable	and	transparent.	

Conclusion	

Though	anatomical	region-level	descriptors	provide	the	most	popular	spatial	

models	for	testing	and	replicating	previous	findings	in	neuroimaging	studies,	the	gross	

anatomical	region	descriptors	can	be	interpreted	in	many	different	ways	without	

further	specification	of	the	hypothesized	locations	and	patterns	of	activation.	These	

region-level	models	introduce	unwanted	flexibility	into	a	study,	resulting	in	

unfalsifiable	hypotheses,	false	positive	findings,	and	replication	failure.	To	build	a	more	

cumulative	and	falsifiable	science	of	neuroimaging,	we	recommend	using	more	

quantitative	spatial	models	in	testing	and	replicating	previous	findings	and	reporting	

them.	First,	we	recommend	providing	quantitative	spatial	evidence	for	the	claimed	

replication.	From	our	survey	on	135	studies	that	suggested	replications	of	previous	

findings,	we	found	that	a	high	proportion	of	the	studies	(42.2%)	provided	no	

quantitative	evidence	for	replication	at	all.	Second,	if	researchers	form	their	a	priori	

hypotheses	using	peak	coordinates	from	previous	studies,	we	recommend	conducting	

formal	statistical	tests	on	peak	distance	or	peak	distribution	using	permutation	tests,	

Bayesian	MANOVA,	or	meta-analysis.	Lastly,	we	strongly	recommend	using	the	a	priori	

multivariate	pattern-based	approach,	which	can	eliminate	flexibility	in	interpreting	a	

priori	hypotheses	by	providing	precise	definitions	of	activation	locations	and	relative	

patterns	of	activity.	These	practices	will	provide	researchers	with	more	robust	spatial	

tests,	helping	us	move	one	step	towards	resolving	the	current	replication	crisis	in	

neuroimaging	studies.	
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Appendix.	Summary	of	recommendations	

Recommendation	1:	Provide	quantitative	evidence	when	claiming	replications	

l Report	peak	distance	between	the	original	and	replication	studies:	

=(#$%& − #+$,-)
1 + (($%& − (+$,-)

1 + ()$%& − )+$,-)
1	

l Construct	and	visualize	confidence	regions	around	estimated	peak	locations:	 	

±.<,\
Q(P − 1)

P(P − Q)
?&,8>&(@)	A,	

l Estimate	pattern	similarity	between	the	original	and	replication	maps:	

∑ (#S − #7)((
S
− (7)P

S=1

.∑ (#S − #7)2P
S=1 =∑ ((

S
− (7)2P

S=1

	

l Calculate	 and	 test	 pattern	 expression	 values	 using	 a	 priori	 pattern-based	

models:	

Y US#S

P

S=1

	

	

Recommendation	2:	Use	spatial	models	and	tests	for	peak	locations	

l Permutation	tests	for	peak	distance	 	

Permutation	tests	can	be	used	to	examine	whether	the	observed	peak	distance	

between	original	and	replication	studies	is	significantly	shorter	than	the	

permuted	peak	distance.	

l Bayesian	MANOVA	 	

Bayesian	MANOVA	can	be	used	to	test	whether	the	multivariate	sample	means	

of	two	sets	of	peak	coordinates	(e.g.,	a	set	of	individual	participants’	peak	

coordinates	for	an	original	study	and	a	set	for	an	attempted	replication)	are	the	

same	or	different	using	Bayes	Factors	to	quantify	evidence	for	replication.	

l Coordinate-	or	model-based	meta-analysis	 	

These	methods	can	be	used	to	estimate	the	posterior	probability	of	observing	

the	current	data	based	on	the	peak	information	from	previous	studies.	
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Recommendation	3:	Use	a	priori	multivariate	pattern-based	models	

l Permutation	tests	for	pattern	similarity	 	

Permutation	tests	can	be	used	to	examine	whether	pattern	similarity	of	

activation	maps	between	an	original	study	and	a	replication	study	is	higher	than	

the	permuted	pattern	similarity.	 	

l Classification	tests	for	pattern	expression	values	

An	a	priori	pattern-based	model	from	an	original	study	can	be	used	to	examine	

whether	the	a	priori	model	can	classify	the	target	conditions	in	a	replication	

study.	  
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Figure	captions	

Figure	1.	Issues	in	testing	replication	using	region-level	and	coordinate-based	

spatial	models.	(A)	Peak	coordinates	from	a	meta-analysis	for	positive	and	negative	

emotions	(Ashar	et	al.,	2017;	Lindquist	et	al.,	2012).	The	peak	coordinates	shown	here	

are	856	peaks	from	68	fMRI	studies	that	examined	aspects	of	positive	or	negative	

emotions,	and	we	only	included	the	studies	that	reported	peak	coordinates	on	the	MNI	

standard	space.	With	these	peaks	that	are	distributed	all	over	the	whole	brain,	it	is	easy	

to	find	previous	studies	that	contain	peak	coordinates	near	their	current	findings	

anywhere	in	the	brain,	allowing	a	post-hoc	justification	of	their	findings	as	replications.	

(B)	An	illustration	of	the	issues	related	to	using	region-level	hypotheses	in	

neuroimaging	studies.	For	the	illustration,	we	used	an	fMRI	dataset	(N	=	59;	Woo	et	al.,	

2014a)	that	includes	somatic	pain	and	social	rejection	tasks	(For	more	details	about	the	

dataset,	see	Methods).	To	create	the	original	and	replication	data,	we	divided	the	data	

into	two	sets	while	keeping	their	temporal	order	of	data	collection.	Then,	we	used	the	

first	dataset	as	an	original	study	(n	=	30)	and	the	other	set	as	a	replication	study	(n	=	

29).	The	figure	provides	both	region-level	evidence	(orange/red)	and	voxel-level	

evidence	(violet)	for	replication	and	highlights	that	the	region-level	and	voxel-level	

evidence	can	provide	opposite	conclusions	about	the	replication.	 	

	

Figure	2.	Survey	results.	We	surveyed	135	fMRI	papers	that	contain	claims	of	

replicating	previous	findings	and	were	published	between	January	2010	and	April	

2017.	(A)	The	pie	chart	shows	the	proportions	of	seven	categories	for	the	replication	

studies.	The	seven	categories	are	as	follows:	(1)	‘No	specific	report’	refers	to	the	studies	

that	include	no	specific	information	to	support	their	claims	of	replication.	(2)	

‘Qualitative	region-level	comparison	with	no	report	of	peak	coordinates’	refers	to	the	

studies	that	suggested	replication	based	on	qualitative	region-level	comparisons	and	

did	not	report	peak	coordinates.	(3)	‘Qualitative	region-level	comparisons	with	peak	

coordinate	information’.	(4)	‘Predefined	anatomical	ROI	test	with	no	report	of	peak	
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coordinates’	refers	to	the	studies	that	used	anatomical	ROIs	as	prior	models	and	did	not	

report	peak	coordinates	in	the	paper.	(5)	‘Predefined	anatomical	ROI	test	with	peak	

coordinate	information’.	(6)	‘Coordinate-based	ROI	test’	refers	to	the	studies	that	used	

coordinate-based	prior	models	(e.g.,	5-mm	sphere	around	a	peak	coordinate	from	a	

previous	study).	(7)	‘Pattern-based	prior	model’	refers	to	the	studies	that	used	a	priori	

multivariate	pattern-based	models.	The	category	groups	except	for	’Pattern-based	prior	

model’	were	subdivided	into	two	groups	based	on	whether	the	study	reported	peak	

coordinates	or	not.	(B)	The	box-violin	plots	present	the	distributions	of	peak	distance	

(in	mm)	between	replication	and	original	studies	for	the	three	study	categories	that	

reported	peak	coordinates.	Dark	purple	and	red	lines	respectively	indicate	the	mean	

and	median	values.	Studies	that	used	coordinate-based	prior	models	showed	

significantly	shorter	peak	distance	compared	to	others	(p	<	.05,	two-sample	t-test).	(C)	

The	cumulative	distribution	plot	shows	the	cumulative	proportions	of	the	peak	distance	

values.	To	provide	a	benchmark,	we	used	the	average	diameter	of	amygdala	(16.3mm	

from	Brabec	et	al.,	2010).	More	than	40%	of	the	studies	within	the	‘qualitative	region-

level	comparison’	(41.3%)	and	‘predefined	anatomical	ROI	test’	(48.3%)	categories	

showed	peak	distances	longer	than	the	amygdala	diameter.	

	

Figure	3.	Simulation	1.	(A)	To	examine	the	reliability	of	peak	distance	and	pattern	

correlation	when	comparing	two	simulated	data	with	the	same	ground	truth	patterns	of	

signal,	we	created	a	pair	of	100	x	100	matrices	(original	and	replication	data)	by	adding	

random	noise	to	the	underlying	ground	truth	signal	pattern.	The	ground	truth	pattern	

consists	of	5	x	5	patches,	each	of	which	is	a	20	x	20	matrix	with	the	same	activation	

values	ranging	from	0.2	to	2.0.	We	combined	the	signal	and	the	noise	with	different	

levels	of	signal-to-noise	ratio	ranging	from	0.1	to	1.1.	After	smoothing,	peak	distance	

and	pattern	correlation	between	two	data	matrices	were	calculated.	We	did	not	include	

two	edge	rows	and	columns	when	detecting	peaks	to	reduce	the	edge	effects	due	to	

smoothing.	We	repeated	this	process	10,000	times.	(B)	An	example	data	from	one	

iteration.	Stars	indicate	peak	locations	of	the	data	matrices.	(C)	Distributions	of	peak	

distance	and	pattern	correlation	across	different	levels	of	SNR.	
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Figure	4.	Simulation	2.	(A)	The	histograms	show	the	distributions	of	peak	distance	

and	pattern	correlation	within	the	dACC	between	group	contrast	maps	from	two	

randomly	half-split	datasets	using	the	same	fMRI	dataset	that	we	used	for	illustration	

(Woo	et	al.,	2014a).	We	treated	the	first	and	second	sets	of	the	half-split	data	as	original	

and	replication	studies,	respectively.	The	top	panel	shows	the	results	with	the	social	

rejection	data,	[rejection	vs.	friend],	and	the	bottom	panel	shows	the	results	with	the	

physical	pain	data,	[pain	vs.	warmth].	(B)	The	scatterplot	shows	the	relationship	

between	pattern	correlation	(y-axis)	and	peak	distance	(x-axis)	for	both	datasets,	red:	

pain	vs.	warmth,	purple:	rejection	vs.	friend.	The	reference	lines	are	the	least-square	

lines.	The	bottom	panel	displays	an	example	case	where	the	peak	distance	is	very	short	

(d	<	5	mm),	but	the	patterns	of	brain	activity	are	distinct	(r	<	0),	highlighting	the	fact	

that	close	peaks	do	not	necessarily	imply	similar	patterns	of	brain	activity.	

	

Figure	5.	Recommendations.	This	figure	shows	our	recommendations	to	reduce	

flexible	and	qualitative	spatial	tests	in	neuroimaging	studies.	We	provide	different	

options	of	quantitative	voxel-level	evidence	(violet)	and	test	methods	(green)	for	

different	types	of	spatial	models	available	from	previous	studies	(red),	ranging	from	(A)	

when	only	a	small	number	of	peak	coordinates	are	available	as	spatial	models	to	(B)	

when	multiple	peak	coordinates	are	available,	(C)	when	unthresholded	maps	are	

available,	and	(D)	when	a	priori	pattern-based	models	are	available.	For	more	detailed	

explanation	about	each	method,	please	refer	to	Methods	and	Discussion.	RF	=	rejection	

vs.	friend.	PW	=	pain	vs.	warmth.	Rej	=	rejection.	Fri	=	friend.	H0	=	null	hypothesis.	HA	=	

alternative	hypothesis. 
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