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Abstract 

Background：Gene knockout method has been used to improve the conversion ratio of 

industrial strains for many chemical products. There are a series of published algorithms to 

predict the targets for deletion. Based on metabolic networks, many of these algorithms are 

designed to predict the target of reaction or enzyme deletion. But as for the many-to-many 

relationship between genes and reactions, reaction or enzyme deletion is not the ideal strategy 

for metabolic engineering. GDLS algorithm aims to find direct gene deletion target by using local 

search, but it actually ignores the logic relationship of gene-protein-reaction.  

Results：In this study, we aim to find direct gene deletion targets for metabolic network, but 

the logic relationship of gene-protein-reaction (GPR) is considered. Our algorithm is call egKnock. 

At the same time, egKnock will provide the solution with multiple strategies and can maximize 

the minimum target flux of industrial objective in flux variability analysis. We compare egKnock 

with the algorithm of GDLS and OptORF by predicting the targets of gene deletion for several 

chemical products with their flux balance analysis testification, flux variability analysis 

testification and the main flux distribution. 

Conclusions：By comparison with the algorithm of GDLS and OptORF, we can conclude that 

egKnock is a nice algorithm for identifying direct gene knockout strategies for microbial strain 

optimization.  
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Background 

DNA recombinant and other techniques make it possible to manipulate genetic changes, 
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and gene knockout is one of the methods used to improve the yields of industrial strains for many 

chemical products. There are a series of published algorithms to predict the targets for deletion 

[1-6]. Bilevel optimization, which was introduced first time by OptKnock [1], is the core of these 

algorithms. Based on metabolic networks, many of these algorithms are designed to predict the 

target of reaction or enzyme deletion, such as OptKnock, ReacKnock [2]. ReacKnock has improved 

the solving speed and can provide multiple solutions. RobustKnock [3] utilizes triple level 

optimization method to provide the solution for maximizing the minimum target flux of industrial 

objective in FVA (flux variability analysis). Of course, as for the many-to-many relationship 

between gene and reaction, reaction or enzyme deletion is not the ideal strategy for metabolic 

engineering. GDLS [4] algorithm aims to find direct gene deletion target by using local search, but 

it actually ignores the logic relationship of gene-protein-reaction (GPR), i.e. it removes all the 

reactions which a deleted gene concerns. OptORF [5] and OptFlux [6] also aim to find direct gene 

deletion target, but they are based on metabolic-regulatory integrated network, while this kind of 

models is actually seldom, and up-to-date only E.coli and Yeast have the corresponding models 

[13-15]. Ref [11] reports a modified OptORF without regulatory considerations and it is similar 

with GDLS in methodology.  

In this study, we aim to find direct gene deletion targets for metabolic network, but the logic 

relationships of gene-protein-reaction (GPR) in metabolic network model are considered. Our 

algorithm is call egKnock (enzyme gene knockout). At the same time, egKnock will provide the 

solution with multiple strategies and can maximize the minimum target flux of industrial 

objective in FVA, while the second function is not included in GDLS, OptFlux and OptORF. The 

logic relationship of GPR is a tough problem, we firstly transform the model of metabolic network 

with its GPR relationship to a MILP (mixed integer bilevel linear programming) model by a 

published Matlab toolbox, named Tiger [7]. Then we utilize an improved bilevel optimization 

method to make a prediction on the direct gene targets for deletion, while maximizing the 

minimum target flux of industrial objective in FVA. Table 1 has shown the comparison among 

these algorithms about gene deletion prediction. 

Table 1. Comparison among several algorithms about gene deletion prediction 

Algorithm Cell Model 
GPR  

relationship 

Maximize  

min FVA 

multiple 

solutions 

OptKnock metabolic network no no no 

ReacKnock metabolic network no no yes 

RobustKnock metabolic network no yes no 

GDLS metabolic network no no yes 

egKnock (this study) metabolic network yes yes yes 

OptORF integrated network yes no yes 

OptFlux integrated network yes no yes 

 

Methods 

1) Flux balance analysis and gene-protein-reaction relationship 

Flux balance analysis is linear programming (LP) in mathematics, and the objective is usually 

cell growth, while the constraints are stoichiometric balance constraint and flux boundary 

constraint. Gene-protein-reaction relationships are logic expressions and it is not convenient to 
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solve a LP with logic expressions as constraints, such as problem (I).  
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v representing fluxes through reactions, g representing the Boolean expression state of all genes, 

p representing the presence of each protein, r representing the presence of a catalyzing enzyme 

for each reaction, S is the stoichiometric matrix, α and β represent lower and upper bounds on 

the fluxes of reaction rates. Reaction enzyme state logic constraints are like: if ri=1, αi ≤vi ≤ βi; if 

ri=0, vi =0.  

2) FBA (flux balance analysis) model with GPR 

We transform problem (I) where GPRs are logic expressions to the problem (II) where GPRs 

are inequalities. The logic expressions of GPR relationships include three types “AND, OR, NOT”, 

and they can be rewritten as linear inequalities [8]. The transforming now can be carried out 

conveniently by a tool, named Tiger [7].  
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Reaction enzyme state inequality constraints are like: riαi ≤ vi ≤riβi. 

3) Bilevel optimization model with GPR 

In order to maximize the rate of product flux, bilevel optimization method can be utilized. 

The first level is to maximize bioengineering objective, while the second level is to maximize 

biomass objective. The GPR inequalities and the control constraints are put at the first level. The 

scale limit of deletion is also in the first level. 
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Second Level: maximize biomass objective 2 1max
v

f c v= ⋅                (III) 
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Here, f1 is the objective function to maximize industrial production, f2 is the objective function for 

the cell to maximize the growth, i.e. vgro; y is the control variable, y(i)=0 means the gene should 

be deleted. Control constraints are like: yi = gi. 

4) Maximizing the minimum target flux of industrial objective in FVA 

But the gene deletion strategies from the solution of problem (III) only provide the possibility 

of obtaining a higher yield of product, do not guarantee to maximize the minimum target flux of 

industrial objective in FVA. In order to make the product flux predicted by egKnock can keep 

consistent with the minimum target flux in FVA and FBA testification, we change the second level 

optimization of problem (III) to be minimizing bioengineering objective but under the condition 

of the same growth, so another set of variables v� and r’ are introduced. The method we used 

here is different from RobustKnock [3] which utilizes triple level optimization method. 

First Level:  maximize bioengineering objective  1 2, , , ,
max

y g p r s
f c v= ⋅
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Second Level: minimize bioengineering objective 1 2mi n
v
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v� represents fluxes through reactions and it is an equivalent variable of v; r’ represents the 

presence of a catalyzing enzyme for each reaction and it is an equivalent variable of r; The 

objective function of the second level is to minimize bioengineering objective, and the objective 

function of the first level is to maximize minimized bioengineering objective.  

5) Transforming bilevel optimization to single level optimization 

The above bilevel optimization (IV) can be transformed to a single level MILP (V), and the 

method utilized is Karush-Kuhn-Tucker (KKT) method, which has been introduced in Ref [2]. 
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maximize bioengineering objective  1 2, , , ,
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     (V) 

KKT conditions of second level optimization in problem (IV)                  

6) Multiple solutions 

Combinatorial Bender’s cut was used to obtain all the multiple solutions of problem (V), and 

please refer to Ref [2]. 
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The above MILP (V) together with constraint (VI) can be solved by Gurobi and so on. 

 

Results and Discussion 

In order to evaluate the performance of egKnock with the previous algorithms (GDLS and 

OptORF), based on a genome-scale metabolic network model of E. coli_iAF1260 [9], we applied 

egKnock to predict gene knockout strategies for producing 5 chemicals (Acetate, Formate, 

Glycolate, D-Lactate and Fumarate). 15 gene combinatorial deletions were obtained as predicted 

strategies. Focusing on minimal medium with glucose as sole carbon source, we applied egKnock, 

GDLS and OptORF respectively towards the production of these different chemicals that can be 

secreted from E. coli. GDLS algorithm in this study was from the corresponding function of 

COBRAToolbox [10]. But as our experience, it is not convenient to use GDLS for its complex 

parameter setting and especially it is difficult to reach the given maximum deletion number in 

the computation. This was also mentioned in Ref [11]. By setting just a constraint of minimum 

deletion number, we modified the GDLS codes in COBRAToolbox to make it easy to reach the 

given deletion number. For OptORF, we wrote the codes according to the formula of OptORF 

paper [11], where it is without regulatory considerations and it is similar with GDLS in 

methodology. The comparison results under aerobic condition were illustrated in Table 2. Here, it 

was for the reason of computational aspect that we used unified aerobic condition. It is not 

difficult to get the results under anaerobic condition. Corresponding to Table 2, Table S1 in 

supplementary information provided the gene names that were deleted and the reactions that 

were removed according to the GPR relationships. In order to show the capability of 

multi-solution of egKnock algorithm, Table 3 has shown the first six alternative solutions for 

predicting 20-gene deletions to produce Succinate on the E. coli_iAF1260. Corresponding to Table 

3, Table S2 in supplementary information provided the gene names that were deleted and the 

reactions that were removed according to the GPR relationships.  

Firstly, the product flux predicted by egKnock can keep consistent with the minimum target 

flux in FVA and FBA testification, while OptORF and GDLS are the worst in this function. When 

doing the testification of FVA and FBA, we use the standard function “deleteModelGenes” from 
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COBRA Toolbox to remove the predicted target genes and related reactions from the original 

model. Secondly, egKnock can find direct gene deletion targets for metabolic network, while the 

logic relationship of GPR is considered. But GDLS actually ignores the logic relationship of GPR, i.e. 

it removes all the reactions which a gene concerns and this gene is regarded as a deletion target. 

From the formula (4) of GDLS paper in the Method section, the GPR relationship of metabolic 

model is reflected in matrix G, but matrix G actually does not include the logic relationships of 

GPR. That is to say “AND, OR, NOT” logic relationships cannot be reflected in matrix G. OptORF 

without regulatory considerations [11] is similar to GDLS in methodology. Thirdly, egKnock can 

return all the alternative deletion strategies in the same search scope with the near industrial 

objective, while OptORF only provides one deletion strategy for a given deletion number. Fourthly, 

egKnock adopted numerical method by transforming bilevel optimization to mixed integer 

program (MIP) and solves MIP by optimization software such as Gurobi [16] or Cplex. 

Meta-heuristics is another way to solve bilevel optimization [17], where it transforms bilevel 

optimization to nonlinear program with joint objective and solves it by evolutionary algorithm. 

OptGene utilizes genetic algorithm to bilevel optimization [18]. Both [17] and [18] are only for 

metabolic model without considering GRP relationships. In general, numerical methods are faster 

than heuristics method or genetic algorithms. OptFlux adopts heuristics method as well, so it will 

spend a long time to reach the optimal point. Fifthly, as we said in Introduction, the model of 

metabolic-regulatory integrated network is better in describing the behavior of cell than 

metabolic network model, but this kind of models is actually seldom at present. OptFlux and 

OptORF are towards integrated network model, but OptORF did not provide the computational 

tool.  

In order to see how the output fluxes are guided to the product after gene deletion, we 

choose Acetate as an example. We draw respectively the main flux distribution of wild-type E.coli 

and the main flux distribution of mutant E.coli with deleting the 15 genes predicted by egKnock 

for producing Actate. The flux distribution was calculated with E.coli_iAF1260, and when 

calculating the flux distribution of the mutant, those 15 genes were removed from the model. Of 

course, the flux distribution of both wild-type E.coli and the mutant are complex and we are 

unable to draw them in one picture clearly at a glance, so we just draw the main flux distribution. 

The main fluxes mean that the absolute flux values of the reactions in the metabolic network are 

larger than a given value, such as 5 or 10 mmol/g(Dw)h, then we will draw just several tens of 

reaction fluxes in one picture. The main flux distribution of wild-type E.coli and the mutant are 

illustrated in Figure 1 and Figure 2 respectively, drawn by Paint4Net [12], a COBRA Toolbox 

extension for visualization of stoichiometric models of metabolism. From the figure, we can see 

that the flux distribution of mutant E.coli is more complex than that of wild-type, but the output 

fluxes are guided to Acetate. CO2 was the main output flux of wild-type E.coli and it was a 

primary C loss, while this is reduced greatly in the mutant. 

 

Conclusions 

There are several merits of egKnock over GDLS and OptORF. 1) egKnock can guarantee to 

maximize the minimum target flux of industrial objective in FVA. If a predicted gene deletion 

strategy which can’t guarantee to maximize the minimum target flux of industrial objective in FVA 

and this actually just provides the possibility to get a high yield of product, this strategy will 
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actually be an ineffective strategy and we should necessarily design the metabolic pathway in the 

later. 2) egKnock can find direct gene deletion targets for metabolic network, while the logic 

relationship of GPR is considered. 3) egKnock can provide all the alternative deletion strategies in 

the same deletion number and near theoretical yields. It’s very useful for multiple deletion 

strategies in strain design, for it can provide alternative gene operation strategies. 4) egKnock is 

stable in running. OptORF is instable in the cases of Formate production, and it can’t provide 

effective deletion strategies for the chemical productions.  

 

List of abbreviations 

GPR (gene-protein-reaction), FVA (flux variability analysis), egKnock (enzyme gene knockout) 

MILP (mixed integer bilevel linear programming), linear programming (LP), Karush-Kuhn-Tucker 

(KKT), FBA (flux balance analysis) 
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Table 2.  Comparison of the predictions by egKnock, OptORF, GDLS. The following constraints were applied: glucose consumption rate is 10, cell growth is no less 

than 0.1, maintenance energy metabolism is 8.39, oxygen consumption rate is no higher than 18.5. All the rate unit is mmol/g(Dw)h. Max_yeild means the 

maximum conversion ratio at the given condition. The maximum computation time was set to 60 min, but the time consumption of most cases are within the set.  

 

Chemical 

target 
Strain type Prod. rate Growth rate 

FVA test  

min / max  

Prod. rate 

FBA test 

Growth 

rate 

FBA test 

Prod. 

rate  

Enzyme genes to be deleted as example 

Acetate (Max_Yield) 25.69     

Wild_type 1.68 0.885 1.68 / 1.68 -- -- -- 

 
egKnock 23.57 0.1 23.61 / 23.61 0.1  23.61 

'b0825' 'b0963' 'b1091' 'b1849' 'b1850' 

'b2029' 'b2210' 'b2913' 'b2943' 'b3236' 

'b3708' 'b3736' 'b3919' 'b3946' 'b4015' 

 OptORF 23.46 0.11 8.62 / 23.46 0.11 8.62 

'b1850' 'b2210' 'b2500' 'b2913' 'b3236' 

'b3731' 'b3732' 'b3733' 'b3734' 'b3735' 

'b3736' 'b3737' 'b3738' 'b3739' 'b3919' 

 
GDLS 23.62 0.1 8.3 / 8.3 0.62 8.3 

'b0116' 'b0351' 'b0721' 'b0767' 'b2416' 

'b2501' 'b2925' 'b2943' 'b2976' 'b3236' 

'b3617' 'b3708' 'b3946' 'b4321' 'b4388' 

Formate (Max_Yield) 43.69    

Wild_type 0.0021 0.885 0.00223 / 0 -- -- -- 

 
egKnock 28.65 0.1 28.67 / 28.67 0.1 28.67 

'b0114' 'b0124' 'b0430' 'b0822' 'b0837' 

'b0963' 'b1702' 'b1779' 'b1849' 'b2388' 

'b2508' 'b2913' 'b2914' 'b3565' 'b4090' 

 OptORF 0.002 0.885 0 / 17.53 0.31 0 

'b0237' 'b0411' 'b0825' 'b1243' 'b2407' 

'b2416' 'b3449' 'b3731' 'b3732' 'b3734' 

'b3735' 'b3946' 'b4069' 'b4382' 'b4384' 
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GDLS 30 0.1 6.63 / 18.38 0.26  6.63 

'b0576' 'b0727' 'b1602' 'b1849' 'b2029' 

'b2441' 'b2508' 'b2976' 'b3290' 'b3380' 

'b3517' 'b3588' 'b3735' 'b3835' 'b4388' 

Glycolate (Max_Yield) 25.69     

Wild_type 0 0.885 0.000039 / 0 -- -- -- 

 
egKnock 7.06 0.1 8.49 / 8.49 0.12 8.49 

'b0507' 'b0727' 'b0902' 'b1232' 'b1302' 

'b1603' 'b1852' 'b2500' 'b2587' 'b2662' 

'b2914' 'b2976' 'b3236' 'b3588' 'b3708' 

'b3951' 'b4014' 'b4090' 'b4266' 'b4388' 

 OptORF 22.52 0.179 0 / 21.77 0.154 0 

'b0116' 'b0507' 'b0726' 'b0727' 'b0825' 

'b0963' 'b1302' 'b1676' 'b1850' 'b1854' 

'b2029' 'b2463' 'b2662' 'b2913' 'b2976' 

'b3708' 'b3919' 'b3946' 'b4014' 'b4025' 

 
GDLS 23.27 0.12 0 / 0 0.61 0 

'b0116' 'b0507' 'b0521' 'b0767' 'b0871' 

'b1245' 'b1444' 'b2133' 'b2943' 'b2976' 

'b2987' 'b3517' 'b3708' 'b3835' 'b3892' 

'b3919' 'b3946' 'b4266' 'b4268' 'b4388' 

D-Lactate (Max_Yield) 18.56     

Wild_type 0 0.885 0.000019 / 0 -- -- -- 

 
egKnock 17.73 0.1 17.76 / 17.76 0.1 17.76 

'b0114' 'b0430' 'b0677' 'b0733' 'b0767' 

'b0904' 'b0979' 'b1207' 'b1247' 'b1302' 

'b1603' 'b1852' 'b2407' 'b2492' 'b2662' 

'b2866' 'b3236' 'b4208' 'b4382' 'b4384' 

 OptORF 17.85 0.13 0 / 17.8 0.13 0 

'b0221' 'b2210' 'b2281' 'b2297' 'b2458' 

'b2914' 'b2997' 'b3006' 'b3212' 'b3236' 

'b3731' 'b3732' 'b3733' 'b3734' 'b3735' 
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'b3736' 'b3737' 'b3738' 'b3739' 'b3835' 

 
GDLS 18.55 0.1 0 / 0 0.455 0 

'b0114' 'b0351' 'b0430' 'b0733' 'b0888' 

'b1109' 'b1761' 'b2210' 'b2243' 'b2288' 

'b2406' 'b2407' 'b2501' 'b3028' 'b3290' 

'b3553' 'b3708' 'b3844' 'b3892' 'b3952' 

Fumarate (Max_Yield) 16.08     

Wild_type 0 0.885 0.0000082 / 0 -- -- -- 

 
egKnock 10.07 0.1 10.27 / 10.27 0.1  10.27 

'b0124' 'b0394' 'b0674' 'b0767' 'b0825' 

'b0837' 'b1611' 'b1612' 'b1723' 'b2287' 

'b2297' 'b2407' 'b2458' 'b2501' 'b2913' 

'b3588' 'b3916' 'b3946' 'b4122' 'b4384' 

 OptORF 10.62 0.25 7.45 / 10.62 0.25 7.45 

'b0394' 'b0767' 'b0825' 'b0904' 'b1611' 

'b1612' 'b1773' 'b1852' 'b1900' 'b2097' 

'b2492' 'b2889' 'b2925' 'b3386' 'b3415' 

'b3946' 'b4122' 'b4265' 'b4321' 'b4476' 

 
GDLS 11.98 0.12 0 / 0 0.72 0 

'b0033' 'b0521' 'b0576' 'b0767' 'b1602' 

'b1611' 'b1761' 'b1850' 'b2508' 'b2744' 

'b2905' 'b2987' 'b3290' 'b3588' 'b3708' 

'b3916' 'b3946' 'b3952' 'b4265' 'b4388' 
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Table 3. First ten alternative solutions provided by egnock for predicting 20-gene deletions to produce succinate on the model E. coli_iAF1260 under 

aerobic condition with glucose Input = -10 mmol/g(Dw)h. The last two lines are growth rate and product rate respectively. 

 

No. 1 2 3 4 5 6 

Deletion 'b0242' 'b0008' 'b0124' 'b0394' 'b0124' 'b0124' 

Strategies 'b0767' 'b0112' 'b0469' 'b0722' 'b0323' 'b0688' 

 'b0904' 'b0337' 'b0722' 'b0767' 'b0474' 'b0724' 

 'b1199' 'b0902' 'b0767' 'b0825' 'b0521' 'b0751' 

 'b1676' 'b1199' 'b0825' 'b1603' 'b0529' 'b0825' 

 'b1761' 'b1207' 'b0837' 'b1723' 'b0723' 'b0837' 

 'b1854' 'b1676' 'b0910' 'b1849' 'b0767' 'b0910' 

 'b2297' 'b1761' 'b1602' 'b2297' 'b0825' 'b1207' 

 'b2407' 'b1854' 'b1723' 'b2388' 'b0837' 'b1603' 

 'b2436' 'b2297' 'b2297' 'b2407' 'b1603' 'b1723' 

 'b2458' 'b2407' 'b2458' 'b2458' 'b1723' 'b1852' 

 'b2492' 'b2436' 'b2500' 'b2501' 'b2297' 'b2297' 

 'b2501' 'b2458' 'b2661' 'b2913' 'b2458' 'b2458' 

 'b2551' 'b2464' 'b2744' 'b3437' 'b2501' 'b2500' 

 'b2987' 'b2744' 'b2913' 'b3588' 'b2661' 'b2661' 

 'b3386' 'b3708' 'b3588' 'b3916' 'b2874' 'b2690' 

 'b3493' 'b3738' 'b3665' 'b3946' 'b3588' 'b3588' 

 'b3736' 'b3951' 'b3916' 'b4265' 'b3916' 'b3916' 

 'b4301' 'b4384' 'b3946' 'b4268' 'b3946' 'b3946' 

 'b4384' 'b4388' 'b4384' 'b4384' 'b4388' 'b4388' 

growth rate 0.1 0.1 0.1 0.1 0.1 0.1 

product rate 9.29 9.00 11.77 11.49 11.77 11.77 
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FBA_growth 0.1 0.1 0.1 0.1 0.1 0.1 

FBA_product 9.29 9.01 11.78 11.77 11.78 11.78 

FVA_min 9.29 9.00 11.78 11.77 11.78 11.78 

FVA_max 9.29 9.01 11.78 11.77 11.78 11.78 
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Figure 1. Main flux distribution of wild type E.coli. The flux distribution was calculated with E.coli_iAF1206 without deleting any genes by setting glucose input 

as 10, maintenance energy metabolism is 8.39 mmol/g(Dw)h, oxygen consumption rate no higher than 18.5. All the rate unit is mmol/g(Dw)h. Main fluxes mean 

that the absolute flux values in the reactions are larger than 5. In the figure, blue boxes indicate metabolites, while red circles indicate reactions. 
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Figure 2. Main flux distribution of mutant E.coli with deleting the 15 genes predicted by egKnock for producing Acetate. The flux distribution was calculated 

with E.coli_iAF1206 by setting glucose input as 10, maintenance energy metabolism is 8.39 mmol/g(Dw)h, oxygen consumption rate no higher than 18.5, and at 

the same time removing those 15 gene from the model. All the rate unit is mmol/g(Dw)h. Main fluxes mean that the absolute flux values in the reactions are larger 

than 8. In the figure, blue boxes indicate metabolites, while red circles indicate reactions.  
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