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Abstract

Transcriptional regulations exert a critical control of metabolic homeostasis. In particular, the
nuclear receptors (NRs) are involved in regulating numerous pathways of the intermediate
metabolism.  The  purpose  of  the  present  study  was  to  explore  in  liver  cells  the
interconnectedness between three of them, LXR, FXR, and PPARα, all three known to act on
lipid and glucose metabolism, and also on inflammation. The human cell line HepaRG was
selected  for  its  best  proximity  to  human primary  hepatocytes.  Global  gene  expression  of
differentiated HepaRG cells was assessed after 4 hours and 24 hours of exposure to GW3965
(LXR agonist),  GW7647  (PPARα agonist), and GW4064 and CDCA (FXR synthetic and
natural  agonist,  respectively).  Our  work  revealed  that,  contrary  to  our  expectations,  NR
specificity is largely present at the level of target genes, with a smaller than expected overlap
of the set of genes targeted by the different NRs. It also highlighted the much broader activity
of the synthetic FXR ligand compared to CDCA. More importantly, our results revealed that
activation  of  FXR has  a  pro-proliferative  effect  and decreases  polyploidy of  hepatocytes,
while  LXR inhibits  the  cell  cycle  progression,  inducing  hepatocyte  differentiation  and  a
higher  polyploidism.  Conclusion:  these  results  highlight  the  importance  of  analyzing  the
different NR activities in a context allowing a direct confrontation of each receptor outcome,
and reveals the opposite role of FXR and LXR in hepatocyte cells division and maturation.

Introductory statement

Homeostasis of energy metabolism results in a steady-state output of energy available for cell
functions, despite the discontinuity of food intake and activities. Metabolic regulation in the
liver  is  a  major  component  of  energy  homeostasis.  At  the  molecular  level,  metabolic
regulation  relies  on  three  main  types  of  control:  allosteric,  post-translational,  and
transcriptional.  While  most  metabolic  regulations  benefit  from  a  coordination  of  these
mechanisms, transcriptional regulation exerts a critical control for keeping each component of
the regulatory mechanisms at appropriate operating levels. 
Nuclear  receptors  (NRs)  are  transcription  factors  that  share  many  structural  properties,
notably a DNA binding domain folded in two zinc fingers and a ligand-binding pocket made
of  13 alpha  helices.  Within  the  superfamily  of  NRs,  which  encompasses  48 members  in
Humans,  there  is  a  sub-class  called  metabolic  sensors.  They are  bound and activated  by
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endogenous  ligands  that  are  metabolites  belonging  to  the  intermediary  metabolisms,  and
actively contribute to the regulation of metabolic pathways. The discovery of each receptor
initially  emphasized  the  specificity  of  each  receptor  in  a  given  metabolic  pathway,  for
example the peroxisome proliferator-activated receptors (PPARα , PPARβ/δ , PPARγ ; NRC1,
NRC2, and NRC3, respectively in the international nomenclature) in lipid metabolism, the
farnesoid  X receptors  (FXR and FXRβ;  NR1H4 and NR1H5P,  respectively)  in  bile  acid
metabolism, and the liver X receptor (LXRα and LXRβ; NR1H3 and NR1H2, respectively) in
cholesterol metabolism  (1, 2). However the classical linear view with each NR engaged in
modulating  one  or  a  few  pathways  is  challenged  by  the  numerous  and  complex
interconnections between the metabolisms of glucides, lipids and amino acids, as well as by
the numerous roles of NRs outside of metabolism. This highlights the need to delineate the
regulatory network underlying homeostasis through systemic approaches. 
The aim of this study was to explore the connections between the three NRs mentioned above.
More specifically, PPARα is activated by unsaturated fatty acids and involved in many facets
of  both  lipid  and  glucose  metabolism.  LXRα  and  LXRβ  are  activated  by  cholesterol
derivatives,  but  are  also  strongly  lipogenic.  Finally,  FXR is  bound  by  bile  acids  and  is
considered  as  a  critical  regulator  of  cholesterol  metabolism  (3).  Thus,  they  clearly  affect
overlapping  pathways.  To  better  explore  the  interconnections,  one  must  first  assess  the
activity  of  each  receptor  in  a  given common and reproducible  cellular  context.   For  that
purpose, we used the HepaRG hepatocarcinoma cell line, introduced in 2002 by Gripon et al.
(4).  HepaRG  cells  have  been  described  as  the  closest  in  vitro  model  to  human  liver
metabolism (5) and as a strong candidate for bioartificial liver applications (6).
Our work revealed that, in contrast to our expectations, NR specificity is largely present at the
level of target genes, with a smaller than expected overlap of the set of genes targeted by the
different NRs. The connection and coordination then mainly occur at the level of pathways.
Importantly, our observations also highlight an important role of FXR and LXR in regulating
cell growth and death of liver cells, with opposite effects on cell cycle progression and on
hepatocyte polyploidization.

Material and Methods

Cell culture and chemicals
Cultures  of  HepaRG cells,  generously  provided by C.  Guguen-Guillouzo,  were  grown as
described  in  details  in  (4).  After  differentiation,  hepatocyte-like  cells  were  enriched  by
selective  detachment  using  mild  trypsinization  and  plated  at  1.5x10-5/cm2  density  in
complete media plus 2% DMSO as described in  (7). Based on pilot experiments, 2 µM for
GW3965  (called  LXR-L in  this  study),  1  µM for  GW4064 and GW7647  (FXR-L and
PPARa-L in this study) and 50 µM for CDCA were used. All compounds were diluted in
DMSO, which  was also  used  as  vehicle  control.  The different  agonists  and CDCA were
purchased from Sigma-Aldrich (St. Louis, MO).

RNA extraction and Quantitative RT–PCR
Total RNA from cell culture was extracted with Trizol Reagent (Life Technologies, Carlsbad,
CA), following the manufacturer’s instructions. The PCR arbitrary units of each gene were
defined as the mRNA levels normalized to the GAPDH and the EEF1A1 expression level in
each sample using the qBase Software. The primers sequences are available upon request.
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Microarrays
Microarrays were prepared from two time points, 4 hours and 24 hours, with 18 samples per
time points: 3 samples of each of the 6 condition, i.e. FXR-L, LXR-L, PPARa-L, CDCA,
vehicle  controls  (DMSO) and untreated  controls.  Samples  were  hybridized  to  Affymetrix
GeneChip Human Gene 1.0 ST arrays (Affymetrix, Santa Clara, CA). Data summarisation
and  normalization  was  performed on all  36  samples  together,  using  the  robust  multichip
analysis  (RMA)  algorithm  implemented  in  the  Affymetrix  Expression  Console  software.
Probe sets that could not be mapped to any gene symbol were discarded. When more than one
probe set was associated with the same gene symbol,  only the probe set with the highest
variance across the normalized expression levels in the 18 arrays from time point 4h was
retained in the data set. After these two filtering steps, 20270 genes remained. Microarray
data are available on GEO (accession number GSE124053).

Differential Gene (DE) Expression
Differential  gene  expression  for  each  treatment  at  each  time  point  was  analyzed  with
moderated t-tests performed with the bioconductor package LIMMA (8). (See supplemental
material for a detailed method).  The resulting gene lists (limma output) are available in the
supplementary data archive data_and_code.zip.

Gene Set Enrichment Analysis (GSEA)
Gene set enrichment analysis (GSEA) was performed as described in (9) for each treatment at
each time point. Most of the gene sets were taken from KEGG, while BIOCARTA sets from
the  Broad  Institute's  Molecular  Signatures  Database  (MsigDB  version  3.0:
www.broadinstitute.org/gsea/msigdb)  are  explicitly  mentioned.  We  considered  a  gene  set
potentially enriched if it had an adjusted p-value lower than 0.2. The leading edge subsets of
significantly enriched pathways were extracted, using the GSEA algorithm (see supplemental
materials  for  a  detailed  method).  The  resulting  pathway  lists  are  available  in  the
supplementary data archive supplementary_archive.zip.

Cell-cycle analysis
As described  in  (10),  cells  were  fixed  in  70% ice-cold  ethanol,  washed  in  PBS and  re-
suspended in staining solution containing 20 μg/ml propidium iodide, 0.05% Triton X-100g/ml propidium iodide, 0.05% Triton X-100
and 200 μg/ml propidium iodide, 0.05% Triton X-100g/ml RNAse A (Sigma-Aldrich, St. Louis, MO) and 10,000 cells were analyzed per
sample  using  the  BD  bioscience  FACSDiva.  Data  were  based  on  8  replicates  from  3
independent experiments.

Western Blot
SDS-PAGE  was  performed  using  cultured  HepaRG  cell  extracts  and  transferred  to
nitrocellulose membranes (Novex, Life Technologies, Carlsbad, CA). After blocking, bands
were  detected  with  primary  antibodies  to  p27  (#2552),  CCND3  (#2936)  and  RB  (RB
Antibody Sampler Kit #9969) and secondary antibodies, anti-rabbit (#7074) or anti-mouse
(#7076) IgG conjugated to horseradish peroxidase (Cell Signaling Technology Inc., Danvers,
MA), and applying the SuperSignal® West Pico Chemiluminescent Substrate (Thermo Fisher
Scientific, Bremen, Germany). Membranes were then exposed to x-ray films (GE Healthcare,
Milwaukee, WI). Βeta-actin (#A2228, Sigma-Aldrich, St. Louis, MO) was used as a loadingeta-actin (#A2228, Sigma-Aldrich, St. Louis, MO) was used as a loading
control.
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Results

Defining and validating the experimental set-up
The aim of the experiment was to evaluate which hypothesis could best explain the cross-
regulatory action of the nuclear receptors on metabolic pathways.  Do the receptors regulate
common  target  genes,  or  do  they  regulate  different  sets  of  genes  belonging  to  common
pathways? 
Differentiated  HepaRG cells  were  chosen since  their  global  gene  expression  patterns  are
much closer to liver or primary human hepatocyte cultures than the widely used HepG2 cell
line  (5) and include the expression of  PPARα, LXRα/β,  and FXR at  mRNA levels.  This
expression is consistent with that observed in human primary cells. To activate each receptor,
we used synthetic ligands known to be the most specific: GW4064 for FXR, GW3965 for
LXRs, and GW7647 for PPARα, hereafter called FXR-L, LXR-L, and PPARa-L. We also
used the bile acid CDCA, which is a natural ligand of FXR (11, 12). CDCA is also known to
affect LXR (13), PPARα (14) and HNF4 (15) pathways, even though the mechanisms are not
yet well understood. For each compound, we selected the lowest concentration that triggered a
good response of canonical targets in a pilot experiment (data not shown). 
Microarrays were run first on differentiated HepaRG, prior any treatment. A second batch of
microarrays was then run 4 hours after the beginning of the cell exposure to each treatment, in
order to identify direct target genes, whereas the last batch of microarrays, run at 24h, aimed
at  identifying  global  crosstalk.  These  analyses  confirmed  that  the  NRs  of  interest  were
expressed in HepaRG cells. 
We then identified all genes differentially expressed, when compared to the group of control
samples, in at least one of the treatment conditions at either of the two time points. We used
the  RNA datasets  of  differentially  expressed  genes  as  features  to  perform a  hierarchical
clustering of the five different models analyzed by Hart et al. (5). As shown in supplemental
Figure 1, the profile of our set of DE genes was found to be similar in human  liver and in
primary hepatocytes, whereas HepG2 cells have a gene expression pattern far from all the
other  models  analyzed.  The  expression  profile  of  HepaRG  cells  (differentiated  and
undifferentiated) was distinct from that of liver cells, but much closer to it than that of HepG2
cells.
Altogether, these initial observations confirmed that HepaRG cells are in this context more
pertinent than other in vitro models widely used in literature, such as HepG2 cells (16, 17).

NR cross-talks happen at the pathway level and are mostly related to metabolism
The analyses of the set of genes differentially expressed at the 4 hours time point identified
681 differentially expressed genes, comparing the control to each of the treatments. A good
part of these genes are associated to the FXR-L treatment (~500 genes) and to a lesser extent
to CDCA (~160 genes), while fewer are associated to PPARa-L (~90), and to LXR-L (<10)
(Fig  1A,  left  part).  This  important  variation  in  the  number  of  genes  modulated  by  each
treatment  is  consistent  with  separate  gene  expression  or  ChIP-seq  studies  (18-20).  These
differentially  expressed  genes  include  the  main  known  targets  of  the  selected  nuclear
receptors.  For  example,  FXR-L and CDCA modulate  ABCB11 (BSEP),  ABCB4 (MDR3),
CYP7A1 and  PPARGC1 expression.  Some known FXR target  genes are  found modulated
only by FXR-L, and not by CDCA, like  NR0B2 (SHP),  HNF4A and  PPARA. Others were
only  regulated  by  CDCA  like  UGTB4,  RORA,  HMGCS1 and  NR1D1/2.  PPARa-L  up-
regulates its well-established target genes FABP4, HMGCS2, ACOX1, CD36 and CPT1A. At
this point, LXR-L has a very modest effect, modulating less than 10 genes, which include
known  LXR  target  genes  SCD,  SREBF1  (also  called  SREBP),  ABCA1,  FASN,  and
MYLIP/IDOL. 
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We then identified 1611 differentially expressed genes at the 24h time-point (Fig 1A, right
part).  This  strong  increase  compared  to  the  early  time-point  is  consistent  with  the
identification of indirect effects. For example,  SHP (NR0B2), a well-described FXR target
gene very significantly increased at 4 hours by FXR-L, mediates indirect regulations, such as
the strong down-regulation of Cyp7A1 seen at 24h (21). Also, SREBP1c, which is induced by
LXR at 4h, is a regulator of key genes in lipid metabolism  (22). These genes are in turn
induced at 24h, as for example  SCD1,  ACLS1 and  HMGCR and  HMGCS. Like at 4h, most
genes were associated to FXR-L (~1100) and CDCA (~350) and fewer to PPARa-L (~140)
and LXR-L (<50). 
Intriguingly, less than half of the genes identified at 4h were still differentially expressed at
24h  (312  out  of  681)  (Table  1),  suggesting  that  most  direct  effects  are  only  transient.
Comparing  the  different  treatments  shows  surprisingly  few  crosstalks  at  the  level  of
transcriptional regulation: among the 1980 differentially expressed genes, 75% are specific to
a single treatment. As expected, FXR-L and CDCA have the biggest overlap, sharing 63% of
the common genes (16% of all the differentially expressed ones). Nevertheless some genes
are common targets for different NRs. For example PDK4, HMGCS2, and ACOX1, involved
in lipid metabolism, are all up-regulated by PPARa-L and down-regulated by FXR-L; ABCA1
and  MYLIP, well described target genes of LXR  (3, 23) are also down-regulated by FXR.
Some other genes involved in lipid and glucose metabolism like, for example, FASN, FABP4,
LPL, INSIG1, SCD, are found up-regulated both by PPARa-L and LXR-L (Fig. 1A and Table
1). 
To  explore  the  possibility  of  crosstalk  at  the  level  of  pathways,  we looked  for  enriched
pathways shared across time-points and treatments. We identified 153 enriched pathways in
our dataset. Like for differentially expressed genes, we observed an increase in the number of
enriched pathways between the early and late time-points. Most enriched pathways (54%)
were identified at both time-points (compared to 16% of the differentially expressed genes).
Even  though  they  remain  predominantly  associated  to  the  FXR-L (140)  or  CDCA (114)
treatments, PPARa-L (62) and LXR-L (46) treatments are also well represented. Importantly,
80% (123/156) of the enriched pathways are shared between several treatments, compared to
25% (500/1980) at the gene level. While 40 of the 123 shared pathways are still specific to the
related  FXR-L and CDCA treatments,  which  both target  the same NR, the  remaining 83
pathways are associated with two or even three treatments targeting separate NRs and thus
point  to  crosstalk  at  the  pathway  level.  In  other  words,  more  than  half  of  all  enriched
pathways (83/153) are associated with at least two NRs (Figure 1B; Table 1).
The most striking observation at this point is that few genes are co-regulated by the NRs
studied herein. In contrast, the cross-talk appeared in the associated pathways. We therefore
explored further the shared enriched pathways to discover new NR crosstalks.

Cell growth and death is overrepresented in FXR and LXR cross-talks
Based on the KEGG pathway database (www.genome.jp/kegg/pathway.html), we manually
classified  enriched  pathways  into  4  groups:  “Metabolism”,  “Cell  Growth  and  Death”,
“Immune System” and “Other”. ‘Transport and catabolism’, ‘Endocrine, Digestive, Excretory
Systems’ and ‘Endocrine and Metabolic diseases’ were merged into the 'Metabolism' group.
‘Genetic  Information  Processing’,  ‘Cellular  Processes’  (other  than  ‘Peroxisome’)  and
‘Cancers’  form the  ‘Cellular  Growth  and  Death’  group.  Finally,  ‘Immune  and  Infectious
Diseases’ correspond to our ‘Immune System’ group. Unclassified pathways that we could
not associate to one of these 3 groups form the ‘Other’ group (the names of the pathways in
each category are made available in the supplementary archive "data_and_code.zip").
As a set of core genes may drive different pathways belonging to the same group, we then
counted the genes belonging to the leading edge of the GSEA curves and involved in several
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pathways  within  each  group  (illustrated  in  supplementary  Figure  S2).  In  the  metabolism
group, only 14 genes are involved in at least 10% of the pathways. This amount increases for
the two other groups with 121 genes  being involved in at  least  10% of pathways of cell
growth and death and 96 for the immune system; 37 of them are common to both groups. As
most  DE genes are  specific  to one pathway,  we are confident  about the relevance of the
enriched pathways. This analysis thus confirmed that metabolic regulations, which are the
main functions of the NRs, are represented by the largest group of enriched pathways with the
highest specificity of involved genes. 
The ‘Metabolism’ group covers 48% of the enriched pathways, ‘Cellular Growth and Death’
cover 30%, and ‘Immune System’ 14%. Unsurprisingly, all pathways shared by the three NR
and 65% of  the ones  shared by FXR and PPARα are involved in  metabolism (Table  2).
However,  72% of the pathways associated  to both FXR-L and LXR-L are related  to  cell
growth  and  death,  while  this  group  does  not  represent  more  that  30%  in  the  other
combinations of treatments. The role of FXR and LXR in liver is considered as mostly related
to metabolism regulation with main roles in lipid, cholesterol and glucose metabolism, FXR
being anti-lipogenic and LXR pro-lipogenic (1). However they also play an important role in
liver regeneration (24-28) or cancer development (29-31).

FXR and LXR oppositely regulate the cell cycle progression
To understand the mechanisms involving FXR and LXR in the regulation of cell growth and
death, we focused on the “Cell cycle” pathway, which is enriched in four conditions: at 4h by
FXR-L and CDCA, and at 24h by FXR-L and LXR-L. We further looked at the genes that
belong to the leading edges of the cell cycle pathway at 24h for FXR-L (45 genes) and LXR-L
(41  genes).  Intriguingly,  FXR-L  predominantly  activates  gene  expression  while  LXR-L
inhibits it.  Twenty-three of the 26 genes found in the leading edges for both treatments are
oppositely regulated by FXR-L and LXR-L (Fig. 2).
Using the KEGG diagrams to illustrate  the corresponding pathway and genes (Fig. 3 and
supplementary Fig. S3), the patterns of FXR-L at 4h show an up-regulation of genes involved
in  the  G1/S  transition  like  C-MYC,  and  CCND1.  At  24h,  the  cell  cycle  key  players  are
upregulated by FXR-L and downregulated by LXR-L. The list comprises CCNE, CDK2, and
P18 as  well  as  genes  involved  in  DNA replication  such  as  CDC6 and  members  of  the
minichromosome complex (MCM)  (32, 33). These observations suggest a pro-proliferative
role for FXR, with an up-regulation of genes involved in the G1/S progression at 4h and a
more  global  positive  regulation  at  24h.  LXR  have  the  opposite  effect  inhibiting  genes
involved in the cell cycle progression and DNA replication. 

To determine  if  these gene modulations  reflect  an actual  regulation  of the cell  cycle,  we
analyzed  the  distribution  of  cell  cycle  phases  by  propidium  iodide  staining  and  flow
cytometry.  We  treated  HepaRG  cells  with  FXR-L  and  LXR-L  for  24,  48  or  72  hours.
Knowing the pro-proliferative effect of serum in the culture media, the experiment was made
both in the presence and in the absence of serum. Flow cytometry analyses revealed two well
separated populations corresponding to diploid and tetraploid populations (2C and 4C DNA
content, respectively), characteristic of mammalian hepatocytes (Fig. 4A) (34).
In  serum  free  conditions,  FXR-L  treatment  triggered  a  decrease  of  the  tetraploid  cell
population, visible at 24h and significant at 48h and 72h, with 25% and 36% less 4C cells
respectively, while LXR-L treatment has no significant effect (Fig. 4D). In presence of serum,
the 4C population also decreases at 72h with FXR-L (22%), whereas it significantly increases
with LXR-L (17%). 
The  mechanisms  involved  in  the  mammalian  hepatocyte  polyploidism  are  not  yet  well
understood. However polyploidy is known to appear at the terminal differentiation during late
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foetal development,  while proliferating cells are mainly diploid. Indeed, by sorting the cells
by their cell cycle phase status, we observe in the diploid population an accumulation of cells
at G1 after 48 hours treatment with LXR-L (suppl. Fig. S5). This accumulation is further
increased  at  72 hours,  while  S and G2 populations  are  decreasing  (Fig.  4B).  In  opposite
manner, FXR-L tends to decrease the G1 population and increase the S and G2 populations at
24h, even if these changes are statistically significant only at 72h in serum-free conditions
(Fig. 4B and suppl. Fig. S5). The tetraploid population shows the same pattern with a stronger
effect of FXR-L, decreasing significantly the G1 population in both conditions (Fig. 4C).
Hence,  our  results  are  consistent  with  a  correlation  between  polyploidy  and  hepatocyte
differentiation  stage (35):  FXR-L has  a  pro-proliferative  effect  and decreases  polyploidy,
while LXR-L inhibits  the cell cycle progression, inducing hepatocyte differentiation and a
higher polyploidism.
Positionning the genes identified in the GSEA results with the BIOCARTA pathways show
that  FXR-L affects  the G1/S and G2/M checkpoints,  while  LXR-L only affects  the G1/S
checkpoint,  blocking the cells  in  the G1 phase (Fig.  4).  To better  assess the key players
involved in these regulations, we evaluated the activity of some cell cycle regulators at the
transcriptional and post-transcriptional levels (Fig. 5). The LXR-L treatment affects the G1/S
checkpoint  by  inhibiting  the  expression  of  CDC25A and  CCNE2,  and  upregulating  the
expression  CDKN2B (p15).  Quantitative  PCR also shows a  downregulation  of  E2F1 and
E2F2 mRNA expression  by qPCR (Fig.  5A).  The treatment  also  has  effects  at  the  post-
transcriptional  level  inhibiting  the  CCND3  (Cyclin  D3)  expression  and  decreasing  RB
phosphorylation (Fig. 5B&C). On the other hand, FXR-L also deeply affects the key players
of the G1/S checkpoint, CCNE1 and SKP2, which are upregulated by FXR-L (Fig. 5A). This
is consistent with the observed hyper-phosphorylation of RB (Fig. 5B&C) and should result in
an activation of the cell cycle progression. Finally, FXR-L also affects the mRNA expression
of the G2/M checkpoint regulators CDC25C or CCNA2 (Fig. 5A).

Discussion

Nuclear receptors are important transcriptional regulators of metabolism (2), acting on both
specific and shared pathways. The numerous side effects associated to novel therapeutics for
metabolic  disorders  based  on  NRs  activation  or  inhibition  highlight  the  need  for
understanding their regulatory crosstalks. Herein, we demonstrated that the cross-talk between
the three selected receptors, FXR, LXR and PPARα is largely due to a distribution of their
respective specific target genes in shared pathways, rather than to their effects on common
genes.  This  study  further  allowed  identifying  an  important  role  of  FXR  and  LXR  in
controlling, in opposite manner, some key factors of cell cycle progression in liver cells and
of hepatocyte polyploidization.
A strength of this study is the use of HepaRG cells, which exhibit a gene expression profile
close to the primary human cells. By using a simplified, well standardized, and human-related
model, the results obtained are likely to be informative with respect to human responses to the
ligands  used  herein.  Another  strength  of  this  study  was  to  obtain  the  profile  of  gene
expression  upon activation  of  FXR, LXR and PPARα, respectively,  using  the  very  same
experimental conditions. This was the condition to be able to interpret the specificity of each
receptor. Indeed, existing gene expression profiles for these receptors that have already been
published in the GEO repository cannot be directly compared due to experimental setups and
cell line (for example, HepG2 vs HepaRG, vs primary hepatocytes, see  (5) and Suppl. Fig.
S1). 
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An important observation in the present study is that the three receptors we tested regulate
relatively few genes in common. There are several levels of promiscuousness between NRs:
they share the same binding partner RXR, they have promiscuous binding sites, and they act
on  common  metabolic  pathways.  However,  our  results  emphasize  their  specificity  in
activating  genes.  This specificity  does apply at  the very early time point  (4h),  where we
expect only direct target genes to be activated, but also extend to the late time point (24h),
where new genes are activated, in part as a consequence of the first set of gene activation.
Similar  observations  have  been  reported  when  analyzing  the  gene  regulatory  profile  of
PPARγ and LXR receptors in cancer  cells.  While  they both exert  an inhibitory action on
cancer cell proliferation, via a common metabolic reprogramming, the genes they activated
remain specific to each receptor (36). 
Another feature of interest is the overlap but also specificity of the action of CDCA and FXR-
L. CDCA is considered to be a natural ligand for FXR  (11). However,  a large number of
genes are  activated  with  the  synthetic  ligand  but  not  with  the  natural  one.  This  may  be
explained by the so-called selective NR modulator effect  (37), by which the conformational
changes that occur in NRs upon ligand binding may provoke a different interface for co-factor
recruitment,  depending on the  nature  of  the ligand.  It  may also be  caused by a  different
affinity  of  the  ligand,  a  different  accessibility,  and/or  different  metabolism of  the  ligand
within the cell. These facts are particularly important when searching for appropriate ligands
aimed at therapeutic usage, implying that a full exploration of the gene expression profile for
each new molecule proposed is required. 
Unsurprisingly,  the  main  pathways  enriched  by  the  three  NR  agonists  are  related  to
metabolism. More interestingly, 72% of the pathways shared by FXR and LXR are involved
in regulations of cell growth and death. In addition, 56% of genes belonging to the leading
edge of the cell cycle pathway (evaluated by GSEA) are common to both NRs but with an
opposite modulation. The anti-proliferative activities of LXR has been observed in a number
of  cellular  systems,  including vascular  smooth muscle  cells,  cancer  cells,  T lymphocytes,
pancreatic islet beta cells and mouse liver (Reviewed in (38)). This brought up the claim that
LXR might be a target for anti-tumoral treatments in different tissues, mainly documented in
breast,  prostate  and  intestinal  cancer  cells.  LXR mediated  cell-cycle  inhibition  has  been
mechanistically  correlated  with  the  expression  of  lipogenic  and triglyceride  accumulation
(31), but could also be related to the inhibition of SKP2 transcription (33, 39). In the present
study, SKP2 is not affected by LXR-L, suggesting that LXR's anti-proliferative activity is due
to alternative mechanisms, such as LXR-mediated repression of AP1 signaling (36, 40).  
The role of FXR is more controversial, or complex. FXR was demonstrated to be involved in
the bile-acid dependent progression of intestinal metaplasia (41, 42), possibly through a SHP-
dependent  increase  of  CDX2  gene  expression  (43).  In  contrast,  the  deletion  or  down-
regulation  of FXR favors hepatocarcinogenesis  (29,  44,  45),  suggesting that  FXR  plays  a
protective  role.  Finally,  FXR  is  also  required  for  liver  regeneration  (25,  28,  46).  The
mechanism  by  which  FXR  can  both  favor  liver  regeneration  and  protect  from
hepatocarcinogenesis  remains  unsettled  (44).   The  following  three  main  findings  of  the
present study are noteworthy in this context. First,  FXR-L significantly upregulates IL6 and
increases the expression of a number of pro-inflammatory cytokines, such as  IL1b,  CSF1,
CSF2, and  TGFb3. These signals are indeed important in triggering the early response for
liver regeneration (44), even though these results are in contradiction with the reported anti-
inflammatory  activities  of  FXR,  via  down-regulation  of  the  NF-KB  pathway  (47),  not
observed  in  our  dataset.  Second,  we  showed  the  positive  effect  of  FXR  on cell  cycle
progression, increasing the activities of key regulators of the G1/S and G2/M checkpoints.
Third, we show that FXR-L inhibits hepatocyte polyploidization. This effect could involve the
insulin-signaling pathway, which is sitting at the cross-road of many metabolic pathways, and
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contributes  to  the  formation  of  binucleated  tetraploid  liver  cells  through  the  PI3K/Akt
pathway (48). Indeed, the insulin pathway is affected by all treatments in this study, but more
particularly by FXR-L at 24h (p-value<0.001), with an inhibition of 17 key genes including
INSR,  IRS  and  PI3K  (Suppl.  Fig.  S4).  This  suggests  that  FXR  may  prevent  the
polyploidization  of  the  HepaRG  cells  via  inhibition  of  the  insulin  INSR/PI3K pathway..
Interestingly,  polyploidy was shown to trigger cell  transformation and tumor formation in
p53-null cells  (49). Albeit it remains difficult to generalize this observation to other cellular
context, the inhibition of polyploidization mediated by FXR-L may contribute to its protective
role against carcinogenesis. 
Thus, besides illustrating the high levels of target gene specificity of each NR tested herein,
our  results  revealed  an  important  antagonistic  effect  of  FXR  and  LXR  on  cell  cycle
progression in hepatocytes. Assessing these roles in different cells and tissues might be of
importance  when  contemplating  the  therapeutic  applications  that  these  two  receptors  are
conveying. 
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Figure 1:  Visual  Representation  of  the  specific  and  shared  effects  of  the  treatments.
Large coloured nodes denote the 4 treatments at 4h (on the left) or at 24h (on the right),
while grey bubbles denote groups of regulated genes (panel A) or of enriched pathways
(panel B), which are associated to the same set of treatments. For example, panel A shows
that 1214 genes are regulated only by FXR-L: 262 only after 4h, 75 at both timepoints and
877 only at 24h. Similarly, the center bubble indicates that 57 genes are regulated by both
FXR-L and CDCA at both timepoints. The size of the bubbles and of the connections with
their  associated  treatments  is  proportional  to the number of genes or pathways in the
group. In panel A, the color of the connection further indicates the ratio between genes
which are activated (yellow) or inhibited (blue) by this treatment. The original cytoscape
files are available as supplementary material and a summary of the observed overlap is
available in Table 1. 
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Figure 2: Effect of FXR-L and LXR-L treatments on genes associated to the cell-cycle
pathway.  These  heatmaps show the  expression  levels  of  genes  driving  the  cell-cycle
pathway at 24h for the FXR-L (on the left) and LXR-L (on the right) treatments compared
to the controls (non-treated (NT) and DMSO-treated) according to GSEA (see methods
and  supplementary  material).  For  each  gene,  the  9  experimental  values  are  centered
around their mean (in grey). Larger values appear in yellow, while lower values are blue.
Each heatmap has an extra column on the right showing the tendency of the common
genes for the other treatment. With FXR-L treatment, most genes are up-regulated, while
they  are  down-regulated  with  LXR-L.  Among  the  27  genes  regulated  by  the  two
treatments,  only 3 have the same profile  in  the two conditions  (TGFB3,  ORC3L and
CCND1). 
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Figure 3:  Visualisation of the effects  of FXR-L and LXR-L on the KEGG cell  cycle
pathway map. Genes found in the leading edge of the cell  cycle pathway at 24h after
FXR-L (panel A) and LXR-L (panel B) treatments are highlighted.  Boxes with a blue
(resp.  orange)  background  denote  down-regulated  (resp.  up-regulated)  genes  (|log
foldchange|  >  1.2).  White  boxes  with  blue  (resp.  red)  text  denote  smaller  down-
regulations (resp. up-regulations). The yellow TGFβ box in panel A corresponds to the
TGFβ1, TGFβ2 and TGFβ3 genes which are regulated in opposite directions.
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Figure 4: FXR and LXR affect the cell progression and the ploidy of HepaRG cells. The
cell cycle distribution and the ploidy were analyzed by PI staining and FACS. A. The
panel shows the group of HepaRG cells, the diploid cells (2N) and tetraploid cells (4N), B
and C. The panels and the graphs show the cell cycle distribution at 72h of treatment with
DMSO, FXR-L 1 uM or LXR-L 2 uM. D. The graph shows the percentage of tetraploid
cells  at  24h,  48h and 72h with  the  different  treatments.  * : p-value < 0.05,  ** < 0.01,
*** < 0.001 versus DMSO (Student’s t test). N=8.
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Figure 5: Validation of the effects of FXR and LXR on cell cycle regulators by RT-qPCR
(A) and Western blot (B). HepaRG cells have been treated 24h in the same condition as
for the microarrays (same ligands and DMSO as control). A. Relative mRNA levels for
genes regulated in the microarray data. B. Representative Western blot of Rb, phospho-
Rb, Cyclin D3, and p27 in whole HepaRG cell lysates. C. densitometric quantification of
phospho-Rb and Rb. * : p-value < 0.05, ** < 0.01 versus DMSO (Student’s t test). N=3. 
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  Genes 

 

KEGG 
Pathways 

 
  # % # % 

All ligands 

combined 4h 407 20.35 7 4.58 

  24h 1264 63.20 64 41.83 

  

  

4h and 24h 329 16.45 82 53.59 

Total 2000   153   

CDCA-L alone 119 23.02 5 4.39 

 

shared with FXR-L 318 61.51 40 35.09 

 

shared with LXR-L 7 1.35 1 0.88 

s shared with PPARA-L 6 1.16 0 0.00 

  

shared with multiple 67 12.96 68 59.65 

Total 517 100.00 114 100.00 

FXR-L alone 1214 71.08 20 14.29 

 

shared with CDCA 318 18.62 40 28.57 

 

shared with LXR-L 14 0.82 7 5.00 

 

shared with PPARA-L 91 5.33 4 2.86 

  

shared with multiple 71 75.23 69 63.57 

Total 1708 100.00 140 100.00 

LXR-L alone 26 38.81 1 2.17 

 

shared with CDCA 7 10.45 1 2.17 

 

shared with FXR-L 14 20.90 7 15.22 

 

shared with PPARA-L 6 8.96 1 2.17 

  

shared with multiple 14 59.70 36 80.43 

Total 67 100.00 46 100.00 

PPARA-L alone 127 43.05 4 6.45 

 

shared with CDCA 6 2.03 0 0.00 

 

shared with FXR-L 91 30.85 4 6.45 

 

shared with LXR-L 6 2.03 1 1.61 

  

shared with multiple 65 22.03 53 85.48 

Total 295 100.00 62 100.00 

	  
Table	  1:	  Summary	  of	  the	  distribution	  of	  differentially	  expressed	  (DE)	  genes	  and	  enriched	  pathways	  among	  time	  points	  
and	  treatments.	  Top	  four	  rows:	  number	  and	  percentage	  of	  DE	  genes	  and	  positively	  enriched	  KEGG	  pathways	  from	  all	  
treatments	  combined,	  found	  either	  at	  a	  single	  time	  point	  (4h,	  24h)	  or	  at	  both	  time	  points	  (4h	  and	  24h);	  totals	  from	  both	  
time	  points.	  Remaining	  table:	  Numbers	  and	  percentages	  found	  per	  ligand	  treatment	  (at	  any	  or	  both	  time	  points),	  with	  a	  
breakdown	  of	  how	  many	  DE	  genes	  and	  enriched	  pathways	  are	  exclusive	  to	  one	  treatment	  and	  how	  many	  are	  shared	  
between	  two	  or	  multiple	  treatments.	  This	  summary	  shows	  that	  cross-‐talks	  observed	  at	  the	  pathway	  level	  are	  not	  visible	  
when	  looking	  solely	  at	  differentially	  expressed	  genes.	  
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KEGG  
Pathways: 

KEGG  
Pathways: 

KEGG  
Pathways: 

KEGG  
Pathways: 

 
  Metabolism Cell Growth Immune Others 

  # %	   # %	   # %	   # %	  

	  

4h 3 4.17 1 2.08 3 13.04 0 0.00 

 

24h 38 52.78 17 35.42 7 30.43 2 20.00 

 

4h and 24h 31 43.06 30 62.50 13 56.52 8 80.00 

  Total 72 100.00 48 100.00 23 100.00 10 100.00 

 

    

 

  

 

  

 

  

 CDCA-L alone 1 1.85 3 8.11 1 6.67 0 0.00 

 

shared with FXR-L 9 16.67 14 37.84 10 66.67 7 87.50 

 

shared with LXR-L 1 1.85 0 0.00 0 0.00 0 0.00 

 

shared with PPARa-L 0 0.00 0 0.00 0 0.00 0 0.00 

 

shared with multiple 43 79.63 20 54.05 4 26.67 1 12.50 

  Total 54 100.00 37 100.00 15 100.00 8 100.00 

FXR-L alone 6 9.23 7 15.91 6 28.57 1 10.00 

 

shared with CDCA 9 13.85 14 31.82 10 47.62 7 70.00 

 

shared with LXR-L 3 4.62 3 6.82 1 4.76 0 0.00 

 

shared with PPARa-L 3 4.62 0 0.00 0 0.00 1 10.00 

 

shared with multiple 44 67.69 20 45.45 4 19.05 1 10.00 

  Total 65 100.00 44 100.00 21 100.00 10 100.00 

LXR-L alone 1 3.45 0 0.00 0 0.00 0 N/A 

 

shared with CDCA 1 3.45 0 0.00 0 0.00 0 N/A 

 

shared with FXR-L 3 10.34 3 20.00 1 50.00 0 N/A 

 

shared with PPARa-L 1 3.45 0 0.00 0 0.00 0 N/A 

 

shared with multiple 23 79.31 12 80.00 1 50.00 0 N/A 

  Total 29 100.00 15 100.00 2 100.00 0 N/A 

PPARA-L alone 2 4.26 1 11.11 1 25.00 0 0.00 

 

shared with CDCA 0 0.00 0 0.00 0 0.00 1 50.00 

 

shared with FXR-L 3 6.38 0 0.00 0 0.00 0 0.00 

 

shared with LXR-L 1 2.13 0 0.00 0 0.00 0 0.00 

 

shared with multiple 41 87.23 8 88.89 3 75.00 1 50.00 

  Total 47 100.00 9 100.00 4 100.00 2 100.00 

 

  
	  

	  

  

 

  

 

  

 CDCA, 

FXR-L 

(merged) 

alone 16 32.65 24 51.06 17 77.27 8 80.00 

shared with LXR-L 8 16.33 15 31.91 2 9.09 0 0.00 

shared with PPARa-L 25 51.02 8 17.02 3 13.64 2 20.00 

 Total 49 100.00 47 100.00 22 100.00 10 100.00 

	  
Table	  2: Distribution	  of	  categories	  of	  enriched	  pathways	  depending	  on	  their	  association	  with	  treatments.	  Enriched	  
KEGG	  pathways	  were	  grouped	  manually	  into	  4	  wide	  categories	  (“Metabolism”,	  “Cell	  growth	  and	  death”,	  “Immune	  
system”	  and	  “Other”).	  Top	  four	  rows:	  Number	  and	  percentage	  of	  positively	  enriched	  KEGG	  pathways	  from	  all	  
treatments	  combined,	  found	  either	  at	  a	  single	  time	  point	  (4h,	  24h)	  or	  at	  both	  time	  points	  (4h	  and	  24h)	  in	  each	  category;	  
totals	  from	  both	  time	  points.	  Remaining	  table:	  Numbers	  and	  percentages	  of	  pathways	  found	  per	  ligand	  treatment	  (at	  
any	  or	  both	  time	  points),	  with	  a	  breakdown	  of	  how	  many	  DE	  genes	  and	  enriched	  pathways	  are	  exclusive	  to	  one	  
treatment	  and	  how	  many	  are	  shared	  between	  two	  or	  multiple	  treatments.	  Bottom	  section:	  Numbers	  and	  percentages	  
of	  pathways	  found	  if	  the	  pathways	  lists	  from	  CDCA	  and	  FXR-‐L	  treatments	  are	  merged.	  
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