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Abstract 
Although attention is known to increase the gain of visuocortical responses, its underlying neural computations 

remain unclear. Here, we used fMRI to test the hypothesis that a neural population’s ability to be modulated 
by attention is dependent on divisive normalization. To do so, we leveraged the feature-tuned properties of 

normalization and found that visuocortical responses to stimuli sharing features normalized each other more 
strongly. Comparing these normalization measures to measures of attentional modulation, we discovered that 

subpopulations that exhibited stronger normalization also exhibited larger attentional benefits. In a converging 
experiment, we demonstrated that attentional benefits were greatest when a subpopulation was forced into a 

state of stronger normalization. We propose a tuned normalization model of attention that parsimoniously 

accounts for many properties of our results, suggesting that the degree to which a subpopulation exhibits 
normalization plays a role in dictating its potential for attentional benefits.  
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Introduction 

Neural processing is surprisingly efficient. Although our environment is brimming with information, our cognitive 
system adeptly regulates competition between neural representations– all competing for visual awareness. A 

growing body of evidence suggests that this is made possible, in part, by recruiting a seemingly ubiquitous 
neural computation, known as divisive normalization, which can regulate the relative strength between 

competing representations1–4. Under normalization, the response to a stimulus is modulated by the summed 
activity generated by the stimulus itself, along with pooled neighboring responses. This computation crucially 

supports a number of functions, including regulating the dynamic range of neural responses2,3,5,6. Models of 

divisive normalization have long served as cornerstone principles for computational accounts of early vision, 
and generalize to a variety of other sensory modalities3,7,8 and cognitive processes5,9–14. Interestingly, 

normalization is also believed to be modulated by contextual influences, whereby visual features that are similar 
tend to normalize each other more than those that are dissimilar10,15–18. This feature-tuned aspect has been 

theorized to play an active role in reducing redundant sensory information17,19–22. Our visual environment is 
comprised of statistical biases between image properties, whereby neighboring features belonging to the same 

object are most likely to be similar. Feature-tuned normalization incorporates these inherent dependencies, 
acting as a form of neural information compression by reducing statistical biases in natural images, thereby 

deprioritizing the processing of redundant representations17,21,22. 

While tuned normalization may play a role in the bottom-up enhancement of potentially relevant information in 
a visual scene, we ultimately rely on top-down attentional systems to selectively enhance a small subset of that 

information for prioritized processing, from moment to moment. One of the most well-documented ways that 
attention enhances relevant information is by means of an increase in the gain, or ‘strength’, of the behavioral23–

26 or neural response5,27–30. Interestingly, prominent computational models have theorized that normalization 
and attention are tightly linked, whereby attentional modulation within visual cortices is dependent on divisive 

normalization5,31,32. These models propose that attention can alter the balance between the stimulus activity 
and the summed activity of the normalization pool, loosening the current state of gain control, and thereby 

resulting in an increased neural response. Normalization accounts of attention have traditionally hinged on 

three key components: the locus of attention, the size of the stimulus, and the size of the attentional 
window5,28,33. However, these models consider normalization to be feature-agnostic, allowing an equal 

contribution of all information, regardless of feature similarities. The notion that attention modulation could 
additionally depend on a fourth component, incorporating the feature-selective nature of normalization has 

some support in animal studies, with single-unit recordings in macaques suggesting that the contribution of 
tuned normalization can explain attention biases of competition between multiple stimuli within a receptive 

field10.  
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In this study, we used functional magnetic resonance imaging (fMRI) to test the hypothesis that attention-driven 

modulation of the gain of responses within human visual cortex is made possible, in part, by a release from 
feature-tuned normalization. We approach the problem by first devising an efficacious, voxel-by-voxel 

population measure of the feature-tuned aspects of normalization within early visual cortex, during passive 
viewing. To do so, we exploited a phenomenon known as sub-additivity, a signature property of normalization 

wherein the population responses to images comprised of two superimposed stimuli tend to fall short of the 
linear sum of the response to each stimulus independently34–39. We discovered potent tuned normalization 

within human visual cortex: superimposed stimuli sharing the same features were more strongly normalized 
than stimuli that differed in their features. Armed with a population measure of feature-tuned normalization, we 

set out to test the hypothesis that attentional modulation is partially driven by tuned normalization. If 

normalization truly governs attentional modulation, we reasoned that attention-driven gain changes would be 
greater when a neural subpopulation within early visual areas exhibits stronger normalization. Indeed, in our 

second experiment we reveal that tuned normalization is tightly linked to an independent measure of attentional 
modulation. Leveraging population-wide heterogeneities in BOLD responses for both normalization and 

attention measures, we found that subpopulations that exhibited stronger normalization also exhibited larger 
attentional benefits. In a third converging experiment, we directly manipulated spatial attention, while 

simultaneously measuring population activity under different states of normalization. In doing so, we found that 

attentional benefits are greater when the population is put under stronger normalization. Finally, we introduce 
a variant of the normalization model of attention, which reveals that the incorporation of feature-tuned 

normalization nicely captures our results –a neural population’s capability for attentional benefits appears 
contingent upon normalization, whereby the degree to which a population can normalize itself results in greater 

potential for release from normalization driven by attention. 

Results  

Sub-additivity as a signature of tuned normalization  
We first set out to obtain a population measure of visuocortical responses under different states of 

normalization. Specifically, in addition to a well-known untuned, feature agnostic component, does sub-
additivity show a signature of a tuned, or feature-selective component? We leveraged the fact that population 

responses to images comprised of superimposed visual stimuli are not simply the linear sum of the response 
to each stimulus independently34–37; instead the response typically exhibits a property known as sub-additivity 

–a phenomenon nicely captured by contrast normalization. This is believed to emerge due to the compressive 
nature of normalization, which acts to nonlinearly limit the overall response to the stimuli. To assess the 

influence of tuned and untuned normalization on population responses within human visual cortex, we 

leveraged an fMRI noise-masking technique24,35,37, which allowed us to test the degree to which BOLD 
responses within early visual cortex exhibit sub-additivity, depending on stimulus feature similarity. To tap into 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/515254doi: bioRxiv preprint 

https://doi.org/10.1101/515254
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

the sub-additive nature of tuned normalization, we constructed 

stimuli that were composed of linearly summed pairs of oriented 
bandpass-filtered noise gratings (outer diameter 15°; inner 

diameter 3°; at 50% Michelson contrast; spatial frequencies 
between 2-3 cycles/°; orientation bandwidth of 10°). Importantly, 

images were constructed using pairs of stimuli combined in either 
an orthogonal (different features) or a collinear configuration (similar 

features; Figure 1a). We measured BOLD responses to these 
collinear and orthogonal stimuli configurations in separate blocks 

during an fMRI session, while participants performed a demanding 

task at fixation, finding a target in a rapid letter stream, and ignoring 
the stimuli presented in the periphery (Figure S1). Additionally, in a 

separate set of scans we measured the BOLD response to each 
individual component that comprised the overlaid stimuli, and 

doubled this obtained response in order to create a hypothetical 
additive sum. The sub-additive deviation from the hypothetical sum 

for both the collinear and orthogonal configurations served as our 

measure of untuned normalization, while comparing the difference 
between the configurations served as our measure for an additional 

tuned component.  

Orthogonal and collinear stimuli configurations both exhibited sub-

additivity across early visual areas (V1-V3), with the measured 
BOLD response of both stimulus configurations being lower than 

the hypothetical additive sum of the individually measured 
components (paired one sided t-test; orthogonal sub-additivity in 

V1: t(5) = 2.07,  p = 0.0465, V2: t(5) = 2.70,  p = 0.0215, and V3: 

t(5) = 2.46,  p = 0.0287; collinear sub-additivity in V1: t(5) = 2.89,  
p = 0.0171, V2: t(5) = 2.87,  p = 0.0175, and V3: t(5) = 2.58,  p = 

0.0247; Figure 1b & S1). Furthermore, the responses 
demonstrated robust feature-tuned normalization as well, whereby 

stimuli comprised of collinear orientations were more sub-additive, 
and thus more strongly normalized, than stimuli that contained 

orthogonal orientations (paired two sided t-test; V1: t(5) = 5.97,  p 

= 0.0019, V2: t(5) = 3.82,  p = 0.0123, and V3: t(5) = 3.44, p = 
0.0184). While BOLD responses to either stimuli configuration across visual areas were fairly consistent in the 

Figure 1. Sub-additivity as a measure of tuned 
normalization. a. Schematic of stimuli used to 
measure sub-additivity. Two oriented stimuli 
components (outer diameter 15°; inner diameter 
3°, at 50% Michelson contrast, spatial 
frequencies between 2-3 cycles/°; orientation 
bandwidth of 10°) were linearly summed in either 
an orthogonal (top; blue) or collinear (bottom; 
orange) configuration, resulting in a full contrast 
stimulus. Stimuli modified for illustrative 
purposes. b. Average BOLD responses across 
observers for orthogonal (blue) and collinear 
(orange) configurations. A hypothetical additive 
response (black) was created by doubling the 
BOLD response evoked by an individual stimulus 
component. Dots represent individual observers; 
error bars denote ±1S.E.M.. c. Voxel-wise 
relationship between sub-additivity measures for 
both configurations in V1. BOLD responses were 
normalized for each participant. Small colored 
dots indicate individual voxels; larger black dots 
represent the whole ROI average per observer. 
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degree to which they exhibited sub-additivity (untuned normalization), the magnitude of the feature-tuned 

aspect of normalization seemed to decrease in strength along the visual hierarchy. This orientation-tuned 
aspect of normalization was strongest within primary visual cortex –a region shown to be most precisely tuned 

to orientation content40–42, and became less apparent as we moved up the visual hierarchy, consistent with a 
shift in the preferred feature space. We next explored the degree of dependency, from voxel-to-voxel, of the 

deviation from additivity for both orthogonal and collinear stimuli configurations within V1. Although there is 
heterogeneity in the magnitude of sub-additivity between voxels within a region, comparing the magnitude of 

sub-additivity for collinear and orthogonal stimulus configurations revealed a consistent pattern, in that the 
collinear configuration evoked lower BOLD responses compared to the orthogonal configuration for almost all 

voxels within an area (Figure 1c).  

Importantly, the differences in BOLD responses 
evoked by the two stimuli configurations were 

not driven by differences in the image statistics, 
nor could they be explained by basic first-order 

visual response properties. A Fourier analysis 
confirmed that while the orientation content 

between the stimuli configurations differed, the 

overall power was comparable (Figure 2a). 
Furthermore, a V1-based energy detection 

model43–48 that only incorporated untuned 
divisive normalization also fell short of accounting 

for these results. In this model, we estimated the 
amount of contrast energy each class of images 

evoked by applying a linear Gabor wavelet 
decomposition that described tuning along the 

dimensions of space, phase, orientation, and 

spatial frequency43,44 (Figure 2b). 500 unique 
images for both collinear and orthogonal stimuli 

configurations were passed through the model, 
which resulted in a measure of contrast energy 

for each image, contained in quadrature wavelet 
pairs. After combining all wavelets across space 

and spatial frequency scales, a measure of 

contrast energy evoked by each orientation 
channel remained. The model output undergoes 

Figure 2. Image statistics between collinear and orthogonal stimuli did 
not differ. a. Average normalized power obtained with a 2D Fourier 
transform of 500 images within each stimulus configuration (collapsed 
across phase). Error bars denote ±1 S.E.M.. b. Energy detector 
model. Stimuli were convolved with a set of Gabor filters across space 
(centered on every pixel of the image), phase (2 phases to create a 
quadrature pair), spatial frequency (36 scales, ranged between 0.5-4 
cycles/°), and orientations (8 orientation channels). The quadrature-
phase pairs were squared, summed, square-rooted, and normalized 
to 1, to generate a complex cell response at the 8 orientation channels 
for each image. Error bars denote ± 1 S.E.M.. c. To account for 
contrast saturation, divisive normalization was applied to the total 
stimulus energy obtained from the filter outputs, and we combined all 
orientation channels to obtain one stimulus energy value per image. 
As is evident, the distributions of stimulus energy for both stimuli 
configurations are highly comparable when divisive normalization is 
applied. d. Incorporating a tuned component to the normalization term 
results in a separation of the energy distributions in which collinear 
stimuli have a relatively lower stimulus energy. 
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divisive normalization, effectively acting as a contrast gain control operator2,6,49. Stimulus energy was 

demeaned and normalized to 1. A bootstrap analysis indicated that there is no difference between the two 
simulated stimulus energy distributions, indicating that these images have the same stimulus energy when 

applying untuned normalization (95% confidence interval = [-0.026, 0.019]; Figure 2c). Importantly, however, 
a difference in stimulus energy was observed when we built an orientation-tuned component into the 

normalization model (bootstrapped 95% confidence interval = [0.362; 0.4035]; Figure 2d), indicating that the 
observed differences in sub-additivity of the BOLD responses between the two stimuli configurations can be 

driven by tuned normalization.  

Attentional modulation is related to tuned normalization strength 
Leveraging our ability to measure feature-tuned normalization within human visual cortex, we then set out to 
test our main hypothesis: Does attention optimize information processing by modulating divisive normalization? 

Our previous experiment demonstrated that collinear stimuli configurations were more sub-additive as they 
evoked lower BOLD responses compared to orthogonal stimuli. Importantly, while responses to each stimulus 

configuration varied substantially, this difference between collinear and orthogonal configurations was 
consistent for almost all voxels within an area (Figure 1c). In a second experiment, we examined the degree of 

voxel-wise dependency between this measure of tuned normalization and an independent measure of attention 

modulation. If normalization and attentional modulation interact, we predict that those sub-populations that 
are more strongly normalized should also exhibit the highest potential for attentional modulation.  

Tuned normalization strength was quantified as the difference between the mean BOLD responses to 
orthogonal and collinear stimuli blocks. Collinear stimuli evoked weaker BOLD responses compared to 

orthogonal stimuli, resulting in a positive difference for all regions of interest (Figure 3a; two-sided t-test; V1: 
t(5) = 5.97,  p = 0.0019, V2: t(5) = 3.82,  p = 0.0123, and V3: t(5) = 3.44,  p = 0.0184). To measure attentional 

modulation, we assessed BOLD responses while participants viewed orientation bandpass–filtered noise 
gratings (outer diameter 15°; inner diameter 3°; at 50% Michelson contrast; spatial frequencies between 2-3 

cycles/°; orientation bandwidth of 10°). While viewing these stimuli, participants were asked to either covertly 

attend towards the stimulus, performing a fine orientation discrimination task (Attended condition), or perform 
a demanding task at fixation, which drew attention away from the oriented stimulus (Unattended condition). 

Note that the visual stimulation was identical in both conditions, the only difference being the task observers 
 
 
Figure 3. Measures of tuned normalization strength and attention 
modulation. a. Tuned normalization strength reflects the 
difference between BOLD responses evoked by orthogonal and 
collinear stimuli blocks (% signal change). The orthogonal 
configuration elicited larger BOLD responses compared to the 
collinear configuration across V1-V3. b. Attention modulation 
reflects the difference in BOLD response between attended and 
unattended stimuli blocks (% signal change). We observed large 
attention modulation across V1-V3. Error bars denote ± 1 
S.E.M., colored dots indicate individual observers. 
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performed (Figure S2). Attention modulation was defined as the difference between BOLD responses to 

attended and unattended stimuli blocks. Consistent with previous findings24,50–52, striate and extrastriate cortex 
exhibited robust attentional modulation (Figure 3b; two-sided t-test; V1: t(5) = 4.44,  p = 0.0068, V2: t(5) = 

3.85,  p = 0.0120, and V3: t(5) = 4.07,  p = 0.0096).  

While these results reflect the average response across the entire region of interest (ROI), the magnitude of 

tuned normalization strength varied substantially from voxel-to-voxel within each visual area, suggesting 
heterogeneity across the population (Figure 1c). Leveraging this population-wide heterogeneity in neural 

responses in both our attentional modulation and tuned normalization measures, our results revealed that 
subpopulations that exhibit the strongest tuned normalization also possess the greatest attentional benefits, 

across visual areas (Figure 4; two-sided t-test of Fisher Z transformed Spearman correlations; V1: t(5) = 4.30,  

p = 0.008, V2: t(5) = 2.96,  p = 0.0315, and V3: t(5) = 5.14,  p = 0.004). To ensure that our results reflected a 

Figure 4. Attentional modulation as a function of tuned normalization strength. a. A tight relationship between tuned normalization 
strength and attentional modulation is evident for the top 25% selected voxels for each observer. Dots illustrate individual voxels within 
an area, colors represent an unique participant. b. Spearman correlations were computed for each observer, grey bars represent the 
mean correlation across observers, while the colored bars represent the correlations when the voxel selection is broken down into 4 
bins based on the R2 of the independent visual localizer (red: bottom 25%, yellow: top 25% based on the independent localizer scan). 
Correlations were transformed into a Fisher Z-statistic to allow for statistical comparisons between observers. Error bars denote ± 1 
S.E.M.; colored dots illustrate individual observers.  
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true relationship between normalization and attention, rather than being driven by differences in spurious 

factors, such as the signal-to-noise ratio (SNR), our analyses were restricted to the top 25% most visually 
responsive voxels within V1-V3, selected using an independent functional localizer. Note that the relationship 

persists when all voxels within a respective region are used in the analyses (V1: t(5) = 4.30,  p = 0.008, V2: t(5) 
= 3.06,  p = 0.0286, and V3: t(5) = 2.80,  p = 0.04). In addition, we examined whether the relationship between 

tuned normalization strength and attentional modulation was still evident even when we broke down our 
stringent voxel selection into four bins, according to ranked goodness of fit (R2) of responses to the visual 

localizer (Figure 4b). While the observed correlation within V1 and V2 was not driven by differences in R2 of the 
localizer scans as a similar relationship persisted in each bin, within V3 the correlation does seem driven by 

voxels that had a higher R2 (two-sided t-test of Fisher Z transformed Spearman correlations; V1: Q1 t(5) = 

4.01,  p = 0.010, Q2 t(5) = 3.35,  p = 0.020, Q3 t(5) = 3.66  p = 0.015,  Q4 t(5) = 5.94,  p = 0.002; V2: Q1 t(5) 
= 2.51,  p = 0.054, Q2 t(5) = 2.35,  p = 0.066, Q3 t(5) = 2.44  p = 0.059,  Q4 t(5) = 2.12,  p = 0.087; and V3: 

Q1 t(5) = 6.46,  p = 0.001, Q2 t(5) = 4.49,  p = 0.007, Q3 t(5) = -0.24  p = 0.817,  Q4 t(5) = 1.98,  p = 0.105). 
The less pronounced relationship in V3 is likely driven by the reduced heterogeneity and overall magnitude of 

tuned normalization strength observed in this visual area (Figure 4a). Taken together, leveraging the 
heterogeneity of population responses for attentional modulation and tuned normalization strength, our results 

reveal a tight link between these two measures, which was strongest in primary visual cortex, suggesting that 

a neural subpopulation’s potential to increase its attentional gain is dependent on its tuned normalization 
strength. 

Tuned normalization modulates spatial attention 
To provide converging evidence in support of the underlying relationship between tuned normalization and 
attention, we carried out an additional experiment, wherein we directly assessed whether attentional 

modulation is greater when the population response is put under a state of stronger normalization. To do so, 
we measured BOLD responses for the overlaid stimuli configurations in separate blocks, similar to those 

constructed in Experiment 1, while covert spatial attention was directed to either the left or right side of fixation. 

Importantly, to leave enough headroom for an increased BOLD response with attention, we used a lower 
contrast stimulus (individual components 25% contrast, resulting in a combined overlaid stimulus of 50% 

contrast). Participants performed a demanding probe detection task, detecting and discriminating whether a 
probed was embedded in the upper or lower visual field of the attended side of the screen, while maintaining 

fixation at the center of the screen (Figure 5a & S3). This experimental design allowed us to simultaneously 
measure BOLD responses for either configuration when attention was directed towards or away from the 

stimulus.  

First, we assessed whether stimuli that share feature information (collinear configuration) yield stronger tuned 
normalization, compared to stimuli with dissimilar features (orthogonal configuration), when attention was 

directed to the opposite visual field. In agreement with the results of Experiment 1, we found strong tuned 
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normalization across visual areas (Figure 5b; two-sided t-test; V1: t(5) = 5.46,  p = 0.003, V2: t(5) = 4.84,  p = 

0.005, and V3: t(5) = 5.80,  p = 0.002). Having established that there is strong tuned normalization when 
attention is directed away, we then set out to test whether tuned normalization truly dictates the magnitude of 

attentional modulation. We hypothesized that the largest attentional effects would be evident when a neural 
population experiences stronger normalization, induced by the similarity between the features of the overlaid 

stimuli (i.e. attentional effects for collinear > orthogonal).  

To quantify the magnitude of attentional modulation, we computed an attention index, which is the ratio of the 

difference between attending towards vs. attending away divided by the sum of both, for both collinear and 
orthogonal stimuli configurations. We discovered that attentional effects were indeed the greatest when neural 

responses were put under a stronger state of normalization (Figure 5c; two-sided t-test; V1: t(5) = -3.71,  p = 

0.014, V2: t(5) = -2.98,  p = 0.031 and V3: t(5) = -2.52,  p = 0.053). Taken together, these results provide 
direct evidence to suggest that a more strongly normalized population is more susceptible to an attention-

facilitated release from gain control.  

Tuned normalization explains BOLD responses 

To parsimoniously describe all the aforementioned findings, we fit our results using an fMRI encoding modeling 
approach, which incorporates a V1-based energy detection model (Figure 2b) to assess the magnitude of 

tuned normalization (Experiment 1), and whether attention modulates tuned normalization (Experiment 3). We 
showed earlier that the total contrast energy output of a V1-based energy detection model had the same 

predicted response energy for both stimuli configurations when standard (untuned) divisive normalization was 
applied, and that these distributions shifted apart when a tuned component is built into the model, suggesting 

Figure 5. Tuned normalization modulates spatial attention. a. Stimuli were comprised of orientation bandpass-filtered noise gratings 
(outer diameter 15°; inner diameter 3°; spared midline; individual component was rendered at 25% Michelson contrast, resulting in a 
combined grating of 50% Michelson contrast), comparable to stimuli used for Experiment 1. Participants performed a demanding 
spatial attention task, detecting and discriminating a small probe embedded in either the upper or lower visual field of the attended 
location (a cue presented throughout the block at fixation informed the participant to attend the left or right side of fixation). b. Tuned 
normalization strength represents the difference between BOLD responses evoked by orthogonal and collinear stimuli blocks when 
attention was directed away (% signal change). The orthogonal configuration elicited larger BOLD responses compared to the collinear 
configuration across V1-V3. c. Attention index reflects the difference between BOLD responses when spatial attention was either 
directed towards or away from the stimuli locations divided by the sum, for both collinear and orthogonal configurations. Error bars 
denote ± 1 S.E.M., N = 6, grey dots illustrate different participants; stimuli are modified for illustrative purposes.  
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that tuned normalization could account for the observed differences in BOLD response evoked by collinear 

and orthogonal stimuli configurations.  

Here, we aimed to quantify the contribution of this orientation-tuned component in the normalization model by 

utilizing a fMRI encoding modeling approach53,54 to predict the evoked BOLD responses evoked by each image 
class.  In this modeling approach, we simulated the neural response for a blocked presentation period for both 

stimuli configurations using a predicted V1-based complex cell output (see Equation 2), in response to sets of 
images within a stimulus presentation block. Note that the model output is believed to be most analogous to 

striate cortical neural responses47,48, and therefore likely most consistent with our V1 data. The time series of 
the modeled neural response was then transformed into an estimated BOLD response by convolving it with 

an assumed canonical hemodynamic impulse response function55. To estimate the contribution of a tuned 

component in the normalization pool, we extended the standard normalization model by incorporating this 
term into the denominator of the model (see Equation 4). By optimizing the weights (wor) that modulated the 

contribution of tuned normalization, we were able to obtain simulated block response that best predicted the 
measured averaged BOLD response to a stimulus block independently for each stimulus configuration (Figure 

6a). Using this model, the BOLD responses were best explained with a large contribution of tuned normalization 
for collinear stimuli configurations, while this contribution was much smaller for orthogonal stimuli 

configurations (two-sided paired t-test V1: t(5) = 5.30,  p = 0.003, V2: t(5) = 3.99,  p = 0.010 and V3: t(5) = 

3.74,  p = 0.014; R2 model fits collinear configuration: V1 mean = 0.93, SEM = 0.008; V2 mean = 0.94, SEM 
= 0.005;  V3 mean = 0.94, SEM = 0.005;  orthogonal configuration: V1 mean = 0.95, SEM = 0.012;  V2 mean 

= 0.96, SEM = 0.007;  V3 mean = 0.95, SEM = 0.007; Figure 6b).  

Armed with a modeling approach capable in summarizing the magnitude of orientation-tuned normalization, 

we then set out to model the BOLD responses in Experiment 3 – does attentional modulation hinge on tuned 
normalization? To do so, we built an additional component into the normalization model, allowing for a release 

from suppression with attention5. We simulated the neural response for a blocked presentation period for both 
stimuli configurations and attention conditions, as described above. We first optimized the weights (wor) that 

modulated tuned normalization based on the unattended BOLD responses, and afterwards we constrained 

tuned normalization to the best fit, allowing us to predict the influence of attention (g) for each stimulus 

configuration (Figure 6a, see Equation 5). Results revealed that the contribution of tuned normalization in the 

absence of attention for collinear configurations was larger than the contribution for orthogonal configurations 
(two-sided paired t-test V1: t(5) = 8.12,  p < 0.001, V2: t(5) = 5.15,  p = 0.004 and V3: t(5) = 5.07,  p = 0.004; 

R2 model fits unattended collinear configuration: V1 mean = 0.75, SEM = 0.050; V2 mean = 0.85, SEM = 
0.045;  V3 mean = 0.85, SEM = 0.044;  unattended orthogonal configuration: V1 mean = 0.84, SEM = 0.056;  

V2 mean = 0.86, SEM = 0.046;  V3 mean = 0.85, SEM = 0.046; Figure 6c), these estimates are highly 

comparable to the model estimates obtained from Experiment 1. Importantly, when predicting the average 
sustained BOLD response when the stimuli were attended, we found that attention modulated tuned 
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normalization via a release from suppression (two-sided t-test different from 1: V1: t(5) = 4.46,  p = 0.007, V2: 

t(5) = 4.94,  p = 0.004 and V3: t(5) = 6.45,  p = 0.001; R2 model fits attended collinear configuration: V1 mean 
= 0.81, SEM = 0.046; V2 mean = 0.86, SEM = 0.042;  V3 mean = 0.86, SEM = 0.040;  attended orthogonal 

configuration: V1 mean = 0.85, SEM = 0.057;  V2 mean = 0.85, SEM = 0.041;  V3 mean = 0.86, SEM = 0.040; 
Figure 6c).  

Discussion 

Taken together, our results reveal that a neural population’s capability for attentional benefits is tightly linked 

to feature-tuned normalization. The magnitude of attentional modulation depends on the degree to which a 

population has normalized its response, based on the degree of feature similarity within an image. In the first 

Figure 6. Tuned normalization explains BOLD data. a.  fMRI encoding modeling approach utilizes the output of a V1-energy 
detection model to predict the measured time series to a blocked presentation period evoked by either orthogonal or collinear 
configurations. The stimulus energy is contained within 8 orientation channels, which undergo divisive normalization to elect a 
predicted response per presented image. The suppressive pool contains a tuned normalization component, which w modulates (0 
= no influence; 1 = full influence), and can be modulated by attention (g > 1, attention results in a release from suppression). b. 
Estimated weights describing the influence of a tuned component in the normalization model that best predicted the average time 
series to a blocked presentation period from Experiment 1. c. Left panel: Estimated weights best describing influence of a tuned 
component in the normalization model when orthogonal or collinear stimuli were unattended. Right panel: Estimated weights 
describing the magnitude of attention that best predicted the measured BOLD responses in Experiment 3. Error bars denote ± 1 
S.E.M., individual dots illustrate different participants.  
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experiment, we utilized an efficacious method to probe orientation-tuned normalization of population 

responses within human early visual cortex. By superimposing stimuli that differed in their orientation content, 
we found that BOLD responses were lower for stimuli that matched in their visual features, compared to stimuli 

that were comprised of different features. In a second experiment, we found a tight voxel-wise relationship 
between this measure of tuned normalization strength and an independent measure of attention modulation, 

suggesting that attention optimizes information processing by modulating divisive normalization. Critically, in a 
third experiment, we provided direct converging evidence that the magnitude of attentional benefits depends 

on the degree to which a population has normalized its response; when a neural population was put under a 
stronger suppressive state, the largest attentional effects emerged. Finally, we propose a tuned normalization 

model of attention, wherein the incorporation of feature-tuned normalization nicely predicts all of our results, 

revealing that the degree to which a population exhibits tuned normalization dictates its potential for attentional 
benefits. 

Our results square with a normalization-based model of attention, which posit that attentional modulation arises 
through interactions with divisive normalization5,14,31,32. This model is the prevailing theory, to date, by which 

attention is believed to act upon neural responses. While previous work provided support for this 
model1,28,33,56,57, our results extend the notion that normalization-driven properties of attention are feature 

selective10,30,58. The standard normalization model proposes that the spatial extend of an ‘attention field’ can 

reshape relative to the stimulus size in order to modulate a population response, and suppression is considered 
to be feature-agnostic, acting independently from the selective properties computed within a respective region. 

However, divisive normalization is modulated by contextual influences, where feature similarity results in 
stronger normalization, a property the model currently does not account for. Previous work has suggested that 

instead of incorporating a tuned suppressive component into the normalization model of attention, a more 
parsimonious description to explain differences in the magnitude of suppression is by allowing attention to be 

feature-selective26,57. While the notion of feature-based attention is well established59,60, incorporating this into 
the normalization model does not account for the results we have presented here. In our study, we initially 

provide evidence that a tuned suppressive component in the normalization model can account for differences 

between the two stimuli configurations when they were unattended (Figure 2d), suggesting that tuned inhibition 
can arise in the absence of any aid of top-down attentional feedback. Furthermore, in a third experiment we 

manipulated spatial attention, while holding factors such as stimulus size, attentional window size, and contrast 
relatively constant, in order to investigate the role that feature-tuned normalization has on attentional 

modulation (Figure 6). Future research measuring the full neural contrast response function, and manipulating 
features such as the size and shape of the attentional window, will shed more light on precisely how this 

contribution of feature-tuning is best incorporated into the normalization model of attention.   

Normalization is proposed to be a canonical computation throughout cortex and relies on several mechanisms 
which all serve to regulate the relative strength between neural representations. Two well-established 
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mechanisms within early visual cortex are surround suppression and cross-orientation inhibition61,62. Surround 

suppression is characterized as the modulation of the neural response within the classical receptive field, as a 
result of the intensity of stimulation presented outside of the receptive field21,63, while cross-orientation inhibition 

is the modulation of the neural response induced by presenting two superimposed oriented stimuli 
components within the classical receptive field62,64,65. Neuroimaging and psychophysical experiments cannot 

precisely target a single receptive field, and instead these methods measure population responses evoked by 
relatively large stimuli, with the spatial area typically spanning far beyond the receptive field of any individual 

neuron. This likely makes the interactions arising from overlay stimuli, as used here, more analogous to 
surround suppression. While neuroimaging studies using a typical center–surround stimuli often report an 

attenuation of the response to the center stimulus 15,38,66, it is important to consider that this center does not 

correspond to any particular receptive field center. Instead, the center stimulus drives the response of a large 
population of neurons, of which only those neurons close to the border between the center and surround 

stimulus are likely to be attenuated. In this study, we set out to optimize surround suppression by 
superimposing our stimuli configurations, presented full field (15° visual angle stimulus diameter). We 

hypothesized that by keeping the orientation of one of the components constant and manipulating the 
orientation of the second component, we can induce normalization more analogous to surround suppression 

within all neural populations with receptive fields falling within our stimulus bounds. The superimposed 

configurations indeed elicited the predicted population responses that one would expect from tuned 
normalization, as we found lower BOLD responses for those configurations that matched in their orientation 

content, compared to configurations with orthogonal orientation information. Furthermore, we demonstrated 
that incorporating a tuned component into the normalization model could account for our results.  

Feature-tuned normalization is suggested to play an active role in the efficient coding of natural stimuli17,20–

22,67,68. Our visual environment is comprised of statistical biases between image features, whereby nearby 

edges have a higher probability to be co-oriented and belonging to the same contour, as compared to more 
distant edges17. A tuned normalization pool could perhaps incorporate these statistical dependencies by 

attenuating its strength where features match, leading to an effective boost of the responses at discontinuities, 

where features are no longer quite as co-aligned. While tuned normalization plays a role by prioritizing 
processing for salient items, potentially aiding the visual system in segregating figure from ground, we ultimately 

rely on top-down attentional systems to selectively enhance a small subset of that information for prioritized 
processing. Selective attention may interact with this figure/ground process by selectively highlighting objects 

in the environment, which often are defined by their common feature properties.  
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Methods 

Observers. Six healthy adults participated in the first two experiments (3 male, mean age = 30), and seven 
adults (2 male, mean age = 28) participated in the third experiment. Five adults participated in all three 

experiments. All observers provided written informed consent, and had normal or corrected-to-normal vision. 
The Boston University Institutional Review Board approved the study. One observer who participated in the 

final experiment was excluded from further data analysis, based on consistent eye-movements towards the 
cued spatial locations (eye-movement analysis revealed a mean deviation from fixation of >1°). A power 

analysis indicated that six participants would be sufficient to detect the reported normalization strength and 

attention effects. 

Apparatus & Stimuli. Stimuli were generated using Matlab (R2013a) in conjunction with the Psychophysics 

Toolbox1,2, rendered on a Macbook Pro (OS X 10.7), and were displayed on a rear-projection screen 
(subtending ~21°x16°) using a gamma-corrected projector. Participants viewed the display through a front 

surface mirror. Participants were placed comfortably in the scanner with their heads fixed, using padding to 
minimize head motion. Stimuli consisted of bandpass-filtered noise gratings (outer diameter: 15°; inner 

diameter: 3°; at 50% Michelson contrast). The bandpass filter spared only spatial frequencies between 2-3 
cycles/degree, orientation content centered at 45° or 135° (orientation bandwidth of 10°), and was smoothed 

in the Fourier domain to avoid Gibbs ringing artifacts.  

Tuned normalization experiment. Stimuli were the linear combination of the stimuli described above. 
Superimposing these components created either orthogonal (45°/135° and 135°/45°) or collinear (45°/45° and 

135°/135°) stimuli, which resulted in a doubling of the contrast to 100% Michelson contrast.  

The two overlaid stimuli configurations were presented at 2Hz (250ms on, 250ms off) for 14s, where each 

stimulus presentation within a block consisted of unique random noise stimuli. Blocks (2s cue; 14s stimulus 
presentation) were pseudo-randomized over the course of a run, and interleaved with 16s fixation periods. 

Throughout the experiment observers performed a demanding fixation task, finding targets in a rapid letter 
stream presented at fixation (5Hz, letter size: 0.7°). During stimulus presentation blocks, target letters would 

appear with a probability of 30%, and participants reported whenever they detected a ‘J’ or a ‘K’ amongst 

distractor letters (Figure S1). Observers were capable of discriminating the target letters with high accuracy 
(mean = 0.93, SE = 0.03).  

In addition to the overlaid stimuli, in separate runs we measured the BOLD response to an individual stimulus 
component (50% Michelson contrast), and doubled this obtained response to create a hypothetical additive 

sum. Stimuli were presented at 2Hz in blocks (2s cue, 14s stimulus presentation), and were interleaved with 
baseline periods. Observers performed the same fixation task as described above, reporting the presence of 

target letters embedded in a rapid letter stream presented at fixation (performance: mean = 0.88, SE = 0.04). 

Participants completed 5-10 fMRI runs; each run took 272s to complete (8 stimulus blocks per run). 
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Additionally, a scan session included two visual localizer scans, in which a flickering and rotating contrast 

pattern was presented within the same aperture as the filtered noise stimuli (blocked presentation, 16s on and 
off; 6 stimulus blocks per run).  

Attention modulation experiment. To examine the voxel-wise relationship between tuned normalization and 
attention, we obtained a measure of attentional modulation within the same scan sessions as the previous 

experiment (n=6). In this experiment, stimuli (single component of the stimuli described above; orientation 
content centered on 45° or 135°; at 50% Michelson contrast) were presented at 2Hz during a block (2s cue, 

14s stimulus presentation). Participants were informed at the start of each stimulus presentation block with a 
cue (2s) whether to either attend towards the stimuli, or to attend away from the grating (Figure S2). During 

attended stimulus blocks observers performed an orientation discrimination task, detecting and discriminating 

a change in the orientation of the stimulus compared to the global orientation (45° or 135°), target stimuli 
appeared with a probability of 60% throughout the stimulus block. To match task difficulty for the orientation 

task across observers we titrated individual thresholds to yield an accuracy of 75%. During unattended stimulus 
blocks observers performed the same fixation task as described above; target letters appeared with a 

probability of 30%. All stimulus presentation blocks were completely identical, as both orientation and target 
letters would appear throughout a block, and only the initial cue informed the participant which task to perform 

(Figure S2). The two attentional condition blocks were pseudo-randomized over the course of the run, each 

interleaved with 16s baseline periods. Behavioral data indicated performance for both tasks was well above 
chance (attended task: mean = 0.74, SE = 0.05, unattended task: mean = 0.88, SE = 0.04). Participants 

completed 5-10 fMRI runs; each run took 272s to complete (8 stimulus blocks per run).  

Spatial attention experiment. To directly assess whether attention modulates local gain control, we 

manipulated covert spatial attention for both stimuli configurations. Participants (n=6) were instructed to 
maintain their gaze within a fixation circle (diameter, 1°) at the center of the display. Observers viewed stimuli 

that were the linear combinations of the same bandpass-filtered noise stimuli described above (outer diameter 
15°; inner diameter 3°; spared midline), resulting in either orthogonal (45°/135° and 135°/45°) or collinear 

(45°/45° and 135°/135°) stimuli. Each individual component was rendered at 25% Michelson contrast, 

resulting in a combined grating of 50% Michelson contrast. Note, the overall contrast of these superimposed 
stimuli is reduced compared to the previous normalization experiment, as we wanted to leave enough 

headroom in the BOLD response for the attentional manipulation to take effect.  

A cue (2s) at the start of each block informed the participant to allocate their covert spatial attention to either 

the left or right side of a central fixation point, and remained displayed throughout the block (16s total block 
duration; Figure S3). Observers performed a demanding probe detection task, detecting and discriminating 

whether the probe appeared at a random location within the upper or lower visual field on the attended side 

of fixation (probe size 1.5°). Probes could appear on either side of fixation throughout a stimulus block, however 
observers were instructed to only respond to targets presented on the attended side, as indicated by the cue. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/515254doi: bioRxiv preprint 

https://doi.org/10.1101/515254
http://creativecommons.org/licenses/by-nc-nd/4.0/


 21 

Stimulus configuration and attention conditions were counter-balanced and presented in a pseudorandom 

order, and were interleaved with fixation blocks of equal duration. The behavioral ability to discriminate between 
targets was comparable for both stimuli configurations, as confirmed by measures acquired outside the 

scanner (collinear: mean = 0.87, SE = 0.03; orthogonal: mean = 0.90, SE = 0.03; paired t-test: t(5) = 0.502, p 
= 0.637). Participants completed 8-14 fMRI runs; each run took 272s to complete (8 stimulus blocks per run). 

Additionally, a scan session included two visual localizer scans, in which a flickering and rotating contrast 
pattern was presented within the same aperture as the stimuli (blocked presentation, 16s on and off; 6 stimulus 

blocks per run). 

fMRI data acquisition and preprocessing. MRI data were acquired at Harvard University’s Center for Brain 

Science Neuroimaging Center (Cambridge, Massachusetts). Data for the first two experiments were collected 

in a single scan session, using a 3.0 Tesla Tim Trio MRI Scanner (Siemens, Erlangen, Germany) equipped with 
a 32-channel head coil. A scan lasted 2h, during which we acquired: an anatomical scan (voxel size: 1.2 mm 

isotropic) using a T1-weighted multi-echo MPRAGE sequence, and functional volumes with whole brain 
coverage using a simultaneous multislice (SMS) acquisition protocol (69 slices, TR = 2s, TE = 30ms, flip angle 

= 80°, FoV = 216mm, voxel size = 2mm isotropic, in-plane acceleration factor 3, multiband factor 3 3,4. The 
final experiment was collected using a 3.0 Tesla Prisma MRI Scanner equipped with a 64-channel head coil. 

A scan lasted 1.5-2h, during which we acquired: an anatomical scan (voxel size: 1.2 mm isotropic) using a T1-

weighted multi-echo MPRAGE sequence, and functional volumes with whole brain coverage using a SMS 
acquisition protocol (72 slices, TR = 2s, TE = 30ms, flip angle = 80°, FoV = 208mm, voxel size = 2mm isotropic, 

in-plane acceleration factor 3, multiband factor 3 3,5,6. All analyses were performed in the native space for each 
participant. Functional volumes were aligned to reconstructed anatomical data, using a surface-based 

registration between the structural and functional MRI volumes implemented in Freesurfer7. Functional data 
were preprocessed using standard motion-correction procedures, Siemens slice timing correction, and 

boundary-based registration7,8. To optimize voxel-wise analyses, no volumetric spatial smoothing was 
performed. Robust rigid registration9 was performed to align experimental data within each scan session, using 

the middle time-point of each scan. All further analyses were conducted using custom code written in Matlab.  

Regions of interest. Population receptive field data collected during a separate scan session were analyzed 
using the ‘analyzePRF’ Matlab toolbox, and used to define regions of interest up to area V310,11. Not all subjects 

were available for pRF scanning; for one participant in Experiment 1&2 and one participant in Experiment 3, 
we defined retinotopic regions based on traditional retinotopy scans following standard procedures12,13. Within 

the regions of interest, we defined the top 25% of voxels based on the independent localizer scans (using a 
standard GLM analysis) for those voxels whose estimated population receptive field (pRF) location fell within 

the stimulus aperture (15° diameter). This voxel selection ensured that our analysis would be based on voxels 

that are similarly visually responsive.  
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fMRI data analysis. The preprocessed and aligned raw MRI time series per scan, for each voxel, was 

detrended, high-pass filtered and converted to percent signal change. Task data for all experiments were 
analyzed by obtaining the activity pattern for each stimulus block, and temporally averaging the BOLD activity 

across all block of the same condition for every voxel within the ROI, after time shifting by 3 TRs to account of 
the hemodynamic lag (Figure S1-3). For Experiment 1, we quantified the difference between the BOLD 

response evoked by the orthogonal or collinear stimulus configurations by computing a difference, where a 
positive difference signals stronger normalization (Figure 3a). For Experiment 2, we similarly quantified 

attentional modulation as the difference between attended vs. unattended blocks (Figure 3b).  

To compare the degree of voxel-wise dependency between these two measures we computed a Spearman 

correlation, for all voxels within the defined V1-V3 regions, which was Fisher-Z transformed to allow for 

comparison between observers (Figure 4a). To ensure that the correlations were not driven by a signal-to-
noise ratio (SNR) difference, our voxel selection was broken up into 4 equal bins, demonstrating similar 

correlations within each bin (Figure 4b). To ensure that outliers did not drive the computed correlations, we 
discounted voxels for this voxel-wise correlation analysis that exceeded the mean normalization strength or 

attentional modulation measure (for each observer) by more than 3 s.d. (1-8 voxels were discounted for each 
observer within a respective region).  

For Experiment 3, covert spatial attention was manipulated to either the left or right side from central fixation, 

leaving the opposite visual field unattended. This allowed us to examine the effect of attention when attention 
was either directed towards or away from either visual field, for both collinear and orthogonal stimuli 

configurations (Figure S3). To quantify the magnitude of attentional modulation, we computed a ratio of the 
difference between attending towards vs. attending away divided by the sum of both (Figure 5). This attention 

index is suggested to be a better representation when comparing an attentional effect between different 
conditions, as it is not biased by the differences in BOLD responses evoked by the two different stimuli 

configurations. 

Modeling image statistics.  To assess the image statistics of our two stimuli configurations we first analyzed 

the power of the two image classes in the frequency domain using a standard 2-D Fourier transform. We 

generated 1000 unique bandpass filtered noise images, which were combined either in a collinear or 
orthogonal configuration, resulting in 500 overlaid stimuli within each image class (see Apparatus & Stimuli; the 

size was matched to the screen resolution and visual angle to those images used in the experiments, so that 
these images were identical to the ones participants viewed in the scanner). Collapsing the Fourier domain 

power at each frequency band, over all orientations, confirmed that both image types carry the most power 
(beside the DC component) in those frequency bands the bandpass filter spared (2-3 cycles/°, see above; 
Figure 2a).  

Next, we constructed a V1-based energy detection model to describe a plausible underlying neural mechanism 
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that resolves the discrepancy between the image statistics and the evoked BOLD response for each image 

configuration. We fed the same set of 1000 images used for the Fourier analysis into the V1-based energy 
detection model consisting of a bank of linear filters14–19. Because edge effects can introduce spurious output, 

we padded each image with 20% of the stimulus size (resulting in an image resolution of 775x775 pixels). The 
bank of linear filters consisted of 36 spatial frequencies (evenly spaced between 0.5-4 cycles/°), 8 orientations 

(evenly spaced between 0-180°), 2 phases (0, pi/2), with a receptive field size of 2° visual angle (Figure 2b). 
After convolving each pixel within the image with following filters, we combined the quadrature-phase pairs 

analogous to a complex-cell energy model15,20: 

 

where Energypos,or,sf represents the complex cell energy for each image at a given position, orientation and 

spatial frequency, and filterpos,or,sf,ph represents the Gabor filter at each particular position, orientation, spatial 

frequency, and phase.  

The contrast energy for all quadrature pairs were summed across spatial frequency scales and averaged over 

space, resulting in a measure of pooled contrast energy within each orientation channel (Figure 2b): 

 

where TEor represents the total stimulus contrast energy at a given orientation, and num_pos reflects the total 

number of pixels within an image (775x775).  

Each images’ summarized complex cell output undergoes untuned divisive normalization, effectively acting as 

a contrast gain control operator 21–23: 

 

where, Runtuned represents the normalized stimulus energy of each image, num_or reflects the total number of 
orientation channels, 𝜎 is a constant (constrained at 0.5), and 𝑛 reflects the nonlinearity in the gain of the 

response (constrained at 1). For illustrative purposes we computed the total mean stimulus energy over all 

1000 images (combining both collinear and orthogonal image configurations) to demean each output, and the 
maximum stimulus energy over all images to normalize to 1 (Figure 5c).  
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Here, we propose that a normalization pool additionally consists of a tuned component24. The untuned 

component pools equally over all oriented filters (see Equation 3), while the tuned component only contains 
information in those orientation channels matching the orientation image statistics: 

where, Rtuned represents the normalization stimulus energy of each image, wor reflects an array of the same size 

as TEor, and only those orientation channels matching the stimulus configuration statistics are non-zero, 
allowing a contribution of tuned normalization (i.e., the tuned component for collinear stimuli could only 

modulate energy in the 45° orientation channel, while for orthogonal stimuli both 45° & 135° orientation 
channels were allowed to contribute; Figure 2d). 

Next, we introduced an fMRI encoding modeling approach25,26 to assess the magnitude of tuned normalization 
that best predicted the BOLD responses for orthogonal and collinear stimuli configurations measured in 

Experiment 1 (Figure 6). We simulated the neural response for a blocked presentation period for both stimuli 
configurations using the V1-based complex cell output (Equation 2) in response to each image within a stimulus 

presentation block (Figure 6a, 250ms on 250ms off for 14s). The time series of the modeled neural response 

was then transformed into an estimated BOLD response by convolving it with an assumed canonical 
hemodynamic impulse response function27. To estimate the contribution of a tuned component in the 

normalization pool, we added this term into the denominator of the model (Equation 4). We then optimized the 
weights (wor) that modulated the contribution of tuned normalization, so that the simulated block response best 

predicted the measured averaged BOLD response to a stimulus block independently for each stimulus 
configuration, using Matlab’s fminsearch function (using nonlinear regression) and custom Matlab procedures 

(Figure 6b). 

Armed with a modeling approach capable of summarizing the magnitude of feature-tuned normalization, we 
then set out to model the obtained BOLD responses in Experiment 3 – does attentional modulation hinge on 

tuned normalization?28 Here, we built an additional component into the normalization model, allowing for a 
release from suppression with attention: 

 

where, attTN represents the stimulus energy evoked by collinear or orthogonal stimuli configuration, when 

attended towards or away from a stimulus. This model is equivalent to Equation 4, but now the normalization 
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pool can be modulated by attention, expressed by g. When g  > 1, attention evokes a release from suppression, 

resulting a larger neural response, and when g = 1 there is no effect of attention. We simulated the neural 

response for a blocked presentation period for both stimuli configurations and attention conditions, as 

described above. We first optimized the weights (wor) that modulated tuned normalization based on the 

unattended BOLD responses, afterwards we constrained tuned normalization to the best fit, allowing us to 

predict the influence of attention (g) for each stimulus configuration.     

Eye-position monitoring. Eye-tracking data were acquired for 5 out of 6 observers for Experiment 1 and 2 

(collected within the same scan session), and for 6 out of 7 observers for Experiment 3, using a MR-compatible 

SR Research EyeLink 1000 system (sampled at 1 kHz). After removing blinks, the mean distance from fixation 
was computed during time windows corresponding to the stimuli blocks. Specifically, we first calculated the 

x- and y- deviations, and then for Experiment 1 and 2 computed the absolute distance from fixation, while for 
Experiment 3 we focused on the x-trace displacement as it gives a better indication whether participants made 

eye-movements towards the cued attended side. In both scan sessions eye movements were not greater than 
0.25° from central fixation (first scan session: 0.24°; second scan session: 0.18°), remaining well within the 

fixation circle (diameter 1°). However, one observer in Experiment 3 made eye-movements >1° towards the 
attended side and was excluded from further data analysis. Importantly, for all other observers eye movements 

did not differ between stimulus configurations, when cued to attend either side of the visual field (repeated 

measures ANOVA: F(1,5) = 0.92, p = 0.381). 
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Supplementary figures 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure S1. Measuring tuned normalization. a. Schematic of an example block sequence. Either collinear (45°/45° or 135°/135°) or 
orthogonal (45°/135° or 135°/45°) stimuli were presented during a 16 sec block (2s cue period, followed by stimuli presented for 250ms 
on, 250ms off), while participants performed a fixation task, discriminating target letters in a rapid letter stream.  b. Mean BOLD responses 
(left panels) were larger for orthogonal compared to collinear stimuli configurations. Grey highlighted part of the BOLD response reflects 
the section that contributed to the average BOLD response for each participant (right panels). Stimuli are modified for illustrative purposes; 
error bars denote ±1 SEM. 
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Figure 2. Measuring attention modulation. a. Schematic of an example block sequence. A brief cue (2 sec) instructed observers to either 
attend towards the grating (fine orientation discrimination task), or attend away from the grating (RSVP task at fixation). Both orientation 
and letter targets would appear throughout a block, only the initial cue informed the participant which task to perform. b. Attending towards 
the stimulus resulted in a larger BOLD response compared to the unattended condition (left panels). Grey highlighted part reflects the 
section that contributed to the average BOLD response for each participant (right panels). Stimuli are modified for illustrative purposes; 
error bars denote ±1 S.E.M.. 
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Figure 3. Measuring spatial attention modulation for different states of normalization. a. Schematic of an example block sequence. 
Observers were cued to attend either the left or right side of fixation throughout a block (2 sec), after which either collinear (45°/45° or 
135°/135°) or orthogonal (45°/135° or 135°/45°) stimuli were presented (250ms on, 250ms off). Their task was to detect and discriminate 
whether a target probe (dashed black circle) appeared anywhere within either the lower or upper visual field of the attended stimulus. 
Dashed orange/blue lines indicate the unattended side, while the solid lines represent the attended side. Attended side and stimulus 
configuration conditions were counter-balanced and pseudo-randomized throughout a run. b. Mean BOLD responses (left panels) for 
collinear and orthogonal stimulus configurations with and without covert spatial attention. Grey highlighted part of the BOLD response 
reflects the section that contributed to the average BOLD response for each participant (right panels). Stimuli are modified for illustrative 
purposes; dots indicate illustrate individual participants; error bars denote ±1 S.E.M..  
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