
1 
 

Whitening of odor representations by the wiring diagram of the olfactory bulb 1 

 2 

Adrian A. Wanner1,2,†, Rainer W. Friedrich1,2,* 3 

 4 

1Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, 5 

Switzerland 6 

2Faculty of Natural Sciences, University of Basel, 4003 Basel, Switzerland 7 

*Correspondence to: R. Friedrich, Friedrich Miescher Institute for Biomedical Research, 8 

Maulbeerstrasse 66, 4058 Basel, Switzerland 9 

†Current address: Princeton Neuroscience Institute, Princeton University, 20 Washington Road, 10 

08544 Princeton, New Jersey, USA 11 

 12 

 13 

Neuronal computations underlying higher brain functions depend on synaptic interactions among 14 

specific neurons. A mechanistic understanding of such computations requires wiring diagrams of 15 

neuronal networks. We examined how the olfactory bulb (OB) performs ‘whitening’, a 16 

fundamental computation that decorrelates activity patterns and supports their classification by 17 

memory networks. We measured odor-evoked activity in the OB of a zebrafish larva and 18 

subsequently reconstructed the complete wiring diagram by volumetric electron microscopy. The 19 

resulting functional connectome revealed an overrepresentation of multisynaptic connectivity 20 

motifs that mediate reciprocal inhibition between neurons with similar tuning. This connectivity 21 

suppressed redundant responses and was necessary and sufficient to reproduce whitening in 22 

simulations. Whitening of odor representations is therefore mediated by higher-order structure in 23 

the wiring diagram that is adapted to natural input patterns. 24 

  25 
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Neuronal activity patterns evoked by natural stimuli are transformed in the brain to extract relevant 26 

information. Such patterns often contain correlations and intensity variations that originate from the 27 

statistics of natural scenes and from the tuning of sensory receptors1. This statistical structure complicates 28 

the classification of sensory inputs because it does not usually reflect behaviorally relevant stimulus 29 

categories2. For example, visual scenes may be dominated by a large number of pixels representing sky 30 

while the biologically most important information is conveyed by a small subset of pixels representing 31 

specific objects (e.g., a hawk or a sparrow). Hence, correlations in sensory inputs can complicate 32 

meaningful pattern classification and object recognition. This problem can be alleviated by whitening, a 33 

fundamental transformation in signal processing that decorrelates patterns and normalizes their variance. 34 

Whitening is therefore often used early in a pattern classification process to remove undesired correlations 35 

and to optimize the use of coding space3. 36 

In the visual and auditory system, whitening of individual neurons’ responses to natural stimuli supports 37 

efficient coding by redundancy reduction4-7. Efficient pattern classification, however, requires whitening 38 

of activity patterns across neuronal populations. This form of whitening occurs in the olfactory bulb 39 

(OB)8-10 where axons of olfactory sensory neurons expressing the same odorant receptor converge onto 40 

discrete glomeruli. Odors evoke distributed patterns of input activity across array of glomeruli that can 41 

overlap substantially when odorants share functional groups11-13. Moreover, the variance (contrast) of 42 

glomerular activity patterns varies dramatically as a function of odor concentration. As a consequence, 43 

patterns of sensory input to the OB are not well suited for concentration-invariant odor classification. The 44 

output of the OB is transmitted to higher brain areas by mitral cells, which receive sensory input from 45 

individual glomeruli and interact with other mitral cells via multisynaptic interneuron (IN) pathways 46 

(Fig. 1a). Contrary to glomerular inputs, activity patterns across mitral cells become rapidly decorrelated 47 

during the initial phase of an odor response8,14-18 and their variance depends only modestly on stimulus 48 

intensity10,19. Neuronal circuits in the OB therefore decorrelate and normalize population activity patterns, 49 
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resulting in a whitening of odor representations that facilitates pattern classification. However, it remains 50 

unclear how this transformation is achieved by interactions between neurons in the OB network. 51 

Efficient whitening can be achieved by transformations that are adapted to the correlation structure of 52 

input patterns1. Such adaptive whitening requires prior knowledge about inputs and tuning-dependent 53 

connectivity between specific cohorts of neurons. Hence, whitening of sensory representations is thought 54 

to depend on an evolutionary memory of stimulus space that is contained in the wiring diagram of 55 

neuronal circuits. This hypothesis is difficult to test in the OB because tuning and functional connectivity 56 

cannot be inferred from topographical relationships between neurons11,20-22. Moreover, because 57 

interactions between mitral cells are multisynaptic via INs, relevant inhibitory interactions cannot be 58 

visualized by transsynaptic tracing across a single synapse. 59 

Adaptive whitening and other memory-based processes are likely to depend on higher-order features of 60 

neuronal connectivity that cannot be detected by sparse sampling of pairwise connectivity between 61 

individual neurons. We therefore used a “functional connectomics” approach that combines population-62 

wide neuronal activity measurements with dense reconstructions of wiring diagrams. To achieve this goal 63 

we took advantage of the small size of the larval zebrafish brain. We first measured odor responses of 64 

neurons in the OB by multiphoton calcium imaging and subsequently reconstructed the synaptic 65 

connectivity among all neurons by serial block-face scanning electron microscopy (SBEM)23-26. We found 66 

that higher-order features of multisynaptic connectivity specifically suppress the activity of correlated 67 

mitral cell ensembles in a stimulus-dependent manner, resulting in a decorrelation and variance 68 

normalization. The wiring diagram of the OB is therefore adapted to the correlation structure of its inputs 69 

and mediates a whitening operation based on contrast reduction rather than contrast enhancement. 70 

 71 

Results 72 
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Reconstruction of the wiring diagram and mapping of neuronal activity 73 

We previously acquired an SBEM image stack of the OB in a zebrafish larva and reconstructed 98% of 74 

the neurons in the OB25,26. We now annotated the synaptic connections of all OB neurons to reconstruct 75 

the full wiring diagram. Human annotators followed each of the reconstructed skeletons and manually 76 

labeled all input and output synapses (Fig. 1b,c). Subsequently, synapses of INs were annotated a second 77 

time by different annotators. Hence, each synapse involved in MC-IN-MC connectivity motifs should 78 

have been encountered at least three times. To obtain a conservative estimate of the wiring diagram with 79 

few false positives we retained only those synapses that were annotated at least twice by independent 80 

annotators. 81 

Each synapse was assigned a unitary weight so that the total connection strength between a pair of 82 

neurons equaled the number of synapses. The resulting wiring diagram contained 19,874 MCIN 83 

synapses, 17,524 MCIN synapses (Fig. 1d), and 13,610 synapses between INs. We also observed 84 

contact sites between MCs associated with the same glomerulus where plasma membranes showed strong 85 

staining but these sites usually lacked associated vesicles. We did therefore not consider synaptic 86 

connections between MCs. On average, connected pairs of MCs and INs made 3.1 MCIN synapses and 87 

2.9 MCIN synapses per pair. A hallmark of synaptic connectivity in the adult OB are reciprocal 88 

dendrodendritic synaptic connections between the same MC-IN pair. In the larval OB, 52% of MCIN 89 

synapses and 51% of MCIN synapses were associated with a synapse of opposite direction, usually 90 

within 2.5 m, between the same pair of neurons (Fig. 1b, bottom). Hence, reciprocal synaptic 91 

connectivity is prominent already in the larval OB of zebrafish. 92 

Prior to preparation of the OB sample for SBEM we measured neuronal activity by multiphoton imaging 93 

of the calcium indicator GCaMP5, which was expressed under the pan-neuronal elavl3 promoter27. 94 

Somata observed in electron microscopy were mapped onto the light microscopy data using an iterative 95 

landmark-based affine alignment procedure followed by manual proofreading (Fig. 2a,b; Supplementary 96 
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Fig. 1). Somatic calcium signals evoked by four amino acid odors (10-4 M) and four bile acid odors 97 

(10-5 M) were measured sequentially in six optical planes (Fig. 2a; Supplementary Fig. 1) and temporally 98 

deconvolved to estimate odor-evoked firing rate changes28. The dynamics of neuronal population activity 99 

was then represented by time series of activity vectors for each odor stimulus (232 MCs and 68 INs).  100 

Decorrelation and contrast normalization of activity patterns across MCs have been characterized 101 

previously in the OB of adult zebrafish8,14,15 and mice16-18 where >90% of neurons are GABAergic INs. In 102 

the larval OB, in contrast, INs account for only 25% of all neurons26. Most of these INs are likely to be 103 

periglomerular and short axon cells because INs with the typical morphology of granule cells appear only 104 

later in development. We therefore asked whether the core circuitry present in the larval OB already 105 

performs computations related to whitening. 106 

Correlations between activity patterns evoked by different bile acids were high after stimulus onset and 107 

decreased during the subsequent few hundred milliseconds (Fig. 2d,e). Patterns evoked by amino acids, in 108 

contrast, were less correlated throughout the odor response, which was expected because most amino 109 

acids had dissimilar side chains. To quantify pattern decorrelation we focused on activity patterns evoked 110 

by bile acids and computed the mean difference in pairwise Pearson correlations between a time window 111 

shortly after response onset (t1) and a later time window (t2). Time windows were chosen such that the 112 

mean population activity across MCs was not significantly different (Fig. 2d; p = 0.44, Wilcoxon rank-113 

sum test). Pattern correlations across MCs, however, were significantly lower at t2 than at t1 (p = 0.03, 114 

Wilcoxon rank-sum test), demonstrating that MC activity patterns were reorganized and decorrelated. 115 

Activity across INs followed the mean MC activity with a small delay and did not exhibit an obvious 116 

decorrelation (Fig. 2d), consistent with observations in the adult OB29. 117 

The contrast of MC activity patterns, as measured by the variance of activity across the population, 118 

increased shortly after stimulus onset and peaked slightly later than the pattern correlation. Subsequently, 119 

variance decreased and became more uniform across odors, as reflected by a significant decrease in the 120 
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standard deviation of the variance across odors between t2 and t1 (Fig. 2d; p < 0.01, Wilcoxon rank-sum 121 

test; t1 was slightly shifted relative to the time window for correlation analysis to cover the peak of the 122 

variance). Hence, MC activity patterns in the larval OB became decorrelated and contrast-normalized, 123 

consistent with the whitening of odor representations in the adult OB.  124 

 125 

Computational consequences of connectivity 126 

While contrast normalization can be achieved by global scaling operations such as divisive 127 

normalization30, pattern decorrelation requires interactions between distinct subsets of neurons9. In theory, 128 

pattern decorrelation could be achieved by large networks with sparse and random connectivity31 but this 129 

architecture is inconsistent with the low number of INs in the larval OB. Smaller networks can decorrelate 130 

specific input patterns when their connectivity is specifically adapted to the structure of sensory inputs, 131 

suggesting that decorrelation in the OB is an input-specific transformation of odor representations that is 132 

encoded in the wiring diagram. In order to explore this hypothesis we first asked whether whitening can 133 

be reproduced by implementing the wiring diagram in a network of minimally complex single-neuron 134 

models (Fig. 3a). 135 

We simulated a network of threshold-linear rate neurons with 208 MCs, representing all recorded MCs 136 

with input and output synapses, and 234 INs, representing all connected INs. Connections between MCs 137 

and INs were given by the wiring diagram and excitatory sensory input into MCs was given by the odor-138 

evoked activity pattern at t1. For simplicity, IN-IN connections were not considered. The time course of 139 

stimuli consisted of a fast initial rise followed by a slow decay31, approximating the response time course 140 

of olfactory sensory neurons in zebrafish8. Because connectivity was fixed, the final network model had 141 

only six degrees of freedom (thresholds, synaptic weight scaling factors and time constants of each 142 

neuron type).  143 
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Correlations between simulated population responses to bile acids increased rapidly and subsequently 144 

decreased. Consistent with experimental observations, the mean correlation decreased significantly 145 

between two time windows t1 and t2 that were chosen so that the mean activity was not significantly 146 

different (Fig. 3b,c). The variance (contrast) of activity patterns and its standard deviation across stimuli 147 

followed a similar time course but peaked slightly later than the correlation, consistent with experimental 148 

observations. Both measures decreased significantly between t1 and t2 (Fig. 3b,c; t1 was adjusted slightly 149 

to cover the peak of the variance). Hence, a minimal network implementing the reconstructed 150 

connectivity reproduced whitening of biologically realistic inputs. When connectivity was randomized, 151 

decorrelation and contrast normalization were both abolished (Fig. 4b-d). We therefore conclude that 152 

whitening depended on the wiring diagram. 153 

To further confirm this conclusion we examined whether the reorganization of activity patterns 154 

underlying whitening can be predicted from connectivity without an explicit simulation of network 155 

dynamics. Activity patterns at t1 were multiplied with the feed-forward connectivity WMCIN and 156 

thresholded to generate a hypothetical pattern of IN activity. This activity pattern was then multiplied 157 

with the feed-back connectivity WMCIN to predict the pattern of feedback inhibition, which was 158 

subtracted from t1. This simple algebraic procedure reproduced both pattern decorrelation and variance 159 

normalization (Fig. 3c) but failed to do so when connectivity matrices were randomized (not shown), 160 

further supporting the conclusion that the wiring diagram contains specific information essential for 161 

whitening. 162 

We next performed more specific manipulations to explore how whitening depends on higher-order 163 

structure in the wiring diagram. In simulations, we first applied the same permutations to the feed-forward 164 

(MCIN) and feed-back connectivity (MCIN). This manipulation shuffles the off-diagonal elements 165 

in the disynaptic connectivity matrix (lateral inhibition) but preserves the overall distribution of 166 

disynaptic MCINMC connection strengths and the on-diagonal elements (self-inhibition; Fig. 3d). 167 
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Similar to the full randomization of connectivity, this co-permutation abolished whitening (Fig. 3b,c). 168 

Moreover, whitening was abolished when input channels were permuted to produce novel input patterns 169 

with the same statistical properties and correlations (Fig. 3c). These results show that whitening is 170 

mediated by higher-order features of multisynaptic connectivity that are adapted to patterns of sensory 171 

input. 172 

 173 

Mechanisms of whitening 174 

The shortest path between MCs associated with different glomeruli is a disynaptic interaction via one IN 175 

(MC-IN-MC). To identify properties of the wiring diagram that mediate whitening we therefore analyzed 176 

MC-IN-MC triplets. There are nine possible triplet configurations that represent four topological motifs 177 

(Fig. 4a). We found that the motif containing no reciprocal connection (motif 1) was underrepresented 178 

whereas the other motifs were overrepresented in comparison to randomized networks (Fig 4b). The 179 

strongest overrepresentation was observed for motif 4, which contains reciprocal connections between 180 

both MCs and the IN. Hence, MC-IN-MC triplets frequently contained reciprocal connections. 181 

To determine whether disynaptic connectivity between MCs depends on their tuning we constructed an 182 

input tuning curve for each MC from the responses to the eight odors at t1. For all pairs of MCs we then 183 

quantified the Pearson correlation between their input tuning curves and the number of disynaptic MC-184 

IN-MC connection paths across all motifs. The mean number of disynaptic connections increased with the 185 

input tuning correlation (Fig. 4c). Hence, triplets mediate interactions preferentially between MCs with 186 

similar tuning. 187 

We further analyzed the relationship between triplet motifs and tuning curve similarity. Motifs with 188 

reciprocal connections (motifs 2 – 4) were significantly overrepresented among MCs with similar tuning 189 

(correlation >0.5; Fig. 4d). This overrepresentation was most pronounced for motif 4 (all connections 190 
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reciprocal). Hence, disynaptic reciprocal interactions are significantly enriched between MCs with similar 191 

tuning. 192 

In the retina, unidirectional lateral inhibition between functionally related neurons sharpens tuning curves 193 

and enhances pattern contrast32 (Fig. 5a, left). In idealized networks with strictly reciprocal connectivity, 194 

in contrast, inhibition does not amplify asymmetries in inputs and self-inhibition is usually larger than 195 

lateral inhibition (assuming equal synaptic strength; Fig. 5a, right). Hence, reciprocal triplet connectivity 196 

among neurons with similar tuning should primarily down-regulate, rather than sharpen, the activity of 197 

connected cohorts of neurons. The computational effects of these transformations depend on the 198 

properties of input patterns (Supplementary Fig. 2). When inputs follow overlapping Gaussian 199 

distributions, contrast enhancement can decorrelate patterns because stimulus-specific information is 200 

contained in strong neuronal responses4,32. However, when activity patterns overlap primarily in strongly 201 

responsive units, contrast enhancement will fail to decorrelate patterns because it emphasizes non-specific 202 

responses. In this scenario, patterns may be decorrelated by the selective inhibition of strongly active 203 

cohorts, which may be achieved by specific reciprocal inhibition (Supplementary Fig. 2). 204 

To examine the basis of pattern correlations in the OB we analyzed population activity patterns evoked by 205 

bile acids at t1. For each pair of patterns, we quantified the contribution ri,t1 of MC i to the Pearson 206 

correlation r. Overall pattern correlations were dominated by high contributions from a small fraction of 207 

MCs. This subset of MCs was also strongly active, as observed directly when MCs were ranked by their 208 

ri,t1 (Fig. 5b,c). As a corollary, these MCs also made large contributions to the variance of neuronal 209 

activity patterns at t1 (Fig. 5c). Hence, correlated odor representations overlapped primarily in strongly 210 

responsive MCs, consistent with observations in the adult OB9. 211 

We then examined the changes in the activity of individual neurons underlying the decorrelation and 212 

contrast normalization between t1 and t2. The activity of MCs with large ri,t1 was significantly lower at t2 213 

than at t1 (Fig. 5b,c). The activity of MCs that did not strongly contribute to the initial correlation, in 214 
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contrast, remained similar. As a consequence, the contribution of MCs with large ri,t1 to the overall 215 

correlation decreased, resulting in a substantial decorrelation of population activity patterns between t1 216 

and t2. Pattern decorrelation can therefore be attributed, at least in part, to the selective inhibition of MC 217 

cohorts that dominate the initial pattern correlations. MCs with high ri,t1 also made strong contributions to 218 

pattern variance at t1 (Fig. 5c) because their activity was substantially higher than the population mean. 219 

The selective inhibition of these cohorts between t1 and t2 changed the activity of these MCs towards the 220 

population mean and therefore decreased pattern variance and its s.d. across odors. Pattern decorrelation 221 

and contrast normalization can therefore be attributed to a common mechanism that targets inhibition to 222 

specific MC cohorts and results in contrast reduction rather than contrast enhancement.  223 

The selective suppression of activity in cohorts of co-responsive MCs requires inhibition within cohorts 224 

to be stronger than the mean inhibition across the population. To explore how such stimulus- and 225 

ensemble-specific inhibition can arise from the connectivity between neurons we selected the 10 MCs 226 

with the highest ri,t1 for each pair of bile acid stimuli. We then determined the disynaptic MC inputs to 227 

these cohorts by retrograde tracing through the wiring diagram across two synapses. Inputs to MCs within 228 

a cohort were strongly biased towards MCs of the same cohort (Fig. 5d,e), implying that neurons in a 229 

cohort will be strongly inhibited when the cohort is activated as a whole. The specific suppression of 230 

activity underlying whitening can therefore be explained by dense reciprocal connectivity within cohorts, 231 

which suppresses the representation of stimulus features that activate a cohort. 232 

To further explore this hypothesis we continued to analyze the mechanism of whitening in simulations. 233 

We first ranked simulated MCs by their ri,t1 for bile acid-evoked activity patterns in experiments (same 234 

ranking as in Fig. 5c). As observed experimentally, simulated MCs with large ri,t1 were strongly inhibited 235 

between t1 and t2 while the mean activity of other MCs remained unchanged (Fig. 6a). Simulations 236 

therefore recapitulated the mechanism of whitening in the OB and precisely predicted the underlying 237 

activity changes in individual neurons. 238 
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We then selected the 10 MCs with the highest ri,t1 for each pair of bile acid stimuli (19 MCs in total) and 239 

deleted their feedforward connections onto INs in the simulation (11% of all MCIN connections; 240 

Fig. 6b, left). As a control, we deleted the same fraction of feedforward connections between random 241 

subsets of neurons. While random deletions had almost no effect, the selective disconnection of functional 242 

cohorts abolished pattern decorrelation and variance normalization (Fig. 6c,d). Ranking of MCs by their 243 

ri,t1 in experimental data demonstrated that the activity of MCs with high ri,t1 was reduced slightly 244 

between t1 and t2 when MC cohorts were selectively disconnected but not as effectively as under control 245 

conditions. As a consequence, these MCs continued to make large positive contributions to pattern 246 

correlation and variance at t2 (Fig. 6e). These results show that the selective disconnection of functional 247 

cohorts abolished whitening because it disrupted feature suppression. We next randomized all 248 

connections except those of the 10 MCs with the highest ri,t1 for each bile acid pair (Fig. 6b, right). 249 

Results were compared to the full randomization of the wiring diagram, which reduced the inhibition of 250 

MC cohorts and abolished whitening (Fig. 3b,c). When connections of functional MC cohorts were 251 

selectively preserved, however, the inhibition of MC cohorts remained strong and pattern decorrelation 252 

was restored (Fig. 6c,d). Variance normalization was only partially rescued, presumably because 253 

preserved cohorts were selected only for their contribution to correlations between bile acid pairs and not 254 

for amino acids. The activity of MCs with high ri,t1 was strongly reduced (Fig. 6e), demonstrating that 255 

pattern decorrelation and partial variance normalization were the result of feature suppression. These 256 

results confirm that whitening is mediated by specific disynaptic interactions that suppress the activity of 257 

correlation-promoting MC cohorts. 258 

 259 

Discussion 260 

We used a functional connectomics approach in a small vertebrate to explore the mechanism of whitening 261 

in the OB. Whitening is a computation related to object classification and associative memory that 262 
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requires specific transformations of defined neuronal activity patterns. Such computations are thought to 263 

rely on specific wiring diagrams that are adapted to relevant inputs. Consistent with this notion, we found 264 

that whitening is achieved by specific multisynaptic interactions that cannot be described by general 265 

topographic principles or by the first-order statistics of connectivity between neuron types. Functional 266 

connectomics is therefore a promising approach to dissect distributed, memory-based computations 267 

underlying higher brain functions. 268 

Correlations between input patterns in the OB were dominated by distinct subsets of strongly active input 269 

channels. This correlation structure is likely to reflect the co-activation of different odorant receptors by 270 

discrete functional groups12,13 and implies that input correlations cannot be removed efficiently by 271 

contrast enhancement33-35. Rather, patterns are decorrelated by the selective inhibition of strongly active, 272 

correlation-promoting MC cohorts. Pattern decorrelation is therefore achieved by contrast reduction, 273 

rather than contrast enhancement, which also supports contrast normalization. 274 

Whitening requires specific tuning-dependent, disynaptic MC-IN-MC connectivity that may be 275 

established by molecular or activity-dependent mechanisms. Because this connectivity exists already 276 

before activity-dependent effects were detected on the morphological development of glomeruli36 the 277 

initial assembly of neuronal connections may rely primarily on molecular cues. Projections of INs are 278 

enriched between glomeruli that receive input from odorant receptors of the same families26, raising the 279 

possibility that glomerular targeting of sensory neurons37 and INs involve related mechanisms. However, 280 

the development of the connectivity that mediates whitening remains to be explored. 281 

Lateral inhibition between neurons with similar tuning is often assumed to sharpen tuning curves by 282 

amplifying asymmetries in the input. In the OB, however, triplet connections between related MCs are 283 

highly enriched in reciprocal connections. This connectivity results in feedback inhibition that is 284 

independent of the precise pattern of MC input to a cohort (Fig. 5a, right) and down-scales the activity of 285 

neuronal cohorts without amplifying asymmetries in the input. Reciprocally connected MC↔IN↔MC 286 
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cohorts therefore mediate feature suppression: in the presence of a feature that effectively activates a 287 

cohort, the inhibitory feedback gain within the cohort will be larger than the mean feedback gain and 288 

suppress the representation of the feature. This mechanism can explain the selective and odor-dependent 289 

inhibition of correlation-promoting MC cohorts. 290 

Functional connectomics permitted us to test the significance of this mechanism by implementing the 291 

wiring diagram in a network of minimally complex model neurons. Simulations demonstrated that higher-292 

order features of connectivity were necessary and sufficient to produce whitening. Precisely targeted 293 

manipulations confirmed that whitening was the result of feature suppression by reciprocal 294 

MC↔IN↔MC connectivity among correlation-promoting MC cohorts. Whitening in the OB is therefore 295 

produced by a network mechanism that differs from canonical computations in the retina and other 296 

sensory systems, presumably because the statistics of sensory inputs differ between sensory modalities. 297 

In visual cortex, functionally related principal neurons make stronger excitatory connections than random 298 

subsets of neurons38. Such connectivity can arise from Hebbian plasticity mechanisms, enhance 299 

representations of sensory features, and amplify specific inputs in memory networks after learning. The 300 

disynaptic connectivity observed in the OB, in contrast, results in inhibitory interactions between 301 

functionally related principal neurons. Such connectivity cannot be achieved by monosynaptic 302 

connectivity between MCs because inhibitory synapses between MCs would violate Dale’s law. 303 

Functional connectivity in the OB is therefore similar in structure, but opposite in sign, to excitatory 304 

connectivity motifs in visual cortex. As a consequence, the connectivity in the OB suppresses, rather than 305 

amplifies, specific features in the input. Such a mechanism appears useful to attenuate the impact of 306 

irrelevant sensory inputs and to reduce undesired correlations. The mechanism of whitening by feature 307 

suppression is consistent with networks that have been optimized for whitening in a theoretical 308 

framework with biologically plausible constraints39,40. Hence, the mechanism of whitening observed in 309 

the OB may represent a general computational strategy in the brain. 310 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/515411doi: bioRxiv preprint 

https://doi.org/10.1101/515411


14 
 

 311 

References 312 

1  Simoncelli, E. P. & Olshausen, B. A. Natural image statistics and neural representation. Annu Rev 313 
Neurosci 24, 1193‐1216 (2001). 314 

2  DiCarlo, J. J., Zoccolan, D. & Rust, N. C. How does the brain solve visual object recognition? 315 
Neuron 73, 415‐434 (2012). 316 

3  Bishop, C. M. Neural networks for pattern recognition. (Clarendon Press, Oxford, 1995). 317 
4  Barlow, H. B. in Sensory communication   (ed W. A. Rosenblith)  217‐234 (MIT Press, 1961). 318 
5  Atick, J. J. & Redlich, A. N. Convergent algorithm for sensory receptive‐field development. Neural 319 

Comput. 5, 45‐60 (1993). 320 
6  Olshausen, B. A. & Field, D. J. Emergence of simple‐cell receptive field properties by learning a 321 

sparse code for natural images. Nature 381, 607‐609 (1996). 322 
7  Smith, E. C. & Lewicki, M. S. Efficient auditory coding. Nature 439, 978‐982 (2006). 323 
8  Friedrich, R. W. & Laurent, G. Dynamic optimization of odor representations in the olfactory 324 

bulb by slow temporal patterning of mitral cell activity. Science 291, 889‐894 (2001). 325 
9  Friedrich, R. W. & Wiechert, M. T. Neuronal circuits and computations: pattern decorrelation in 326 

the olfactory bulb. FEBS letters 588, 2504‐2513 (2014). 327 
10  Zhu, P., Frank, T. & Friedrich, R. W. Equalization of odor representations by a network of 328 

electrically coupled inhibitory interneurons. Nature Neurosci. 16, 1678‐1686 (2013). 329 
11  Friedrich, R. W. & Korsching, S. I. Combinatorial and chemotopic odorant coding in the zebrafish 330 

olfactory bulb visualized by optical imaging. Neuron 18, 737‐752 (1997). 331 
12  Araneda, R. C., Kini, A. D. & Firestein, S. The molecular receptive range of an odorant receptor. 332 

Nature Neurosci 3, 1248‐1255 (2000). 333 
13  Mori, K., Takahashi, Y. K., Igarashi, K. M. & Yamaguchi, M. Maps of odorant molecular features in 334 

the mammalian olfactory bulb. Physiol. Rev. 86, 409‐433 (2006). 335 
14  Friedrich, R. W., Habermann, C. J. & Laurent, G. Multiplexing using synchrony in the zebrafish 336 

olfactory bulb. Nat. Neurosci. 7, 862‐871 (2004). 337 
15  Niessing, J. & Friedrich, R. W. Olfactory pattern classification by discrete neuronal network 338 

states. Nature 465, 47‐52 (2010). 339 
16  Gschwend, O. et al. Neuronal pattern separation in the olfactory bulb improves odor 340 

discrimination learning. Nat Neurosci 18, 1474‐1482 (2015). 341 
17  Chu, M. W., Li, W. L. & Komiyama, T. Balancing the Robustness and Efficiency of Odor 342 

Representations during Learning. Neuron 92, 174‐186 (2016). 343 
18  Yamada, Y. et al. Context‐ and Output Layer‐Dependent Long‐Term Ensemble Plasticity in a 344 

Sensory Circuit. Neuron 93, 1198‐1212 e1195 (2017). 345 
19  Banerjee, A. et al. An Interglomerular Circuit Gates Glomerular Output and Implements Gain 346 

Control in the Mouse Olfactory Bulb. Neuron 87, 193‐207 (2015). 347 
20  Willhite, D. C. et al. Viral tracing identifies distributed columnar organization in the olfactory 348 

bulb. Proc. Natl. Acad. Sci. USA 103, 12592‐12597 (2006). 349 
21  Fantana, A. L., Soucy, E. R. & Meister, M. Rat olfactory bulb mitral cells receive sparse 350 

glomerular inputs. Neuron 59, 802‐814 (2008). 351 
22  Soucy, E. R., Albeanu, D. F., Fantana, A. L., Murthy, V. N. & Meister, M. Precision and diversity in 352 

an odor map on the olfactory bulb. Nat. Neurosci. 12, 210‐220 (2009). 353 
23  Denk, W. & Horstmann, H. Serial block‐face scanning electron microscopy to reconstruct three‐354 

dimensional tissue nanostructure. PLoS Biol 2, e329 (2004). 355 
24  Denk, W., Briggman, K. L. & Helmstaedter, M. Structural neurobiology: missing link to a 356 

mechanistic understanding of neural computation. Nat Rev Neurosci 13, 351‐358 (2012). 357 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/515411doi: bioRxiv preprint 

https://doi.org/10.1101/515411


15 
 

25  Wanner, A. A., Genoud, C. & Friedrich, R. W. 3‐dimensional electron microscopic imaging of the 358 
zebrafish olfactory bulb and dense reconstruction of neurons. Scientific data 3, 160100 (2016). 359 

26  Wanner, A. A., Genoud, C., Masudi, T., Siksou, L. & Friedrich, R. W. Dense EM‐based 360 
reconstruction of the interglomerular projectome in the zebrafish olfactory bulb. Nat Neurosci 361 
19, 816‐825 (2016). 362 

27  Akerboom, J. et al. Genetically encoded calcium indicators for multi‐color neural activity imaging 363 
and combination with optogenetics. Frontiers in molecular neuroscience 6, 2 (2013). 364 

28  Yaksi, E. & Friedrich, R. W. Reconstruction of firing rate changes across neuronal populations by 365 
temporally deconvolved Ca2+ imaging. Nature Methods 3, 377‐383 (2006). 366 

29  Yaksi, E., Judkewitz, B. & Friedrich, R. W. Topological reorganization of odor representations in 367 
the olfactory bulb. PLoS Biol. 5, e178 (2007). 368 

30  Carandini, M. & Heeger, D. J. Normalization as a canonical neural computation. Nat. Rev. 369 
Neurosci. 13, 51‐62 (2011). 370 

31  Wiechert, M. T., Judkewitz, B., Riecke, H. & Friedrich, R. W. Mechanisms of pattern decorrelation 371 
by recurrent neuronal circuits. Nature Neurosci. 13, 1003‐1010 (2010). 372 

32  Hartline, H. K. & Ratliff, F. Inhibitory interaction of receptor units in the eye of Limulus. J. gen. 373 
Physiol. 40, 357‐376 (1957). 374 

33  Yokoi, M., Mori, K. & Nakanishi, S. Refinement of odor molecule tuning by dendrodendritic 375 
synaptic inhibition in the olfactory bulb. Proc. Natl. Acad. Sci. USA 92, 3371‐3375 (1995). 376 

34  Cleland, T. A. & Sethupathy, P. Non‐topographical contrast enhancement in the olfactory bulb. 377 
BMC Neurosci. 7, 7 (2006). 378 

35  Arevian, A. C., Kapoor, V. & Urban, N. N. Activity‐dependent gating of lateral inhibition in the 379 
mouse olfactory bulb. Nat. Neurosci. 11, 80‐87 (2008). 380 

36  Braubach, O. R. et al. Experience‐dependent versus experience‐independent postembryonic 381 
development of distinct groups of zebrafish olfactory glomeruli. J Neurosci 33, 6905‐6916 382 
(2013). 383 

37  Nishizumi, H. & Sakano, H. Developmental regulation of neural map formation in the mouse 384 
olfactory system. Developmental neurobiology 75, 594‐607 (2015). 385 

38  Ko, H. et al. Functional specificity of local synaptic connections in neocortical networks. Nature 386 
473, 87‐91 (2011). 387 

39  Pehlevan, C. & Chklovskii, D. B. in 2015 53rd Annual Allerton Conference on Communication, 388 
Control, and Computing (Allerton).  1458‐1465. 389 

40  Zung, J. & Seung, S. A correlation game for unsupervised learning yields computational 390 
interpretations of Hebbian excitation, anti‐Hebbian inhibition, and synapse elimination. arXiv, 391 
arXiv:1704.00646v00641 (2017). 392 

41  Kinkhabwala, A. et al. A structural and functional ground plan for neurons in the hindbrain of 393 
zebrafish. Proc Natl Acad Sci U S A 108, 1164‐1169 (2011). 394 

42  Akerboom, J. et al. Optimization of a GCaMP calcium indicator for neural activity imaging. J 395 
Neurosci 32, 13819‐13840 (2012). 396 

43  Westerfield, M. The zebrafish book. A guide for the laboratory use of zebrafish (Danio rerio). 4 397 
edn, (University of Oregon Press, 2000). 398 

44  Li, J. et al. Early development of functional spatial maps in the zebrafish olfactory bulb. J. 399 
Neurosci. 25, 5784‐5795 (2005). 400 

45  Brustein, E., Marandi, N., Kovalchuk, Y., Drapeau, P. & Konnerth, A. "In vivo" monitoring of 401 
neuronal network activity in zebrafish by two‐photon Ca2+ imaging. Pflügers Arch 446, 766‐773 402 
(2003). 403 

46  Tabor, R., Yaksi, E., Weislogel, J. M. & Friedrich, R. W. Processing of odor mixtures in the 404 
zebrafish olfactory bulb. J. Neurosci. 24, 6611‐6620 (2004). 405 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/515411doi: bioRxiv preprint 

https://doi.org/10.1101/515411


16 
 

47  Zhu, P., Fajardo, O., Shum, J., Zhang Schärer, Y.‐P. & Friedrich, R. W. High‐resolution optical 406 
control of spatiotemporal neuronal activity patterns in zebrafish using a digital micromirror 407 
device. Nat. Protoc. 7, 1410‐1425 (2012). 408 

48  Pologruto, T. A., Sabatini, B. L. & Svoboda, K. ScanImage: flexible software for operating laser 409 
scanning microscopes. BioMed. Eng. OnLine 2, 13 (2003). 410 

49  Suter, B. A. et al. Ephus: multipurpose data acquisition software for neuroscience experiments. 411 
Front. Neural Circuits 4, 100 (2010). 412 

50  Keller, P. J., Schmidt, A. D., Wittbrodt, J. & Stelzer, E. H. Digital scanned laser light‐sheet 413 
fluorescence microscopy (DSLM) of zebrafish and Drosophila embryonic development. Cold 414 
Spring Harbor protocols 2011, 1235‐1243 (2011). 415 

51  Deerinck, T. J. et al. Enhancing serial block‐face scanning electron microscopy to enable high 416 
resolution 3D nanohistology of cells and tissues. Microsc. Microanal. 16, 1138‐1139 (2010). 417 

52  Tapia, J. C. et al. High‐contrast en bloc staining of neuronal tissue for field emission scanning 418 
electron microscopy. Nat Protoc 7, 193‐206 (2012). 419 

53  Pinching, A. J. & Powell, T. P. The neuropil of the glomeruli of the olfactory bulb. J. Cell. Sci. 9, 420 
347‐377 (1971). 421 

54  Korogod, N., Petersen, C. C. & Knott, G. W. Ultrastructural analysis of adult mouse neocortex 422 
comparing aldehyde perfusion with cryo fixation. eLife 4, 10.7554/eLife.05793 (2015). 423 

 424 

Acknowledgements We thank B. Hu, A. Lüthi, P. Rupprecht and N. Temiz for comments on the 425 

manuscript and the Friedrich group for valuable discussions. C. Genoud made outstanding contributions 426 

to the acquisition of electron microscopy data. This work was supported by the Novartis Research 427 

Foundation, the Human Frontiers Science Program (HFSP; rgp0015/2010), and the Swiss National 428 

Science Foundation (SNF; CRSII3_130470/1, 310030B_152833). 429 

Author contributions A.A.W. participated in all tasks. He analyzed image data, annotated synapses, 430 

supervised human annotators, analyzed data, and wrote the manuscript. R.W.F. analyzed data and wrote 431 

the manuscript. 432 

Data availability EM data are available under http://doi.org/10.7281/T1MS3QN7. Other data are 433 

available from the corresponding author upon request. 434 

 435 

  436 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/515411doi: bioRxiv preprint 

https://doi.org/10.1101/515411


17 
 

Figure Legends 437 

Fig. 1 | Neuronal organization and computations in the OB. a, Schematic illustration of whitening in 438 

the OB. Top: correlated input patterns with different variance. Bottom: decorrelated output patterns with 439 

similar variance. Center: Highly simplified illustration of the OB circuit. MCs receive excitatory input 440 

from a single glomerulus and interact via inhibitory INs. Whitening requires multisynaptic interactions 441 

between specific subsets of MCs that are mediated by INs and defined by the wiring diagram. b, Example 442 

of a reciprocal synapse between a MC and an IN. c, Reconstructions of a MC (left) and an IN (right). 443 

Gray volumes show glomeruli, dots depict synapses, colors denote synapse class (unidirectional non-444 

sensory input [blue], unidirectional output [red], reciprocal [magenta], input from sensory neurons 445 

[green]). d, Simplified representation of the wiring diagram between MCs and INs (binarized connection 446 

strength). Colored matrix elements show MCIN synapses (blue), MCIN synapses (orange), and 447 

reciprocal synapses (black). 448 

Fig. 2 | Odor-evoked population activity in the OB. a, Mapping of the six optical image planes selected 449 

for calcium imaging onto the EM-based reconstructions of neurons. Thickness of planes shows range of 450 

range of drift between trials. b, One optical image plane showing raw GCaMP5 fluorescence (left) and the 451 

corresponding oblique slice through the EM image stack (right). Dashed line outlines ipsilateral brain 452 

hemisphere; continuous white outlines show glomerular neuropil. Tel, telencephalon; OB, olfactory bulb. 453 

Region outlined by the red square is enlarged; white dots depict somata in corresponding locations. 454 

Bottom left: fluorescence change evoked by an odor stimulus in the same field of view. Arrowheads 455 

depict locations of two responsive somata in different images. c, Activity of MCs (n = 232) and INs 456 

(n = 68) in response to four bile acids (BAs) and four amino acids (AAs) during two time windows, t1 and 457 

t2. d, Left: time courses of odor-evoked activity, pattern correlation (Pearson) and pattern variance. 458 

Horizontal bar indicates time of odor stimulation. Black: mean measures across MCs. Gray: individual 459 

odors (variance) or odor pairs (correlation). Light blue: mean measures across INs. Correlation was 460 

measured only between activity patterns evoked by bile acids because patterns evoked by amino acids 461 

were dissimilar already at response onset. Right: Mean measures for MCs during t1 and t2. e, Matrices 462 

showing Pearson correlations between activity patterns across MCs (left) and INs (right) at t1 and t2. 463 

Odors: TCA, taurocholic acid; GCA, glycocholic acid; GCDCA, glycochenodeoxycholic acid; TDCA, 464 

taurodeoxycholic acid; Trp, tryptophan; Phe, phenylalanine; Val, valine; Lys, lysine. 465 

Fig. 3 | Whitening depends on connectivity. a, Architecture of simulated network with connections 466 

between MCs and INs. b, Time courses of simulated odor-evoked activity, pattern correlation and pattern 467 

variance obtained with different wiring diagrams. Blue: original wiring diagram obtained by circuit 468 
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reconstruction. Dark red: fully randomized connectivity. Light red: co-permutation of feed-forward 469 

(MCIN) and feed-back (MCIN) connectivity. Shaded areas show s.d. across different permutations. 470 

c, Mean pattern correlation and s.d. of pattern variance at t2. S.d. of pattern variance is normalized to the 471 

value observed experimentally at t1. Horizontal black lines show mean experimental values at t1. 472 

Statistical comparisons of correlation and s.d. of variance were performed using a Mann-Whitney U test 473 

and an F-test, respectively. For experimental results and simulations using the reconstructed wiring 474 

diagram error bars show s.d. across odor pairs (correlation; bile acids only) or individual odors (s.d. of 475 

variance). Significance tests compare values at t2 to experimental values at t1. For other simulation results, 476 

error bars show s.d. over 20 repetitions. Significance tests compare the mean over repetitions to the mean 477 

observed experimentally at t1. *, p < 0.05; **, p < 0.01; ***, p < 0.001; n.s., not significant. d, Top: 478 

disynaptic connectivity matrix between MCs (WMCIN * WMCIN). Grayscale represents number of 479 

disynaptic MC-IN-MC connections (normalized). Bottom: example of a disynaptic connectivity matrix 480 

with the same order of MCs after co-permuting WMCIN and WMCIN.  481 

Fig. 4 | Tuning-dependent disynaptic connectivity in the OB. a, Classes of triplet connectivity motifs 482 

between MCs and INs. b, Left: number of connectivity motifs found in the wiring diagram (considering 483 

only MCs with activity measurements; n = 232). Right: z-score quantifying over- or under-representation 484 

of motifs as compared to 10,000 independent randomizations. c, Number of disynaptic connections 485 

between MCs as a function of tuning similarity (signal correlation; binned; mean ± s.e.m.). Black: all 486 

MCs (n = 21,528 pairs); gray: excluding MCs without at least one strong odor response (n = 7,875 pairs). 487 

d, Over- and under-representation of connectivity motifs among MC pairs with high signal correlation 488 

(rSignal > 0.5; black) and among the remaining pairs  (rSignal ≤ 0.5; gray). 489 

Fig. 5 | Disynaptic connectivity underlying feature suppression. a, Schematic illustration of contrast 490 

enhancement by unidirectional lateral inhibition (left) and down-scaling of cohort activity by reciprocal 491 

inhibition (right; feature suppression). Arrow length and grayscale indicate activity. b, Example of MC 492 

activity patterns evoked by two bile acids (TCA, GCDCA) that were decorrelated between t1 and t2. MCs 493 

are ranked from top to bottom by their individual contribution to the pattern correlation r at t1 (ri,t1). c, 494 

Left: average contribution of MCs to all pairwise correlations between activity patterns evoked by bile 495 

acids at t1 and t2. MCs were ranked by ri,t1 for each pair of patterns as in b. Sorted vectors of correlation 496 

contributions were then averaged over odor pairs. Center, right: Mean bile-acid evoked activity of MCs 497 

and mean contribution of MCs to pattern variance. MCs were sorted by ri,t1 and averaged as in the left 498 

panel. Gray and black curves show correlation contribution, activity, and variance contribution at t1 and t2, 499 

respectively (same sorting of individual neurons by ri,t1 for all curves). Insets enlarge the top part of the 500 
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curves (20 MCs with highest ri,t1). d, Example of disynaptic retrograde tracing of functional cohorts in the 501 

wiring diagram. Blue: three MCs with highest ri,t1 for the odor pair shown in b (“starter MCs”). Green: 12 502 

INs with largest number of synaptic inputs to the starter MCs. Red: 48 MCs with largest number of 503 

disynaptic inputs to the starter MCs. Transparency represents the number of synaptic connections. Note 504 

that the MCs with strong disynaptic connectivity to the starter MCs include the starter MCs themselves, 505 

consistent with pronounced reciprocal connectivity among functionally related MC cohorts. e, Disynaptic 506 

MC-IN-MC connectivity as a function of correlation contribution at t1 (ri,t1; same ranking as in b and c). 507 

For each pair of bile acids, the 10 MCs with the highest ri,t1 were selected as starter cells. Disynaptic 508 

inputs from all MCs were then represented in a vector and averaged over odor pairs. Note strong 509 

overrepresentation of disynaptic connectivity within the cohort of starter cells (gray shading). 510 

Fig. 6 | Mechanism of whitening analyzed by targeted manipulations of the wiring diagram. a, Mean 511 

correlation contribution, activity, and variance contribution of MCs responding to bile acids at t1 (light 512 

blue) and t2 (dark blue) in simulations. MCs were ranked by the correlation contribution ri,t1 observed in 513 

experimental data as in Fig. 5b. Insets enlarge the top parts of the curves (20 MCs with highest ri,t1) and 514 

compare simulation results to experimental data (gray, black) for the same 20 MCs. b, Schematic: 515 

selective deletion and selective preservation MC cohort connectivity in simulations. c, Mean pattern 516 

correlation and s.d. of pattern variance (normalized) at t2 observed in simulations under different 517 

conditions. S.d. of pattern variance has been normalized to the experimentally observed value at t1.  518 

Horizontal black lines show mean values at t1; vertical bars show change relative to t1. Statistical 519 

comparisons of correlation and s.d. of variance were performed using a Mann-Whitney test and an F-test, 520 

respectively. Error bars for original wiring diagram show s.d. across odor pairs (correlation; bile acids 521 

only) or individual odors (s.d. of variance); significance tests compare values at t2 to experimental values 522 

at t1. Other error bars show s.d. over means from 20 simulations and significance tests compare the mean 523 

over repetitions to the mean observed experimentally at t1. **, p < 0.01; ***, p < 0.001; 0.05, p = 0.05; 524 

n.s., not significant. d, Time courses of pattern correlation and of the s.d. of pattern variance in 525 

simulations using different wiring diagrams. Shaded area shows s.d. across different permutations. e, 526 

Mean correlation contribution, activity, and variance contribution of the 20 MCs with the highest ri,t1 527 

observed experimentally and in simulations using different wiring diagrams. MCs were ranked by ri,t1 528 

observed in experimental data as in a and in Fig. 5c (same ranking under all conditions). Gray: t1; 529 

Colored: t2. Shading shows s.d. across 20 different permutations. Note that the reduction in correlation 530 

contribution, activity and variance contribution among MCs with high ri,t1 is decreased when connectivity 531 

is modified globally or in functional cohorts, but not when connectivity of functional cohorts is preserved. 532 
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Supplementary Fig. 1 | Mapping of datasets and activity measurements. a, Displacement of regions 533 

of interest (ROIs) during manual proofreading. ROIs representing somata were mapped from the EM 534 

dataset to optical image planes in each trial by an affine transformation that was determined by an 535 

iterative landmark-based procedure (Methods). Subsequently, the position of each ROI was adjusted 536 

manually on the optical image (n = 7,280 ROIs; six image planes with 11 trials each). The mean 537 

displacement (± s.d.) during manual adjustment (proofreading) was small (593 ± 833 nm), implying that 538 

automated mapping was highly reliable. b, Raw calcium signals (F/F) evoked by eight odors in neurons 539 

that were present in all trials (208 MCs and 68 INs). Gray bars indicate odor stimulation. 540 

Supplementary Fig. 2 | Effects of pattern transformations on pattern correlation. a, Effect of 541 

contrast enhancement on the correlation between displaced Gaussian patterns. In such patterns, strongly 542 

active units convey stimulus-specific information while weakly active units tend to be non-specific. 543 

Contrast enhancement therefore decorrelates patterns because it emphasizes strongly active units and 544 

suppresses weakly active units. b, Effect of contrast enhancement on the correlation between activity 545 

pattern that overlap in strongly active units. Contrast enhancement fails to decorrelate patterns because 546 

pattern-specific information is conveyed by moderately or weakly active units. c, Patterns that overlap in 547 

strongly active units are decorrelated by selective inhibition of strongly active units, which results in 548 

contrast reduction. Patterns are decorrelated because the relative contribution of moderately or weakly 549 

active units is enhanced. Selective inhibition of strongly active units is generated by dense reciprocal 550 

inhibition within cohorts of co-tuned neurons. Inhibitory feedback gain is therefore higher than the 551 

average inhibitory feedback gain within a co-tuned cohort when the stimulus feature that activates the 552 

cohort is present (feature suppression).    553 
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Methods 554 

Animals and preparation. Adult zebrafish (Danio rerio) were maintained and bred under standard 555 

conditions at 26.5°C. Embryos and larvae of a double-transgenic line 556 

(elavl3:GCaMP5 x vglut:DsRed)41,42 in nacre background were raised at 28.5°C in standard E3 medium43.  557 

Imaging experiments were performed as described previously44. In brief, larvae 4 - 5 days post 558 

fertilization (dpf) were contained in a small drop of aerated E3 without methylene blue or N-559 

phenylthiourea. Larvae were then paralyzed by addition of 20 µl of fresh mivacurium chloride (Mivacron, 560 

GlaxoSmithKline, Munich, Germany)45  and embedded in 2% low-melting agarose (type VII; Sigma, St 561 

Louis, MO, USA) in a perfusion chamber that was inclined by 30° to improve dorsal optical access to the 562 

OBs. Agarose covering the noses was carefully removed. A constant stream of E3 (2 ml/min) was 563 

delivered through a tube in front of the nose and removed by continuous suction. Throughout the 564 

experiment it was ensured that larvae showed normal heartbeat. Larvae that were not fixed for EM 565 

recovered from paralysis after a few hours and continued to develop without obvious defects. All animal 566 

procedures were performed in accordance with official animal care guidelines and approved by the 567 

Veterinary Department of the Canton of Basel-Stadt (Switzerland). 568 

Odor stimulation. Odor application was performed as described44. In brief, odors were delivered to the 569 

nose through the E3 medium using a computer-controlled, pneumatically actuated HPLC injection valve 570 

(Rheodyne, Rohnert Park, CA, USA). All experiments were carried out at room temperature (~22°C). The 571 

odor set comprised one food odor46, four bile acids (glycochenodeoxycholic acid [GCDCA], taurocholic 572 

acid [TCA], taurodeoxycholic acid [TDCA] and glycocholic acid [GCA]; Sigma Aldrich, Munich, 573 

Germany) and four amino acids (Trp, Lys, Phe, and Val; Fluka, Neu-Ulm, Germany). Stock solutions of 574 

GCDCA, TCA, TDCA, Trp, Lys, Phe and Val at 5 × 10-3 M in E3 were kept refrigerated and diluted 575 

1:500 (GCDCA, TCA, TDCA) or 1 : 50 (Trp, Lys, Phe, Val) in aerated E3 medium immediately before 576 

the experiment. A stock solution of GCA was prepared in 50% ethanol/50% E3 at 2.5×10-3 M, 577 
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refrigerated, and diluted 1:250 immediately before the experiment. In a given trial, an odor was applied 578 

twice for a duration of ~3 s with an inter-stimulus interval of 60 s. Successive trials with different odors 579 

were separated by at least 2 min. 580 

Multiphoton calcium imaging. Multiphoton imaging was performed using a microscope equipped with a 581 

mode-locked Ti:sapphire laser (SpectraPhysics) and a 20× objective (NA 1.0, Zeiss) as described47. 582 

GCaMP5 was excited at 910 nm and emission was detected through green (535 ± 25 nm) and red 583 

(610 ± 37.5 nm) emission filters in separate channels. Images (256 × 256 pixels) were acquired at 128 ms 584 

per frame using SCANIMAGE and EPHUS software48,49 for a total of 2 min in each trial. Trials were 585 

performed sequentially in six focal planes that were separated by approximately 10 µm along the dorso-586 

ventral axis of the OB. The field of view covered the entire cross-section of the OB and parts of the 587 

adjacent telencephalon. Ten stimulus trials (nine odors and one E3 control), each including two odor 588 

applications, were performed in each focal plane. The order of stimuli was E3, food, GCDCA, TCA, 589 

TDCA, GCA, Trp, Lys, Phe, Val. In addition, 2 min of spontaneous activity were recorded in each focal 590 

plane. After completion of all trials a stack of images covering the whole olfactory bulb was acquired 591 

with a z-step interval of 0.5 µm. 592 

Automated drift correction. Slow mechanical drift, which may be caused by capillary forces acting on 593 

the agarose matrix50, was corrected for by an automated routine. This routine acquired a small stack 594 

(± 3 µm around the focus; 0.5 µm steps) and compared images to a reference by cross-correlation after 595 

standardizing image columns and rows. The field of view was then automatically translated in X,Y and Z 596 

to maximize the cross-correlation to the reference. 597 

Electron microscopy. Preparation and imaging of this sample have been described previously (Wanner et 598 

al. 2016a, Wanner et al. 2016b). Briefly, tissue was stained en bloc with osmium, uranyl acetate and lead 599 

aspartate using an established protocol51,52 with minor modifications and embedded in Epon resin with 600 

silver particles to minimize charging25,26. Multi-tile images were acquired in high vacuum using a 601 
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scanning electron microscope (QuantaFEG 200; FEI) equipped with an automated ultramicrotome inside 602 

the vacuum chamber (3View; Gatan). Section thickness was 25 nm, pixel size was 9.25 × 9.25 nm2, and 603 

the electron dose was 17.5 e-nm-2. The dataset comprised 4,746 successive sections of which one section 604 

was lost due to technical problems. The final stack was cropped to a size of 72.2 × 107.8 × 118.6 μm3.  605 

Neuron reconstruction and synapse annotation. Skeletons of all neurons in the OB were reconstructed 606 

previously as described25,26. Briefly, three independent skeletons of each neuron were generated manually 607 

from seed points at somata. Skeletons were converged and mismatches were corrected as described, and 608 

high accuracy was verified by measures of precision and recall26. Tracing was performed using 609 

KNOSSOS (www.knossostool.org) or PyKNOSSOS (https://github.com/adwanner/PyKNOSSOS). Most 610 

skeletons were generated by a professional high-throughput image annotation service (www.ariadne.ai).  611 

Synapses were annotated manually using PyKNOSSOS in “flight” mode25. In the default configuration, 612 

PyKNOSSOS displays image data in four viewports: the YX viewport (imaging plane) and three mutually 613 

orthogonal viewports of arbitrary orientation. In “flight” mode, the latter is perpendicular to the direction 614 

of the current neurite. We found that this “auto-orthogonal” view increases tracing speed and facilitates 615 

the identification of branch points and synapses. Annotators followed skeletonized reference neurons 616 

along pre-calculated paths to ensure that all neurites were annotated. Most synapses were annotated by a 617 

professional image annotation service (www.ariadne.ai). 618 

Synapses were identified by a cloud of vesicles that touched the plasma membrane, often at a site of 619 

intense staining. Annotators defined synapses by placing three nodes: (1) a node in the presynapse, (2) a 620 

node in the synaptic cleft, and (3) a node in the postsynapse. Nodes in the presynapse and postsynapse are 621 

skeleton nodes of the pre- and postsynaptic neurons if these skeletons are available. In addition, 622 

annotators assigned a confidence level c to each synapse. This confidence level was introduced because 623 

synapse identification is not unambiguous; rather, human experts can disagree whether a given structure 624 

is a synapse or not even when image quality is high. 625 
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Synapses were then classified as either “input synapse”, “output synapse”, “sensory synapse” or 626 

“unknown”. Input and output synapses are synapses of the reference neuron with the corresponding 627 

directions, excluding synapses with sensory neurons. Sensory synapses are input synapses received by the 628 

reference neuron from axons of sensory neurons, which were identified by their dark cytoplasm53. 629 

Unknown structures resemble synapses but do not display all characteristic features. These structures 630 

often included an intense staining of the membrane but no clearly associated vesicle cloud. We therefore 631 

speculate that some of these structures may be gap junctions. 632 

We first annotated input and output synapses of all MCs and INs independently of each other. Hence, 633 

each synapse should have been encountered twice, once from the presynaptic and once from the 634 

postsynaptic side. Synapses of INs were then annotated again by different individuals, resulting in a 3-635 

fold redundancy for each MC-IN synapse. In order to minimize the number of false positives the final 636 

wiring diagram retained only those MC-IN synapses that were annotated on the MC and at least once on 637 

the IN. 638 

Each synapse was assigned a unitary weight. As a consequence, the strength of the connection between 639 

two neurons in each direction was given by the number of synapses between this pair of neurons. In 640 

addition, we tested two other methods to determine synaptic strength. First, connection strength was 641 

binarized such that all connections had strengths 0 or 1, independent of the number of synapses. Second, 642 

we defined the weight of a synapse as its mean confidence level c, and the total weight of a connection as 643 

the sum of the confidence levels of all synapses. In addition, we tested various confidence thresholds to 644 

discard synapses with low confidence before determining the weights. Similar results were obtained with 645 

all methods and a wide range of confidence thresholds, implying that results are highly robust. 646 

Correlation between multiphoton and SBEM image stacks. Mapping of multiphoton to SBEM image 647 

data may be complicated by (1) mechanical distortions introduced by the sample preparation procedure, 648 

(2) shrinkage due to loss of extracellular space induced by chemical fixation54, and (3) developmental 649 
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changes occurring during the approximately three hours between the first calcium imaging trial and the 650 

final fixation of the tissue. Initial observations indicated that distortions between image datasets were 651 

mostly linear (rotation, translation, shrinkage) while non-linear distortions appeared minimal and 652 

developmental changes were negligible. We therefore used an affine transformation to map multiphoton 653 

images into the SBEM stack, followed by manual fine adjustment of regions of interest (ROIs) for the 654 

extraction of calcium signals.  655 

An initial affine transformation matrix was fitted to a set of corresponding points that were selected 656 

manually in both datasets. The EM volume was then transformed onto the two-photon images, the 657 

position of existing points were optimized manually, and additional pairs of corresponding points were 658 

selected. The transform was then re-calculated based on the updated set of landmarks and this procedure 659 

was iterated until asymptotic behavior was observed. 660 

All somata of the OB were outlined manually in the SBEM dataset and mapped onto the time-averaged 661 

multiphoton fluorescence images of each trial, resulting in 7280 mappings of somatic outlines in the 662 

SBEM dataset to regions of interest (ROIs) in 66 multiphoton images (11 trials at each of six optical 663 

planes). The position of all ROIs was then manually adjusted to optimize the mapping in each trial. The 664 

average displacement of ROIs during manual adjustment was small (593 ± 833 nm; mean  ± s.d.; 665 

Supplementary Fig. 1), demonstrating that the accuracy of the initial affine mapping was already high. 666 

Analysis of calcium signals. Individual frames of multiphoton image time series were low-pass spatially 667 

filtered with a mild 2D Gaussian kernel (σ = 1.2 pixels). Baseline fluorescence F was calculated as the 668 

average fluorescence during a 2 s window before response onset. Traces representing relative changes in 669 

fluorescence (F/F) in each ROI were averaged over the two successive odor applications in each trial 670 

and band-pass filtered in time using a Butterworth filter with a cutoff frequency of 0.2 times the frame 671 

rate. The average population response onset (t = 0) was determined manually from all raw F/F traces 672 

and fixed for all trials. Firing rate changes of neurons represented by individual ROIs were estimated by 673 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted February 13, 2019. ; https://doi.org/10.1101/515411doi: bioRxiv preprint 

https://doi.org/10.1101/515411


26 
 

temporal deconvolution of calcium signals as described28 using standard parameters (τdecay = 3 s, 674 

thrnoise = 0).  675 

Analyses of population activity were restricted to neurons represented by ROIs with a radius ≥2 pixels in 676 

all trials (corresponding to an area of 3.14 µm2; 232 MCs and 68 INs). For network simulations and 677 

mechanistic analyses of whitening we considered only the 208 MCs that were pre- and post-synaptic to at 678 

least one IN and excluded 24 presumably premature MCs. Population responses to different odors were 679 

compared by calculating the Pearson correlation coefficient between the population activity vectors of 680 

MCs for the different stimuli at a given time point after response onset.  681 

Network modeling. Excitatory MCs and inhibitory INs were simulated as threshold-linear units with a 682 

state variable representing firing rate. The 𝑟 𝑡  and 𝑢 𝑡  representing firing rates of MC i and IN j, 683 

respectively, followed the equations of motion 684 

𝜏 ⋅
𝑑𝑟 𝑡

𝑑𝑡
𝑟 𝑡 𝐺 𝑆 𝑡 𝐺 𝑊 ← ⋅ 𝑢 𝑡 𝜃  685 

𝜏 ⋅
𝑑𝑢 𝑡

𝑑𝑡
𝑢 𝑡 𝐺 𝑊 ← ⋅ 𝑟 𝑡 𝜃  686 

where the vectors r 𝜃  and 𝜃  are firing thresholds, WMCIN and WINMC correspond to the 687 

reconstructed IN-to-MC and MC-to-IN connectivity weight matrices, respectively, and the vectors 𝑟 𝑡  688 

and 𝑢 𝑡  represent the firing rates of the MC and IN, respectively. []+ denotes half-wave rectification: 689 

𝑥 𝑡
0, 𝑥 𝑡 0

𝑥 𝑡 , 𝑥 𝑡 0 690 

𝜏  and 𝜏  are the time constants for the individual MCs and INs, respectively. 𝐺 , 𝐺  and 𝐺  are 691 

the individual scaling factor for sensory, inhibitory and excitatory input, respectively. To account for the 692 

natural variability in biological systems, the parameter values for each of the cells in each of the 693 
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individual simulation runs were drawn from a Gaussian distribution with a standard deviation of 1% of 694 

the distribution mean. The distribution means of the different parameters were: 695 

Gsen = 2.5, Gexc = 3.25, Ginh = 5.5, 𝜃  = 3.6, 𝜃  = 110, 𝜏  = 1, 𝜏  = 250; 696 

The time course of sensory input 𝑆 𝑡  was modelled as difference of exponentials as described 697 

previously31: 698 

s 𝑡 𝑎 ,
, 1 𝑒 𝛼 𝛼𝑒  with 𝛼 0.8, 𝜏 1

150 , 𝜏 1
600 , 𝑎 ,

1
150 699 

To model 𝑆 𝑡 , the individual sensory input of MC i, we used its experimentally measured activity 700 

𝑎  during t1 and modulated the time course according to �̃� 𝑡 : 701 

𝑆 𝑡 𝑎
̃

, where �̃� 𝑚𝑎𝑥 s 𝑡  702 

The differential equations were solved in MATLAB with a fixed step size of 1 millisecond using a first 703 

degree Newton-Cotes integration scheme or using an adaptive step size embedded Runge-Kutta-Fehlberg 704 

(4, 5) scheme. Both integration schemes lead to qualitatively very similar results, and therefore the former 705 

method was used for simplicity for the simulated data shown here. 706 

In an iterative, semi-automated parameter search, we identified a suitable parameter range that fulfilled 707 

the following criteria: 708 

(1) The peak firing rates of individual neurons does not exceed a physiologically realistic range (< 200 709 

Hz). 710 

(2) The strength of inhibition is appropriate to reproduce the time course of the average population 711 

activity, correlation and variance. 712 
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(3) The activity, correlation contribution and variance contribution of individual MCs at t1 and t2 is in 713 

good correspondence to experimental measurements. 714 

Parameters for which these criteria were fulfilled were found by parameter variations in pilot studies. 715 

Results were usually robust against variations of each parameter by ±50% around the values reported 716 

above. 717 

Analysis of triplet motifs. Occurrences of disynaptic MC-IN-MC motifs were counted after binarizing 718 

connections. We enumerated all neuron triplet combinations in the reconstructed wiring diagram and 719 

tested for graph isomorphism against all 4 disynaptic motif types. The obtained motif counts were 720 

compared against a reference model where the forward and backward connectivity of the MCs were 721 

permuted independently while maintaining the node count and edge density (n = 10 000 permutations). 722 

The z-scores and p-values were obtained by computing the mean and standard deviation of each motif 723 

type in the permuted networks. 724 

To compare the motif frequency as a function of the pairwise tuning similarity, we divided the MC pairs 725 

into two groups, one with similar tuning (rsignal > 0.5) and one with dissimilar tuning (rsignal  ≤ 0.5) and 726 

counted the occurrences of MC-IN-MC motifs in each group. We then compared the motif counts against 727 

a reference model where we permuted the pairwise tuning similarity between MCs and regrouped them 728 

by tuning similarity (rsignal > 0.5 versus rsignal  ≤ 0.5) while maintaining the same network topology 729 

(n = 10 000 permutations). The z-scores and p-values were then obtained by computing the mean and 730 

standard deviation of each motif type in the permuted groups (Fig 4d). 731 

Additional analyses. The contribution of individual MCs to the Pearson correlation coefficient 732 

𝑟  
1

𝑛 1
𝑥  �̅�

𝑠𝑑
𝑦  𝑦

𝑠𝑑
 733 
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between population activity patterns was calculated by determining the summand 
 ̅  

 for each 734 

MC. Similarly, the contribution of individual MCs to the variance  735 

𝑠𝑑  
1

𝑛 1
𝑥  �̅�  736 

of the population activity patterns was calculated by determining the summand 𝑥  �̅�  for each MC. 737 

Here, xi and yi are responses of MCs to odors x and y, sdx and sdy are the standard deviations of 738 

population responses to odors x and y, and n is the total number of MCs in the population. 739 

Statistical significance was tested using a non-parametric Mann-Whitney U test unless noted otherwise. 740 
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Fig. 1 | Neuronal organization and computations in the OB. a, Schematic illustration of whitening in the OB. 
Top: correlated input patterns with different variance. Bottom: decorrelated output patterns with similar variance. 
Center: Highly simplified illustration of the OB circuit. MCs receive excitatory input from a single glomerulus and 
interact via inhibitory INs. Whitening requires multisynaptic interactions between specific subsets of MCs that are 
mediated by INs and defined by the wiring diagram. b, Example of a reciprocal synapse between a MC and an IN. c, 
Reconstructions of a MC (left) and an IN (right). Gray volumes show glomeruli, dots depict synapses, colors denote 
synapse class (unidirectional non-sensory input [blue], unidirectional output [red], reciprocal [magenta], input from 
sensory neurons [green]). d, Simplified representation of the wiring diagram between MCs and INs (binarized 
connection strength). Colored matrix elements show MCIN synapses (blue), MCIN synapses (orange), and 
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Fig. 5 | Disynaptic connectivity underlying feature suppression. a, Schematic illustration of contrast enhancement by unidirectional lateral 
inhibition (left) and down-scaling of cohort activity by reciprocal inhibition (right; feature suppression). Arrow length and grayscale indicate 
activity. b, Example of MC activity patterns evoked by two bile acids (TCA, GCDCA) that were decorrelated between t1 and t2. MCs are ranked 
from top to bottom by their individual contribution to the pattern correlation r at t1 (ri,t1). c, Left: average contribution of MCs to all pairwise 
correlations between activity patterns evoked by bile acids at t1 and t2. MCs were ranked by ri,t1 for each pair of patterns as in b. Sorted vectors of 
correlation contributions were then averaged over odor pairs. Center, right: Mean bile-acid evoked activity of MCs and mean contribution of MCs 
to pattern variance. MCs were sorted by ri,t1 and averaged as in the left panel. Gray and black curves show correlation contribution, activity, and 
variance contribution at t1 and t2, respectively (same sorting of individual neurons by ri,t1 for all curves). Insets enlarge the top part of the curves 
(20 MCs with highest ri,t1). d, Example of disynaptic retrograde tracing of functional cohorts in the wiring diagram. Blue: three MCs with highest 
ri,t1 for the odor pair shown in b (“starter MCs”). Green: 12 INs with largest number of synaptic inputs to the starter MCs. Red: 48 MCs with 
largest number of disynaptic inputs to the starter MCs. Transparency represents the number of synaptic connections. Note that the MCs with 
strong disynaptic connectivity to the starter MCs include the starter MCs themselves, consistent with pronounced reciprocal connectivity among 
functionally related MC cohorts. e, Disynaptic MC-IN-MC connectivity as a function of correlation contribution at t1 (ri,t1; same ranking as in b 
and c). For each pair of bile acids, the 10 MCs with the highest ri,t1 were selected as starter cells. Disynaptic inputs from all MCs were then 
represented in a vector and averaged over odor pairs. Note strong overrepresentation of disynaptic connectivity within the cohort of starter cells 
(gray shading). 
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Fig. 6 | Mechanism of whitening analyzed by targeted manipulations of the wiring diagram. a, Mean correlation contribution, activity, and 
variance contribution of MCs responding to bile acids at t1 (light blue) and t2 (dark blue) in simulations. MCs were ranked by the correlation 
contribution ri,t1 observed in experimental data as in Fig. 5c. Insets enlarge the top parts of the curves (20 MCs with highest ri,t1) and compare 
simulation results to experimental data (gray, black) for the same 20 MCs. b, Schematic: selective deletion and selective preservation MC cohort 
connectivity in simulations. c, Mean pattern correlation and s.d. of pattern variance (normalized) at t2 observed in simulations under different 
conditions. S.d. of pattern variance has been normalized to the experimentally observed value at t1.  Horizontal black lines show mean values at 
t1; vertical bars show change relative to t1. Statistical comparisons of correlation and s.d. of variance were performed using a Mann-Whitney test 
and an F-test, respectively. Error bars for original wiring diagram show s.d. across odor pairs (correlation; bile acids only) or individual odors 
(s.d. of variance); significance tests compare values at t2 to experimental values at t1. Other error bars show s.d. over means from 20 simulations 
and significance tests compare the mean over repetitions to the mean observed experimentally at t1. **, p < 0.01; ***, p < 0.001; 0.05, p = 0.05; 
n.s., not significant. d, Time courses of pattern correlation and of the s.d. of pattern variance in simulations using different wiring diagrams. 
Shaded area shows s.d. across different permutations. e, Mean correlation contribution, activity, and variance contribution of the 20 MCs with the 
highest ri,t1 observed experimentally and in simulations using different wiring diagrams. MCs were ranked by ri,t1 observed in experimental data 
as in a and in Fig. 5c (same ranking under all conditions). Gray: t1; Colored: t2. Shading shows s.d. across 20 different permutations. Note that the 
reduction in correlation contribution, activity and variance contribution among MCs with high ri,t1 is decreased when connectivity is modified 
globally or in functional cohorts, but not when connectivity of functional cohorts is preserved. 
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Supplementary Fig. 1 | Mapping of datasets and activity measurements. a, Displacement of regions of interest 
(ROIs) during manual proofreading. ROIs representing somata were mapped from the EM dataset to optical image 
planes in each trial by an affine transformation that was determined by an iterative landmark-based procedure 
(Methods). Subsequently, the position of each ROI was adjusted manually on the optical image (n = 7,280 ROIs; six 
image planes with 11 trials each). The mean displacement (± s.d.) during manual adjustment (proofreading) was 
small (593 ± 833 nm), implying that automated mapping was highly reliable. b, Raw calcium signals (F/F) evoked 
by eight odors in neurons that were present in all trials (208 MCs and 68 INs). Gray bars indicate odor stimulation. 
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Supplementary Fig. 2 | Effects of pattern transformations on pattern correlation. a, Effect of contrast 
enhancement on the correlation between displaced Gaussian patterns. In such patterns, strongly active units convey 
stimulus-specific information while weakly active units tend to be non-specific. Contrast enhancement therefore 
decorrelates patterns because it emphasizes strongly active units and suppresses weakly active units. b, Effect of 
contrast enhancement on the correlation between activity pattern that overlap in strongly active units. Contrast 
enhancement fails to decorrelate patterns because pattern-specific information is conveyed by moderately or weakly 
active units. c, Patterns that overlap in strongly active units are decorrelated by selective inhibition of strongly active 
units, which results in contrast reduction. Patterns are decorrelated because the relative contribution of moderately or
weakly active units is enhanced. Selective inhibition of strongly active units is generated by dense reciprocal 
inhibition within cohorts of co-tuned neurons. Inhibitory feedback gain is therefore higher than the average 
inhibitory feedback gain within a co-tuned cohort when the stimulus feature that activates the cohort is present 
(feature suppression). 
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