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ABSTRACT  
Rapid mutation fuels the evolution of many cancers and pathogens. Much of the ensuing genetic 
variation is detrimental, but cells can survive by limiting the cost of accumulating mutation 
burden. We investigated this behavior by propagating hypermutating yeast lineages to create 
independent populations harboring thousands of distinct genetic variants. Mutation rate and 
spectrum remained unchanged throughout the experiment, yet lesions that arose early were 
more deleterious than those that arose later. Although the lineages shared no mutations in 
common, each mounted a similar transcriptional response to mutation burden. The proteins 
involved in this response formed a highly connected network that has not previously been 
identified. Inhibiting this response increased the cost of accumulated mutations, selectively 
killing highly mutated cells. A similar gene expression program exists in hypermutating human 
cancers and is linked to survival. Our data thus define a conserved stress response that buffers 
the cost of accumulating genetic lesions and further suggest that this network could be targeted 
therapeutically. 
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INTRODUCTION 
A multitude of DNA repair factors promote faithful transmission of genetic information from one 
generation to the next (Friedberg et al., 2014). However, in response to oncogenic 
transformation, infection, and environmental stress, many cells become hypermutators 
(Alexandrov et al., 2013; Bielas et al., 2006; Cairns and Foster, 1991; Galhardo et al., 2007a, b; 
Lawrence et al., 2013; Loeb, 2016; Oliver et al., 2000). Human cancers (e.g., melanoma, lung 
cancer, and colorectal cancer; Lawrence et al., 2013) often have mutation rates that are three 
orders of magnitude higher than those of normal tissue. Although mutations can occasionally be 
adaptive, theoretical and experimental studies in a wide range of organisms suggest that they 
are on average slightly deleterious (Bloom et al., 2004; Eyre-Walker and Keightley, 2007; Firnberg 
et al., 2014; Pakula and Sauer, 1989; Tokuriki and Tawfik, 2009). Therefore, although 
hypermutation can fuel rapid evolution, it is also associated with fitness costs. In the simplest 
scenarios, random mutations can disrupt catalysis by an enzyme, decrease the strength of 
protein–protein interactions, or perturb baseline gene expression levels. In addition, empirical 
studies have shown that the majority of mutations in coding regions destabilize protein structure 
(Fersht, 1998), a property that may have slowed evolution of highly expressed genes (Drummond 
et al., 2005; Drummond and Wilke, 2008). Thus, as mutations accumulate, fitness is expected to 
decline. Synergistic epistasis among accumulating mutations could in principle accelerate this 
effect (de Visser et al., 2011; Elena and Lenski, 1997). 

Despite the toxic consequences of mutation, many cells, ranging from pathogenic 
bacteria and fungi (Fares et al., 2002b; Maisnier-Patin et al., 2005; Oliver et al., 2000) to human 
tumor cells (Andor et al., 2017; Lawrence et al., 2013) can survive considerable mutation burdens. 
High mutation rates arising from loss of DNA mismatch repair genes occur in >20% of pathogenic 
Pseudomonas aeruginosa colonizing the lungs of cystic fibrosis patients (Oliver et al., 2000). 
Extreme mutators can also be found among Helicobacter pylori and Neisseria meningitidis 
isolated from human patients (Hall and Henderson-Begg, 2006). In humans, mutations in DNA 
mismatch repair genes, including MSH2 and MSH6, cause Lynch Syndrome, a disease 
characterized by an elevated risk of colorectal and other cancers (Lynch et al., 2015; Sijmons and 
Hofstra, 2016). Many human cancers that do not arise from hereditary mutations in DNA 
mismatch repair genes also exhibit elevated mutation burden (Campbell et al., 2017; Lawrence 
et al., 2013; Yousif et al., 2018). 

Each of these systems has a mutation rate that approaches the theoretical limits for a 
‘error catastrophe,’ in which the fidelity of information transfer from one generation to the next 
is too low to support viability (Eigen, 2002; McFarland et al., 2017; Sole and Deisboeck, 2004). As 
these cells accumulate more mutations, however, they do not die, but instead remain capable of 
surviving, proliferating, and evolving new traits with devastating clinical consequences (e.g., 
resistance to antibiotics or chemotherapeutics). In bacteria, the capacity of cells to buffer the 
cost of mutations has been linked to the protein homeostasis network (Aguilar-Rodriguez et al., 
2016; Fares et al., 2002b; Maisnier-Patin et al., 2005; Moran, 1996; Sabater-Munoz et al., 2015). 
It remains unclear, however, whether analogous pathways exist in eukaryotes to dampen the 
effects of deleterious mutations. 

One potential modulator of mutation cost in eukaryotes, heat shock protein 90 (Hsp90), 
has been proposed to influence the phenotypic manifestation of natural genetic variation (Burga 
et al., 2011; Cowen and Lindquist, 2005; Jarosz and Lindquist, 2010; Queitsch et al., 2002; Rohner 
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et al., 2013; Rutherford and Lindquist, 1998). Hsp90 is a highly conserved molecular chaperone 
that functions with dozens of co-chaperones (Taipale et al., 2010; Taipale et al., 2014) to fold 
hundreds of client proteins, most of which are key regulators of growth and development. From 
yeast to humans, Hsp90 can strongly influence the phenotypic effects of genetic and epigenetic 
variation that naturally arises within populations (Burga et al., 2011; Cowen and Lindquist, 2005; 
Jarosz, 2016; Jarosz and Lindquist, 2010; Karras et al., 2017; Queitsch et al., 2002; Rohner et al., 
2013; Rutherford and Lindquist, 1998; Sangster et al., 2004). Although Hsp90 has been shown to 
enhance phenotypes derived from some recently accumulated genetic variants (Geiler-
Samerotte et al., 2016; Mason et al., 2018), the full effects of this chaperone on recently 
accumulated mutations have yet to be fully characterized. 

In this study, we harnessed the power of a simple model eukaryote, Saccharomyces 
cerevisiae, in which a wealth of genomic tools enabled us to investigate the interplay between 
de novo mutations and stress response pathways. We created obligate hypermutator lineages by 
disrupting DNA polymerase proofreading and/or mismatch repair, mimicking the situation in 
Lynch Syndrome patients and many hypermutating tumors. We then evolved the lineages in 
parallel using a mutation accumulation (MA) framework that mirrors the population bottlenecks 
that characterize infectious pathogens, solid tumors, and metastatic or refractory disease. These 
experiments revealed a strong bifurcation in the cost of accumulating mutations: lesions that 
arose in early generations had a much stronger impact on fitness than those that arose in later 
generations. Although no single mutation was shared among all lineages, mRNA sequencing 
revealed a shared response to mutation burden, which we term the Eukaryotic Mutation Burden 
Response (EMBR). EMBR is distinct from previously characterized stress responses and its 
components form a highly coherent network of protein–protein interactions in yeast, as do their 
homologs in humans. Targeting the EMBR network revealed that highly mutated yeast and colon 
cancer cells depend on EMBR gene functions to buffer the cost of accumulating mutations, 
representing an addiction that could be exploited therapeutically.  
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RESULTS 
A sequenced collection of mutation accumulation lineages 
Cancer cells on the brink of error catastrophe are apparently able to buffer the fitness 
consequences of accumulating mutation burden, but the molecular origins of this capacity 
remain unclear. We explored this question using mutation accumulation (MA) experiments, 
which have served as valuable tools in studies of a wide range of biological processes, from 
adaptive fitness trajectories in evolution to DNA polymerase usage at the replication fork (Denver 
et al., 2009; Huang et al., 2016; Lujan et al., 2014; Ossowski et al., 2010; Uchimura et al., 2015; 
Zhu et al., 2014b). By propagating independent lineages through single-cell bottlenecks, we 
mimicked the genetic drift that can occur in the proliferation of solid tumors and in metastatic 
events (Barrick and Lenski, 2013; Sun et al., 2017).  

Specifically, we constructed de novo MA lineages in the budding yeast S. cerevisiae (Figure 
1A). Due to its concise genome and faithful recapitulation of fundamental eukaryotic biology, S. 
cerevisiae has been widely used to model the fundamental biology of cancer and stress responses 
(Hartwell, 2004; Khurana and Lindquist, 2010). To reproduce mutation rates that correspond to 
human tumors, we made use of extensive data about patterns of mutagenesis amassed in both 
S. cerevisiae and human patients (Figure 1A-B; Lawrence et al., 2013; Lujan et al., 2014; Roberts 
and Gordenin, 2014; Serero et al., 2014; Supek and Lehner, 2015; Wielgoss et al., 2013). We 
constructed mutator yeast strains by deleting the mismatch repair gene MSH6, and generated 
hypermutator strains by combining the msh6D allele with a point mutation in DNA polymerase d 
that reduces its proofreading activity (pol3-L612M). Combining these alleles amplifies mutation 
frequency while preserving the mutation spectrum inherent to loss of MSH6 function (base pair 
substitutions; Lujan et al., 2014; Nick McElhinny et al., 2008). Indeed, mutation or misregulation 
of human MSH6 co-occurs with mutation in pol d in patients with Lynch syndrome (Jansen et al., 
2016). Sequencing of multiple mutation accumulation clones (see below) revealed that the 
msh6D mutator exhibited a 47-fold increase in mutation rate (~0.08 mutations per cell division) 
whereas the pol3-L612M msh6D double mutant exhibited a ~1,100-fold increase in mutation rate 
(~1.5 mutations per cell division; Figure 1B). Similar values have previously been reported using 
canavanine mutagenesis assays (Herr et al., 2011). Hereafter, we refer to these strains as 
“mutator” (msh6D) and “hypermutator” (pol3-L612M msh6D). This range encompasses the 
relative mutation rates in rapidly mutating human tumors (e.g., melanomas, glioblastomas, and 
colorectal cancers (Lawrence et al., 2013); Figure 1B; see SI for additional discussion). 
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Figure 1. Yeast MA lines as a model for accumulating mutation burden.  
(A) Three distinct genotypes were used to generate MA lines; non-mutator, mutator, and hypermutator. Eight 
independent lineages (arrows labeled A–H) of each ancestral strain was passaged, resulting in unique mutations in 
each lineage. The wild-type ancestor accumulated mutations at a negligible rate, the msh6D mutator strains at a 
slow rate (~0.08 mutations/generation), and the pol3-L612M msh6D hypermutator strains at a rapid rate (~1.5 
mutations/generation). The dark blue hue represents increasing mutation burden. After 50 passages (~1250 
generations), the mutator lineages had accumulated ~100 mutations each, and the hypermutator lineages had 
accumulated ~2,000 mutations each. (B) Relative mutation rates of our yeast strains and human cancers. Shown are 
H. sapiens cancer types with enhanced mutation rates, estimated from comparisons of tumors versus normal tissue 
(Lawrence et al., 2013). (C) The number of variants observed within 100-kb windows fits a normal Gaussian 
distribution, as expected for randomly generated mutations. (D) Over 5,000 unique mutations arose in sequencing 
of three parallel hypermutator lineages. Only 16 mutations were shared between two lineages, and none were 
shared among all three.  

 
The mutations in these lineages are random 
We passaged sixteen parallel lineages of each MA genotype for over 1,000 generations to create 
independent descendants with distinct mutation spectra (Figure 1A). To promote random 
mutational trajectories and minimize the effects of selection, we employed single-cell 
bottlenecks, picking average-sized colonies every ~25 generations. Whole-genome sequencing 
(Table S1) established that the lineages accumulated around 100 (for mutators) or 2,000 (for 
hypermutators) unique mutations over the course of passaging. Lineages from the same 
generation did not share more mutations than expected by chance (Figure 1C-D), in stark contrast 
to the stereotyped parallelism observed in chemostat and other evolution experiments in large 
population sizes (Hope et al., 2017; Venkataram et al., 2016).  
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Several lines of evidence demonstrate that our MA experiment preserved a wide range 
of naturally occurring mutations, with the exception of lethal or near-lethal mutations: 1) In 
whole-genome sequencing data from multiple parallel lineages after 500 and 1,250 generations 
of propagation, we observed no systematic bias in the physical locations in which mutations 
arose; the number of mutations in 100 kilobase windows conformed closely to random 
expectation (Figure 1C); 2) Estimates of mutation rate from whole-genome sequencing data 
established that the hypermutator phenotype was maintained throughout passaging (Figure 1 – 
figure supplement 1A, Table S1); 3) The mutation spectrum was dominated by base substitutions 
and enriched for transitions over transversions both early (passages 1 – 20) and late (passages 
20 – 50) in the experiment, also consistent with the neutral expectation (Figure 1 – figure 
supplement 1B; Lujan et al., 2014); 4) Mutations accumulated independently of the local 
sequence context (Figure 1 – figure supplement 1C); 5) Given the number of cell divisions that 
occurred during the experiment and the elevated mutation rate, each lineage could have 
explored mutations covering virtually every base pair in the genome (see SI for further 
discussion). If specific mutations were selected for their fitness benefit, they would be expected 
to appear in multiple independent lineages, as is the case with cancer driver mutations (Sidow 
and Spies, 2015). Very few individual mutations occurred in more than one independent lineage, 
and none were shared in more than two lineages (Figure 1D);  6) Several genes were mutated (at 
different locations) in three lineages, but fewer genes with missense mutations were shared and 
no genes with severe mutations (stop codon gains or frameshifts) were shared (Figure 1 – figure 
supplement 1D). The number of mutations in a given ORF is primarily driven by gene length as 
expected from minimal selection (Figure 1 – figure supplement 1E); 7) Deleterious mutations 
predicted by the SIFT algorithm (Kumar et al., 2009) occurred at a constant rate throughout 
passaging (Figure 1 – figure supplement 1F). We further compared the fraction of deleterious 
variants in our strains relative to natural genetic variants from sequenced wild yeast strains that 
have experienced extensive selective pressure (Bergstrom et al., 2014; Liti et al., 2009). The 
fraction of predicted deleterious variants in our lineages was much larger than the fraction in 
natural variants from wild yeasts (Figure 1 – figure supplement 1G). We therefore conclude that 
the MA lines were largely free from selective pressures that could bias their evolution toward 
convergent genotypes. Taken together, these results support our use of these MA lines as a 
model for investigating the accumulation of random mutations and the resulting mutation 
burden. 
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Figure 1 – figure supplement 1. MA lines accumulate mutations at a constant rate with expected bias.  
(A) Samples were collected for sequencing before passaging, after 20 passages (500 generations), and after 50 
passages (1250 generations). Values represent the mean mutation rate calculated based on variants called from 
RNA-seq after accounting for generations from three independently passaged lineages ± SEM. (B) Mutation bias 
favored transitions (italicized, bold) over transversions and was consistent between early passages (1–20) and late 
passages (20–50). (C) No sequence signature surrounds mutations in each mutated nucleotide, in either early or late 
generations, across all data collected. Sequence alignments were visualized with kpLogo (Wu and Bartel, 2017). (D) 
Counts of uniquely mutated ORFs, mutated ORFs shared among two lineages, mutated ORFs shared across three 
lineages, missense mutated ORFs shared across three lineages, and counts of stop-gain/frameshift mutated ORFs 
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shared across three lineages. (E) Length of ORFs with different numbers of mutations mapped across three lineages. 
(F) Fraction of deleterious mutations in data collected at generation 125, 275, 500, and 1250 called by SIFT (Kumar 
et al., 2009). (G) Based on deleterious SIFT scores, a large fraction of MA lines (y axis) contain a large fraction of 
deleterious alleles (x axis) relative to the natural variation observed in strains catalogued by the Saccharomyces 
Genome Resequencing Project (SGRP, http://www.sanger.ac.uk/research/projects/genomeinformatics/sgrp.html). 
Increased accumulation of deleterious alleles confirms the limited selection imposed upon these lines. 
 
The impact of accumulated mutations on fitness  
To assess the phenotypic impact of accumulated mutation burden, we measured the doubling 
times of the various mutated lineages relative to their ancestors. As a critical control, we 
passaged eight independent lineages of wild-type cells for the same number of generations and 
under the same conditions. These lineages exhibited little change in genotype (they accumulated 
one or zero mutations) or fitness over the entire experiment when grown on glucose or non-
fermentable glycerol (Figure 2A, Figure 2 – figure supplement 1A, Table S1), providing further 
evidence that our propagation scheme did not impose undue selection. Likewise, in the mutator 
lineages (msh6D) we observed no fitness decline in multiple growth environments (Figure 2A, 
Figure 2 – figure supplement 1A).  

The fitness of the hypermutator lines (pol3-L612M msh6D) did decline. Moreover, the 
cost of each successive mutation decreased over the course of the experiment (Figure 2B, Figure 
2 – figure supplement 1B), in striking contrast to the expectation had the effects of the 
accumulating mutations been independent (i.e., additive). In a generic regression model ln(𝑤) = 
-anb, a b value of 1 would correspond to a linear, purely additive model (Lenski et al., 1999; 
Maisnier-Patin et al., 2005). However, our data were best fit by β = 0.460 ± 0.106 (for growth on 
glucose; p < 0.0001), and β = 0.575 ± 0.119 (for growth on glycerol; p < 0.0001 by extra-sum-of-
squares F-test). These values are indicative of antagonistic epistasis (Figure 2B, Figure 2 – figure 
supplement 1B). That is, the apparent fitness cost per mutation was much higher for mutations 
that arose early in these lineages than for those that arose later (Figure 2C, Figure 2 – figure 
supplement 1C). This effect is remarkable considering that there was no discernable difference 
between the types of mutations that accumulated in the earliest and latest passages.  

 
Figure 2. Fitness cost declines with increasing mutation burden. (A) Mean relative fitness of eight independently 
passaged lineages of the control wild-type strain BY4741 and its msh6D derivative. Relative fitness (𝑤) calculated 
based on doubling time relative to wild-type at passage 1. Error bars represent SEM from eight biological replicates. 
(B) Fitness trajectories of five hypermutator lineages passaged on glucose media. Fits are based on a regression 
model for detecting epistasis: ln(𝑤) = −αnβ (α = 0.039 ± 0.028 , β = 0.460 ± 0.106; Maisnier-Patin et al., 2005). If β = 
1, the regression model is linear, and no epistasis among mutations is detectable. β > 1 indicates synergistic epistasis 
and 0 < β < 1 indicates antagonistic epistasis. Parameter estimates for the model were fitted with a least squares 
regression. The goodness-of-fit of this model was superior to the simpler additive model (β = 1), p < 0.0001, extra-
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sum-of-squares F-test. Error bars represent SEM from five biological replicates.  (C) Fitness cost per mutation across 
the first 625 generations and last 600 generations, calculated by linear regression, in passaged lineages. Error bars 
represent SE of best-fit values. * p < 0.05, extra-sum-of-squares F-test. 
 

 
 
Figure 2 – figure supplement 1. Fitness cost declines with increasing mutation burden on glycerol. (A) Mean relative 
fitness of eight independently passaged lineages of the control wild-type strain BY4741 and its msh6D derivative. 
Relative fitness (𝑤) calculated based on doubling time relative to  wild-type at passage 1. Error bars represent SEM 
from eight biological replicates. (B) Fitness trajectories of four hypermutator lineages passaged on glycerol medium. 
Fits are based on a regression model for detecting epistasis: ln(𝑤) = −αnβ (α = 0.018 ± 0.014, β = 0.575 ± 0.119) 
described in Figure 2 (Maisnier-Patin et al., 2005). The goodness of fit of this model was superior to the simpler 
additive model (β = 1), p < 0.0001, extra-sum-of-squares F-test. Error bars represent SEM from three-four biological 
replicates.  (C) Fitness cost per mutation across the first 625 generations and last 600 generations, calculated by 
linear regression, in passaged lineages. Error bars represent SE of best-fit values. * p < 0.05, extra-sum-of-squares F-
test. 
 

A simple explanation for such apparent epistasis would be an inability to observe colonies 
with fitness below a certain threshold (because they would not grow to a sufficient size before 
the next round of propagation). This would inadvertently select for progressively less deleterious 
mutations over the course of the experiment. However, populations with much lower fitness 
than we observed are capable of growing into sizeable colonies within our propagation schema 
(see SI for additional discussion). As described below, we could also measure even slower growth 
of the MA strains we generated after chemical inhibition (Figure 3B). Therefore, we conclude that 
the fitness trajectory of accumulating mutations is indeed characterized by apparent antagonistic 
epistasis.  

In an evolution experiment where selection had dominated, the likeliest origin of 
antagonistic epistasis would be genetic suppression. That is, the fitness costs of an ancestral 
mutation could be compensated by newly arising variants. However, in our schema the variants 
accumulated randomly. Thus, for genetic suppression to entirely explain the effect, the number 
of antagonistic genetic interactions would need to be greater than the number of synergistic 
genetic interactions. However, data from systematic double deletion libraries have revealed 
significantly higher numbers of synergistic interactions than antagonistic interactions (~1.5-fold; 
Costanzo et al., 2016). The effect sizes of synergistic interactions also tend to be larger in 
magnitude than those of antagonistic interactions. We therefore searched for a cellular response 
that might buffer the cost of mutation load. 
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Protein folding is a key contributor to the cost of accumulating mutations 
The antagonistic epistasis we observed was strikingly reminiscent of mutation accumulation 
experiments in Salmonella typhimurium (Maisnier-Patin et al., 2005) and Escherichia coli (Fares 
et al., 2002b). In these systems, upregulation of the bacterial protein chaperone GroEL buffers 
the fitness cost of accumulating mutation burden. Hence, we investigated the influence of 
molecular chaperones. The eukaryotic GroEL homolog Hsp60 has an exclusively mitochondrial 
function (Zeilstra-Ryalls et al., 1991), but the Hsp90 chaperone can exert a strong influence on 
the capacity of natural genetic variants to produce phenotypes (Burga et al., 2011; Cowen and 
Lindquist, 2005; Jarosz and Lindquist, 2010; Queitsch et al., 2002; Rohner et al., 2013; Rutherford 
and Lindquist, 1998). Whether this chaperone buffers the phenotypic outcome of de novo 
mutations remains controversial (Geiler-Samerotte et al., 2016; Mason et al., 2018). Therefore, 
we asked whether the behavior of our MA lineages would be influenced by inhibition of Hsp90. 

We first exposed the mutated lineages to radicicol, a potent inhibitor of Hsp90 function. 
The mutated cells were much more sensitive to the drug than their unmutated ancestors (Figure 
3A). Indeed, the fitness cost per mutation was amplified by this treatment. That is, the alpha 
value of this generic regression model decreased (untreated a = 0.006 ± 0.004, treated a = 
0.010 ± 0.007; p < 0.05). Hsp90 inhibition also resulted in a more additive relationship between 
accumulating mutations and fitness (untreated β = 0.699 ± 0.096, treated β = 0.749 ± 0.095; 
Figure 3B-C). When a was constrained to 0.01 (the fitness cost per mutation in the presence of 
Hsp90 inhibitor), the β value of the untreated fit decreased further to 0.612. These data suggest 
that the apparent antagonistic epistasis we observed is in part driven by an active cellular 
response involving Hsp90. Importantly, both mutated and ancestral cells were equally sensitive 
to other, unrelated stressors such as hydrogen peroxide and the antifungal fluconazole (Figure 
3D-E). Because no mutation was shared by all of the lineages, we conclude that Hsp90 has a broad 
impact on the phenotypic outcome of multiple new mutations.  
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Figure 3. Protein misfolding is a source of toxicity associated with increasing mutation burden. (A) Strains were 
grown in the presence or absence of 100µM radicicol, an Hsp90 inhibitor, in rich medium. Error bars represent SD 
from three biological replicates. *** p < 0.001, **** p < 0.0001, student’s t-test. (B) Fitness trajectories of 
hypermutator lineages grown in rich media with and without 100uM radicicol. Fits are based on a regression model 
for detecting epistasis: ln(𝑤) = −αnβ (untreated α = 0.006 ± 0.004, β = 0.699 ± 0.096, treated α = 0.010 ± 0.007, β = 
0.749 ± 0.095) described in Figure 2 (Maisnier-Patin et al., 2005). The goodness of fit of this model was superior to 
the simpler additive model (β = 1), p < 0.0001, extra-sum-of-squares F-test. Error bars represent SEM from six-eight 
biological replicates. (C) Fitness cost per mutation across the untreated and treated samples, calculated by linear 
regression, in passaged lineages. Error bars represent SE of best-fit values. * p < 0.05, extra-sum-of-squares F-test. 
(D) Strains were growth in the presence or absence of 4.4mM H2O2 in rich medium. Error bars represent SD from 
three biological replicates.  (E) Strains were growth in the presence or absence of 50µM fluconazole in rich medium. 
Error bars represent SD from three biological replicates. (F) Expression of the active v-Src kinase is toxic in yeast. 
However, this is dependent on HSP90 activity and v-Src activity. Inactivating v-Src with a point mutation eliminates 
the toxicity. Toxicity of v-Src expression in MA lines was measured by comparing the growth rate of cells expressing 
active v-Src (solid bars) and cells expressing an inactive v-Src control (open bars). Error bars represent SEM from 
three-twenty biological replicates. * p < 0.05, student’s t-test. 
 

To assess Hsp90 activity in the MA lineages, we measured the activity of the Hsp90-
dependent tyrosine kinase v-Src from the transforming Rous Sarcoma Virus (Xu and Lindquist, 
1993; Zabinsky et al., 2018). This widely used assay relies on the fact that v-Src kinase inhibits 
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yeast growth. However, because v-Src is an obligate Hsp90 client, its toxicity requires abundant 
and available Hsp90 to chaperone the folding of the kinase (Brugge et al., 1987; Falsone et al., 
2004; Xu and Lindquist, 1993). We reasoned that if Hsp90 activity were consumed by demand 
from mutated proteins in the MA lineages, the toxic effect of v-Src would be mitigated. Indeed, 
v-Src toxicity was markedly reduced in the MA lineages compared to ancestral lines (Figure 3E–
F). Collectively, these data suggest that the Hsp90 chaperone plays a central role in buffering the 
costs of accumulating mutations. 
 
The lineages mount a shared stress response 
Each MA lineage harbored a unique set of mutations (Figure 1E, Figure 1 – figure supplement 1D) 
but all lineages we examined shared a physiological response. This led us to investigate whether 
independent lineages might engage a common gene expression response to mutation burden. 
To address this question, we performed mRNA-sequencing (RNA-seq) to examine gene 
expression across multiple hypermutator lineages, choosing time points corresponding to both 
the ‘high-cost’ and ‘low-cost’ phases of their fitness trajectories. We first tested whether 
continuous passage alone had an impact on gene expression, examining the transcriptome of 
wild-type lineages passaged for 1,250 generations. Gene expression patterns in these cells were 
virtually unchanged relative to the wild-type ancestor, and the eight genes that were 
differentially expressed were not enriched for any shared function or protein–protein 
interactions (Table S2). Thus, passaging itself had a minimal impact on gene expression.   

Increasing mutation burden in the hypermutator lineages, by contrast, was associated 
with marked changes in gene expression. As expected, transcriptional profiles diverged with 
increasing genetic distance between each passaged MA lineage and its ancestor (represented by 
gray arrow in Figure 4A, and gray points in Figure 4B). We also compared sister lineages, whose 
genetic distance from each other was twice that of a single lineage to its own ancestor (orange 
arrows and points). In these cases, the increased genetic distance was not associated with a 
concomitant transcriptional divergence (Figure 4B). Thus, despite having accumulated 
completely different sets of mutations, the congruent gene expression profiles of the highly 
mutated lineages point to a shared response to mutation burden.  
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Figure 4. A shared transcriptional response to mutation burden (A) Cartoon representation of the genotypic 
distance between sister MA lineages (orange) and between a passaged lineage and its ancestor (gray). (B) 
Relationship between genetic distance (measured by number of variant calls) and expression distance (measured by 
Euclidean distance between gene expression vectors). (C) Gene expression changes (at generations 125, 275, 500, 
1250) were scaled per gene (row), then clustered by k-means for heat map. Color represents Log2 fold change in 
expression relative to the ancestor. (D) Average scaled expression of each cluster. Dashed lines represent standard 
deviation of the mean of nearly 100 genes in each cluster. (E) Comparison between EMBR genes and genes 
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differentially expressed during slow growth (Brauer et al., 2008). (F) Comparison between EMBR genes and genes 
differentially expressed during the environmental stress response (ESR; Gasch et al., 2000). (G) Comparison between 
EMBR genes and genes differentially expressed during the DNA damage response (DDR; Caba et al., 2005). (H) 
Principal component analysis comparing MA gene expression data to published gene expression responses from the 
SPELL database (https://spell.yeastgenome.org/). 
 

Further examination of our data revealed shared changes in gene expression among the 
independent lineages, which we term the Eukaryotic Mutation Burden Response (EMBR). After 
~1,250 generations in the hypermutator lineages, expression of this cohort of 360 genes (FDR Q 
< 0.05, Figure 4C-D, Table S2-7) changed robustly relative to the ancestor. EMBR was not 
dominated by the effects of one individual lineage, nor was the response simply due to the slower 
growth rate of lineages with high mutation burden, as we observed only a slight enrichment in 
genes whose expression is correlated with growth rate (Figure 4E; Brauer et al., 2008). We 
therefore conclude that, despite the diversity of genetic lesions they accumulated, the 
hypermutating lineages each mounted a similar stress response.  
 
EMBR is distinct from previously reported stress responses 
To further characterize the transcriptional response to mutation burden, we analyzed the shared 
pathways and functions of differentially expressed genes. The only Gene Ontology (GO) term 
(Szklarczyk et al., 2015) enriched among EMBR genes that increased in expression was ‘protein 
refolding,’ consistent with our prior observations of sensitivity to Hsp90 chaperone inhibition. 
However, this enrichment was very weak (FDR = 0.00295), and largely centered on Hsp90. Down 
regulated genes showed even less enrichment; ‘regulation of transcription from RNA polymerase 
II promoter’ was the only GO term that emerged (FDR = 0.0117). 

We next compared these gene expression changes to other stress conditions that have 
been transcriptionally profiled in yeast. EMBR was not enriched for environmental stress 
response genes (Gasch et al., 2000) that characterize many such gene expression profiles (Figure 
4F) or the DNA damage response to MMS, bleomycin, and cisplatin (Caba et al., 2005; Figure 4G). 
Although direct comparisons of gene expression datasets can be complicated by batch effects, a 
principal component analysis grouped EMBR as a separate response from well-studied responses 
to heat shock, unfolded protein, osmotic stress, oxidative stress, and DNA damage (Figure 4H). 
Comparison to all of the 2,400 gene expression profiles that have previously been reported in 
yeast (Hibbs et al., 2007) did not reveal stronger overlaps with other known stress responses.  

To examine the network connectivity amongst proteins involved in EMBR, we took 
advantage of the protein–protein interaction networks that have been systematically mapped in 
S. cerevisiae (Costanzo et al., 2010; Szklarczyk et al., 2015). In contrast to the weak GO term 
enrichment, we observed an extremely strong enrichment for protein–protein interactions 
among EMBR components (Figure 5A; p < 10-16 for components that increase with mutation 
burden; p < 10-7 for those that decrease with mutation burden; p < 10-15 for all components). This 
high degree of connectivity suggests that EMBR is a concerted physiological response. 
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Figure 5. Transcription factors control EMBR genes. (A) Network of EMBR genes; edges represent protein-protein 
interactions and genetic interactions from the STRING database. Metabolic enzymes are highlighted in green, protein 
chaperones/co-chaperones are highlighted in blue. (B) Transcription factor binding sites enriched in upregulated and 
downregulated EMBR gene promoters. Ranking by Pscan (Zambelli et al., 2009) on the y axis and oPOSSUM (Kwon 
et al., 2012) on the x axis. In red are genes that were also identified by gene expression comparisons to the mutant 
via SPELL. (C) Transcription factor motifs calculated by JASPER (Khan et al., 2018). Bar graphs represent enrichment 
of upregulated EMBR genes upregulated or downregulated in transcription factor mutants. * p < 0.05, ** p < 0.01, 
**** p < 0.0001, Fisher’s exact test. 
 

We next sought to identify factors that might coordinate EMBR. We searched for 
enrichment of transcription factor binding sites among the promoters of EMBR genes using two 
complementary algorithms: Pscan (Zambelli et al., 2009) and oPOSSUM (Kwon et al., 2012). 
Among the genes that were upregulated, binding sites for four transcription factors were clearly 
enriched: Ume6, Gcn4, Uga3, and Gis1 (Figure 5B). By contrast, the targets of transcription 
factors critical for mounting other stress responses, such as Hsf1 or Msn2/4, were not enriched 
in the mutated lineages (p = 0.5 by Pscan).  

Ume6 represses meiosis-specific promoters by binding to upstream repressive sequences 
and recruiting the histone deacetylase complex Rpd3–Sin3 (Hahn and Young, 2011). Ume6 is also 
part of a signaling cascade that regulates autophagy via repression of ATG8 (Bartholomew et al., 
2012) and its repression and activation by Sin3 and Ime3 is analogous to the stepwise activation 
of human Myc/Max/Mad axis (Washburn and Esposito, 2001). Gcn4 is a central regulator of 
metabolism, notably amino acid biosynthesis, and several stress responses (Natarajan et al., 
2001). Uga3 is a transcriptional activator for g-aminobutyrate (GABA)-responsive genes (Andre, 
1990). Gis1 is a histone demethylase and transcription factor that regulates genes during nutrient 
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limitation (Tu et al., 2007) and hypoxia (Dastidar et al., 2012). We also compared EMBR to gene 
sets that were differentially regulated in strains in which transcription factor genes had been 
deleted, using the SPELL database (Hibbs et al., 2007). This analysis revealed overlap between 
EMBR and two mutant datasets, gcn4∆ and bas1∆ (Fendt et al., 2010). Both of these genes were 
also identified by Pscan and oPOSSUM (highlighted in red in Figure 5B). Bas1 regulates the 
expression of enzymes in the histidine, purine, and pyrimidine biosynthetic pathways (Arndt et 
al., 1987; Daignan-Fornier and Fink, 1992; Denis et al., 1998; Denis and Daignan-Fornier, 1998) 
and is homologous to the myb proto-oncogene family (Tice-Baldwin et al., 1989). 

The overlap of genes in EMBR with those that are differentially regulated in gcn4∆ and 
bas1∆ mutants suggests that these transcription factors are likely important regulators of EMBR. 
In total, 33% of EMBR genes are experimentally validated targets of at least one of these five 
transcription factors (Cameroni et al., 2004; Cherry et al., 2012), whereas the validated targets of 
all five compose 22% of all genes in the genome. We reasoned that if the transcription factors 
acted predominantly as an EMBR activator, its deletion should reduce expression of upregulated 
EMBR genes and conversely if a transcription factor acted predominantly as an EMBR repressor, 
its deletion should increase expression of upregulated EMBR genes. Genes that were 
downregulated in the gcn4∆ mutant were significantly enriched in upregulated EMBR genes, 
suggesting Gcn4 primarily functions as an EMBR activator (Figure 5C; p < 0.01, Fisher’s exact test). 
Genes upregulated in the ume6∆ and bas1∆ mutants were enriched in upregulated EMBR genes 
suggesting Ume6 and Bas1 function as EMBR repressors (Figure 5C; p < 0.05, Fisher’s exact test). 
Very few EMBR genes changed expression in the uga3∆ mutant (Hu et al., 2007). Understanding 
the full role of these transcription factors in EMBR activation and repression, and the regulation 
of the remaining 67% of EMBR genes, stands as a goalpost for future studies. However, the strong 
connectivity that we observe among EMBR genes led us to investigate whether the response had 
adaptive value. 

 
EMBR components are required for the survival of mutated cells 
To determine the importance of EMBR genes in buffering mutation burden, we perturbed the 
activity of several proteins that were: i) upregulated with accumulating mutations; ii) engaged in 
several physical and genetic interactions with other genes involved in the same biological 
processes; iii) amenable to pharmacological inhibition; and iv) homologous to well-described 
human proteins. First, we observed upregulation of several autophagy-related genes that are 
crucial for phagophore initiation (e.g., ATG1, ATG2, ATG13), expansion of the autophagosome 
(ATG7), and fusion of the autophagosome with the vacuole (VAM6, MON1). Autophagy not only 
serves as a way to recycle macromolecules in the face of nutrient limitation, but also as a 
mechanism to clear damaged organelles and misfolded protein aggregates. We wondered 
whether the mutation burden, and consequent protein misfolding, in our mutated cells might 
require autophagy to clear. To investigate, we exposed the MA lineages to bafilomycin, a well-
characterized inhibitor of autophagy (Yoshimori et al., 1991). Indeed, sensitivity to this 
compound increased with the mutation burden (Figure 6A-B), establishing the protective effect 
of autophagy for mutation burden.  
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Figure 6. EMBR components are required for the proliferation of highly mutated cells. (A) Dose response to 
bafilomycin of MA lineages and ancestor control. Error bars represent SEM from three biological replicates. (B) 
Normalized growth rate after treatment with 12.5µM bafilomycin as a function of mutation burden. Error bars 
represent SD from three biological replicates. * p < 0.05, **** p < 0.0001, student’s t-test. (C) Dose response to 
mycophenolic acid of MA lineages and ancestor control. Error bars represent SEM from three biological replicates. 
(D) Normalized growth rate after treatment with 1mM mycophenolic acid as a function of mutation burden. Error 
bars represent SD from three biological replicates. * p < 0.05, **** p < 0.0001, student’s t-test. (E) Dose response to 
addition of arginine to synthetic media without arginine of MA lineages and ancestor control. Error bars represent 
SEM from three biological replicates. 
 

We also observed upregulation of the inosine-5’-monophosphate (IMP) dehydrogenases, 
IMD1/2. IMD2 is an important but non-essential gene in yeast; it catalyzes the rate-limiting step 
in GTP synthesis and is regulated by Ume6. Heterozygous mutations in one of its human 
homologs, IMPDH1, are associated with retinitis pigmentosa (McKusick, 2007), and expression of 
its other human homolog, IMPDH2, is correlated with poor prognosis of nasopharyngeal 
carcinoma (Xu et al., 2017), subtypes of which have high mutation load (Zhang et al., 2017). The 
encoded protein can be inhibited in vivo by mycophenolic acid  (Fleming et al., 1996), which is 
currently used to limit transplant rejection and autoimmune disease and has recently been 
introduced as an anti-cancer agent in clinical trials (Chen and Pankiewicz, 2007). The requirement 
for IMPDH2 in cancer is not completely understood (Xu et al., 2017). The mutated lineages were 
much more sensitive to treatment with this inhibitor than ancestral controls (Figure 6C-D), 
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establishing the importance of this EMBR component for withstanding accumulating mutation 
burden.  

We further observed upregulation of several arginine biosynthesis genes: ARG1, ARG2, 
ARG5/6. To test if the mutated lineages became unusually dependent on arginine for 
proliferation, we decreased levels of arginine in the growth medium and measured the effect on 
growth. Whereas the ancestral strain was tolerant to arginine removal, the burdened lineages 
were strikingly sensitive to decreased arginine availability (Figure 6E). The precise mechanisms 
by which these and other factors limit the cost of mutation burden demand future study. 
However, these data clearly establish that EMBR components can be critical for the survival of 
hypermutating cells. 
 
Conservation of EMBR in humans 
We wondered whether a response resembling EMBR might be conserved in humans. To 
investigate, we identified 568 human homologs of the S. cerevisiae EMBR genes through 
deltaBLAST searches (Boratyn et al., 2012). The human homologs of EMBR genes (hEMBR) form 
a highly enriched protein–protein interaction network (Figure 7A; p < 1.1 × 10-16, hypergeometric 
test using physical and genetic interactions from BIOGRID; www.thebiogrid.org). However, 
because they are involved in deeply rooted biological processes, random sets of genes conserved 
from yeast to humans also encode proteins that are enriched in interactions. To test whether 
hEMBR was enriched in protein–protein interactions beyond what would be expected for 
conserved proteins, we sampled the protein–protein interactions of 500 random sets of proteins 
conserved from yeast to humans to define a null distribution. This bootstrapping analysis 
revealed that hEMBR was significantly enriched in protein–protein interactions relative to 
random expectation (P = 7.0x10-4), suggesting that the underlying structure of EMBR is conserved 
in humans.  
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Figure 7. EMBR homologs in human cell lines and tumors. (A) Human homologs of EMBR genes (hEMBR) are highly 
enriched for protein–protein interactions. Network of hEMBR genes; edges represent protein-protein interactions 
and genetic interactions. Metabolic enzymes are highlighted in green, protein chaperones/co-chaperones are 
highlighted in blue. (B) Cell line survival upon inhibition with geldanamycin and mycophenolic acid. Bar graphs are 
representative of treatment with 0.1µM geldanamycin and 0.1µM mycophenolic acid. Error bars represent SD from 
three replicates. * = p < 0.05, ** = p < 0.01, *** p < 0.001 unpaired student’s t-test. (C) Bimodal distribution of 
mutation burden across colon cancer tumors (data from TCGA). (D) Principal component analysis of gene expression 
data separates colon cancer cell lines with high (blue) and low (gray) mutation burdens. (E and F) Patient survival 
data in samples with high and low expression of the genes of interest in all colon cancer tumors with high mutation 
burden (top row), or low mutation burden (bottom row). * = p < 0.05, ** = p < 0.01, Log-rank (Mantel-Cox) test. 
 
 If hEMBR were important for cancers with a high mutation burden, we would predict that 
cell lines derived from such tumors would be sensitive to inhibition of hEMBR genes. We used an 
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inhibitor of Hsp90, geldanamycin, and an inhibitor of IMPDH2, mycophenolic acid, to investigate. 
We used two colon cancer cell lines that are confirmed mutators with thousands of variants 
measured, HCT-116 and HCT-15 (Barretina et al., 2012; Vilar and Gruber, 2010), and a non-
mutator colon cancer cell line SW480 (Barretina et al., 2012). Indeed, HCT-116 and HCT-15 were 
far more sensitive to both inhibitors than SW480 was (~5-fold for geldanamycin, ~10-fold for 
mycophenolic acid; Figure 7B). These same cell lines are equivalently sensitive to multiple other 
drugs (Iorio et al., 2016). This result is further supported by anti-cancer activity of mycophenolic 
acid and another IMP-dehydrogenase inhibitor, Tiazofurin (Chen and Pankiewicz, 2007; Malek et 
al., 2004).  

Can yeast EMBR further inform our understanding of the response to mutation burden in 
human cancer cells? Autophagy was important for yeast cells to withstand mutation burden, and 
this mechanism also provides a promising target for cancer therapies (Levy et al., 2017). Arginine 
was also important for yeast cells to withstand mutation burden, and the human homolog of the 
EMBR gene ARG1, ASS1, is activated in colon cancers, where it is thought to contribute to 
pathogenicity (Bateman et al., 2017). Tumors have varying mutation burdens, as well as diverse 
genotypes and mechanisms of oncogenesis. They thus constitute an incredibly complex dataset, 
with many confounding variables. Although these analyses are fundamentally under-powered 
and are limited to genes conserved from yeast to humans, we nevertheless searched for an 
hEMBR signature within curated datasets from The Cancer Genome Atlas (TCGA). Colon 
adenocarcinomas exhibited a bimodal distribution of mutation burdens, allowing us to separate 
tumors with high and low mutation burdens into distinct groups (Figure 7C). To narrow our scope 
and identify which hEMBR components drive the largest biological differences among colon 
cancer tumors, we performed a principal component analysis on the transcriptomes of the tumor 
samples. High mutation burden tumors roughly clustered together along the first two principal 
components (Figure 7D). We then asked what hEMBR factors contributed the most to the 
distinction between high and low mutation burden in the principal component analysis. We 
found HSP90AA1 (a human homolog of Hsp90), ASS1 (the human homolog of ARG1), IMPDH2 
(the human homolog of IMD2), and HSPD1 (a human homolog of Hsp60; Figure 7 – figure 
supplement 1).   

 
Figure 7 – figure supplement 1. EMBR genes are expressed in human tumors with mutation burden. Based on 
the principal component analysis in Figure 7D, each gene was graphed based on rank and coefficient. The top 
ranking EMBR homologs are highlighted in this table. 
 

 We next asked whether the expression of homologs of the EMBR regulators we identified 
were associated with survival of patients with tumors harboring high and low mutation burden. 
We hypothesized that activation of hEMBR due to differential expression of these hEMBR 

Rank CoeffGene

HSP90AA1

ASS1

IMDH2

HSPD1

2

5

7

4

0.013

0.011

0.009

0.011
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regulators would be beneficial for cancer cells with high mutation burdens but detrimental to 
patient survival. GCN4 is homologous to the transcriptional activator ATF4 (Murguia and Serrano, 
2012), and BAS1 is homologous to MYB oncogene (Tice-Baldwin et al., 1989). Indeed, although 
there was no distinction between survival curves in low mutation burden cancers regarding ATF4 
expression (Figure 7E), in high mutation burden cancers, high ATF4 was associated with 
significantly decreased survival (Figure 7E). This is consistent with Gcn4 functioning to activate 
EMBR in yeast. ATF4 is known to promote survival under stress while carefully balancing 
induction of apoptosis (Wortel et al., 2017). Based on these observations we propose that an 
additional role could be activation of hEMBR in high mutation burden cancers. We next 
performed a similar analysis for the BAS1 homolog MYB. There was no distinction between 
survival curves for patients with low mutation burden cancers with respect to MYB expression 
(Figure 7E). But in cancers with high mutation burdens, high MYB expression was associated with 
increased survival (Figure 7E). This is consistent with Bas1 functioning to repress EMBR in yeast. 
MYB mostly acts as a transcriptional activator balancing cell differentiation, is linked to several 
leukemias, and can be activated in both colon and breast cancers (Ramsay and Gonda, 2008). Our 
results suggest that regulation of hEMBR by both ATF4 and MYB could be protective against high 
mutation burden in cancers and thus lead to poor patient prognosis. 

Although HSP90 expression has been implicated in cancer survival in several contexts 
(Jaeger and Whitesell, 2019; Whitesell and Lindquist, 2005; Whitesell et al., 2014), the ability to 
compare expression to patient survival data is limited by the low number of patients, particularly 
when stratifying samples. Despite these limitations we observed a striking correlation in colon 
cancer patient data (Chandrashekar et al., 2017) between increased HSP90 expression and 
decreased patient survival that was only evident in cancers with high mutation burden (Figure 
7E). We thus propose that mutational buffering could offer an explanation for the strong 
correlation of HSP90 expression and tumor growth (Ciocca and Calderwood, 2005; Jaeger and 
Whitesell, 2019; Santagata et al., 2011). The other hEMBR genes that we identified above (Figure 
7 – figure supplement 1) appear to show a similar trend in our analysis (Figure 7E). Further study 
will be required to fully evaluate the effects of hEMBR genes on how tumors tolerate high 
mutation burdens and how this impacts patient survival. Nonetheless, these analyses suggest 
that hEMBR may have an important role in hypermutating human cancers. 
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DISCUSSION 
Many pathogenic bacteria and cancer cells exhibit elevated mutation rates, which can confer a 
wide variety of benefits such as drug resistance and rapid escape from immune surveillance 
(Davoli et al., 2017; Oliver et al., 2000). However, most mutations are predicted to be deleterious. 
Accordingly, to optimize fitness, such hypermutator phenotypes should be transient and revert 
once a beneficial mutation has been assimilated (Sniegowski et al., 1997; Sniegowski and Murphy, 
2006). Indeed, this behavior has recently been observed in experimental evolution in E. coli 
(Swings et al., 2017). However, in a surprisingly large number of biological scenarios, including 
many human cancers, hypermutator phenotypes are stable, and cells remain capable of surviving, 
proliferating, and evolving new traits without succumbing to error catastrophe. Our observation 
that eukaryotic cells possess an intrinsic robustness against accumulating mutations provides a 
potential resolution for this paradox.  

By generating a set of mutation accumulation (MA) lineages with defined mutation rate 
and spectrum, we were able to systematically examine the relationship between fitness and 
mutation burden. Rapid acquisition of non-overlapping sets of mutations led to a consistent, non-
linear relationship between mutation burden and fitness: mutations acquired early were on 
average costlier than mutations acquired later. Remarkably, this behavior was consistent across 
lineages, despite the fact that no single mutation was universal. Because the MA lineages 
maintained their hypermutator phenotypes over the course of the experiment, we conclude that 
the cells induced a protective response that limited the fitness cost of mutations that 
accumulated later in the buffered phase of the experiment.  

Similar behavior has been observed in bacteria, in which buffering is mediated by the 
chaperonin GroEL in several species. For example, GroEL suppresses the phenotypes of 
temperature-sensitive mutations in the replication protein DnaA (Jenkins et al., 1986) and some 
phage proteins (Van Dyk et al., 1989). Highly mutated S. typhimurium express high levels of GroEL, 
and artificial overexpression of the chaperonin further improves fitness (Maisnier-Patin et al., 
2005). Bacteria that naturally sustain high mutation burdens, such as the aphid endosymbiont 
Buchnera, also strongly express GroEL, and this has been linked to their capacity to withstand the 
extremely high levels of genetic drift caused by their small effective population size (Fares et al., 
2002a). However, because the eukaryotic GroEL homolog Hsp60 has limited mitochondrial 
function, it has remained unclear whether and how buffering might be mediated in eukaryotes. 

The stress response that we report here differs from any that have previously been 
described. A key component of EMBR is the Hsp90 chaperone and several of its accessory co-
chaperones. Data from flies (Rutherford and Lindquist, 1998), plants (Queitsch et al., 2002; 
Sangster et al., 2007; Sangster et al., 2008), yeast (Cowen and Lindquist, 2005; Jarosz and 
Lindquist, 2010), worms (Burga et al., 2011), Mexican cavefish (Rohner et al., 2013), and most 
recently humans (Karras et al., 2017) suggests that this chaperone plays a key role in the 
phenotypic manifestation of genetic variation. In mechanistic terms, Hsp90 can assist in the 
folding of unstable gain-of-function protein variants, thereby potentiating their immediate 
phenotypic effect. It can also buffer the impact of other genetic variants, silencing their 
phenotypic impact. Here we found that inhibiting Hsp90 amplified the fitness defects later in the 
MA lineages. Our data thus establish that Hsp90 can buffer the cost of de novo mutations. A prior 
study that did not reach the same conclusion used a much smaller number of mutations (roughly 
four mutations per lineage in 94 separate lineages; Geiler-Samerotte et al., 2016). In that regime, 
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the biochemical effects of specific mutations themselves might have dominated the fitness 
measurements. In our experiment, in which a larger number of polymorphisms were examined, 
the effects of Hsp90 were strongest when mutation burden was sufficient to affect a much larger 
swath of the proteome.  

We identified hundreds of other EMBR components. These were strongly enriched for 
protein–protein interactions. By contrast, gene ontology enrichments were sparse, and 
surprisingly weak where they existed. Thus, EMBR is very different from other stress responses 
that have previously been reported. The strong enrichment for interacting proteins, and the fact 
that inhibition of EMBR components impaired the fitness of highly mutated cells, suggest that 
this stress response is likely to be adaptive.  

In pathogens hypermutator phenotypes can facilitate antibiotic resistance, immune 
evasion, or morphological innovation such as filamentous growth. Although the clinical use of 
antibiotics is a relatively recent phenomenon, host–pathogen conflict is ancient. Conservation of 
a response that allows pathogens to adopt hypermutator states with minimal fitness cost could 
be beneficial for evolution over short and long timescales. Indeed, many microbial pathogens, 
and even wild fungal populations, frequently adopt a hypermutator state (Bui et al., 2017; Guo 
et al., 2018; Raghavan et al., 2018). The alleles that govern this behavior have been retained 
across a considerable evolutionary distance (Bui et al., 2017), suggesting that it confers an 
adaptive advantage.  

Hypermutating cancers are evolutionary experts, capable of buffering the cost of 
accumulating mutations while simultaneously harnessing the potential of this raw genetic 
material to rapidly evolve new traits. This evolutionary virtuosity can have devastating 
consequences for human health, such as the emergence of resistance to chemotherapies. Here, 
we show that eukaryotic cells can broadly limit the cost of accumulating mutations by mounting 
a conserved stress response that we term EMBR. We posit that highly mutated cells are addicted 
to EMBR, analogous to oncogene addiction but in this case driven by a gene expression network 
rather than a single driver mutation. Our data suggest that this addiction may expose multiple 
Achilles’ heels with potential for therapeutic intervention. 
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METHODS 
Strain construction and propagation 
BY4741 haploid yeast were transformed to replace the MSH6 gene with an antibiotic resistance 
marker (hygromycin) or to replace the POL3 gene with a variant that lacks proofreading activity, 
pol3-L612M (Nick McElhinny et al., 2007). Double mutants were constructed by performing both 
types of transformations in series, pol3-L612M followed by msh6∆. Transformants were grown 
up from single colonies and frozen as passage 0. We constructed our accelerated mutation 
accumulation (MA) lines in haploid yeast so that we could study the effects of all polymorphisms, 
including recessive alleles.  
 Passage 0 strains (parent BY, msh6∆, pol3-L612M, and double mutant pol3-L612M 
msh6∆) were streaked on both YPD (yeast extract-peptone-dextrose medium) and YPG (yeast 
extract-peptone-glycerol medium) plates and grown at 25°C for at least 96 hours. Individual 
colonies of average size were selected, resuspended in a 96-well plate, and then streaked onto a 
fresh YPD or YPG plate for another round of growth (passage 1). Because S. cerevisiae can lose 
their ability to respire on fermentable carbon sources, we propagated one set of eight lineages 
on media containing glucose as a carbon source, and another set of eight lineages on media 
containing glycerol as a carbon source, so that potential loss of respiration would not confound 
our findings. At odd-numbered passages, small volumes of the stock plates were then transferred 
to fresh liquid YPD, and growth in solution was measured every ~5 minutes for 84 hours. At the 
end of this period, the cultures were diluted and spotted onto YPD, YPG, phosphonoacetic acid 
(Li et al., 2005), and canavanine plates to assess general growth, growth on glycerol (YPD strains 
only), maintenance of the pol3-L612M variant (which confers resistance to PPA), and mutation 
rate. Any loss-of-function mutation in the CAN1 arginine permease gene gives rise to canavanine 
resistance, providing a readout of mutagenesis. This process was repeated for 50 passages. 
During the course of the experiment on YPD, one hypermutator lineage lost its mutator 
phenotype, one went extinct. During the course of the experiment on YPG, one hypermutator 
lineage lost its mutator phenotype early on, one lost its mutator phenotype halfway through, and 
three went extinct. The frequency of these events is consistent with expectation from other 
mutation accumulation experiments in bacteria (Aguilar-Rodriguez et al., 2016). To study the 
biological consequences of cells surviving despite mutation burden, we focused our phenotypic 
analysis on lineages that survived for all 50 passages, or approximately 1,250 generations, while 
maintaining the mutator phenotype.  
 
Growth measurements 
At odd-numbered passages, surviving strains were inoculated in liquid culture to measure OD600 
on a Synergy Multi-Mode Microplate Reader. Doubling time was extrapolated using a Bayesian 
curve-fitting model and converted to fitness (w) relative to the first passage on the same media: 
ln(𝑤) = ln(2dWT/dMUT - 1). WT = wild-type, MUT = hypermutator. 
 
Drug treatment 
Hyperutator and wildtype yeast strains were grown to saturation in YPD media in 96-well plates. 
Dilutions of drugs obtained from Selleckchem, MicroSource, and Sigma were prepared in DMSO 
and added to YPD; 10-100µM radicicol; 4.4mM H2O2; 10µM fluconazole; 12.5µM bafilomycin, 
1mM mycophenolic acid. Media lacking arginine and uracil was obtained from Sunrise Science. 
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Yeast were diluted, and OD measurements were taken using a Synergy Multi-Mode Microplate 
Reader (Biotek). Mean and standard error were calculated for three technical replicates of each 
lineage, and then across independent mutated lineages. Growth rates were compared to extract 
a dose-response curve and inhibitory concentrations. 
 
Sequencing, variant calling, and gene expression analysis 
Variant calls were made using the GATK pipeline and annotations were made with SnpEff 
(Cingolani et al., 2012; McKenna et al., 2010). Only variants called in multiple biological replicates 
were considered for comparison between lineages (Fig 1E). Excluding variants present in the 
shared ancestor, variant calls unique to each lineage, shared between any two lineages, or shared 
across lineages were counted. The predicted phenotypic impact of these variants was 
characterized using SIFT (Kumar et al., 2009). Genes in which variants occurred within ORFs were 
also categorized as essential (as defined by the Stanford Deletion Project) or non-essential.  

For gene expression analysis, mutator and wildtype strains were collected during log-
phase growth. Pellets were flash frozen and stored at -80°C. Yeast were lysed, RNA extracted, 
and RNA quality was assessed on a Bioanalyzer. A sequencing library was prepared using the 
TruSeq RNA Library Prep Kit v2. Reads were filtered based on quality scores and aligned to the 
genome using Bowtie2 (Langmead and Salzberg, 2012) with a current reference genome (Engel 
et al., 2014). HTSeq was used to quantify counts (Anders et al., 2015). Normalization, batch effect 
correction, and differential expression testing was performed using the DESeq2 software suite 
(Love et al., 2014). For downstream graphing purposes, limma was used for batch effect 
correction. Cluster 3.0 was used for k-means clustering of gene expression data after row 
normalization (Figure 4C-D; de Hoon et al., 2004). Motifs and lists of EMBR genes containing 
transcription factor motifs were obtained from JASPAR (Khan et al., 2018). Gene expression data 
from deletions were collected from Hu et al. and Cameroni et al. (Cameroni et al., 2004; Hu et al., 
2007). 
 
v-Src assay 
The plasmid carrying the v-Src gene for expression in yeast, Yep-src (Brugge et al., 1987), was a 
gift from the Lindquist laboratory. Hypermutator and wild-type yeast were transformed via 
electroporation, and the plasmid was maintained by growth on SD-Ura. Expression of v-Src was 
induced by diluting saturated yeast (grown in 2% raffinose media) into 2% galactose media. 
Growth was monitored by measuring OD600. 

 
Principal component analysis 
Yeast expression datasets for environmental stress responses, DNA damage responses, and the 
unfolded protein response (Fry et al., 2003; Gasch et al., 2001; Gasch et al., 2000; Travers et al., 
2000; Travesa et al., 2012) were obtained from the SPELL database (spell.yeastgenome.org; Hibbs 
et al., 2007). RNA expression data from the mutation accumulation lines were normalized against 
those of their un-passaged parent and log2-normalized. Expression data from passaged WT lines 
were normalized to their WT parent. All other expression data were normalized to their internal 
untreated controls. These expression data were collectively visualized through principal 
component analysis (PCA), a technique that reduces high-dimensional expression data (Jolliffe 
and Cadima, 2016). 
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EMBR human homolog protein–protein interaction enrichment 
Human homologs of yeast EMBR genes were identified through deltaBLAST searches using 
default settings. Only hits with e-values £ 1 × 10-10 were collected as homologs. Hits were then 
mapped to unique Entrez IDs. A total of 568 human homologs of yeast EMBR genes (hEMBR) 
were identified. The protein–protein interactions of the hEMBR network were mapped using the 
BIOGRID database. The protein–protein interactions of 500 equally sized sets of random human 
genes and 500 equally sized random sets of annotated human homologs of all yeast genes 
(ENSEMBL) were also mapped. A hypergeometric test was computed for the protein–protein 
interactions in the hEMBR set and the median interactions in the random human gene and 
human homolog gene sets. To compute the hypergeometric test, key parameters were 
determined by mapping the total interactions between all annotated (HUGO) human genes in 
BIOGRID. The amount of total possible interactions was defined as (n*(n-1))/2 for n nodes in an 
undirected network. The protein–protein interactions of the 500 random sets of human 
homologs were fit to a gamma distribution. From this null distribution, 10,000 random samples 
were drawn to compute a p-value against the null hypothesis that the number of protein–protein 
interactions in the hEMBR is not larger than expected from the null distribution. 
   
Cell lines 
Colon cancer cell lines HCT-116, HCT-15, and SW480 were purchased from ATCC and cultured in 
RPMI supplemented with 10% FBS or recommended medium. Cell viability was measured after 
48 hours of growth in drug or DMSO control with PrestoBlue (Thermo Fisher Scientific). 
Background was subtracted from OD measurements, outliers removed, and normalized to 
untreated controls. Each condition was repeated in triplicate. IC50 values were calculated using a 
nonlinear regression (GraphPad Prism v7). 
 
EMBR signature in Colon Cancer  
 Whole exome sequencing, RNA sequencing, and patient clinical data were retrieved from TCGA 
(Cancer Genome Atlas, 2012) and assembled using the TCGA-Assembler R package (Zhu et al., 
2014a). Tumor mutation burden of each sample was defined as the sum of total variant calls 
(relative to normal tissue) for each sample from whole exome sequencing and inferring 
mutations per 100kb based on the approximate length of genomic sequence captured by the 
exome sequencing preparations used, ~44Mbs, and assuming equal distribution of mutations 
across the entire genome. A histogram of tumor mutation burdens for the colon adenocarcinoma 
(COAD) dataset revealed a bimodal distribution with low mutation burden (< 2.55 
mutations/100kb) and high mutation burden cohorts (> 2.55 mutations/100kb). For comparison 
with EMBR, only genes with annotated yeast homologs were kept for subsequent analysis. 
Expression levels of a given gene were defined by the scaled estimate of counts as reported in 
TCGA.  A principal component analysis was performed on the expression data across all tumor 
samples to identify any clustering among the high mutation burden cohort. The norm vectors of 
the coefficients for principal components 1 and 2 (explaining 52.5% of the variance) were rank 
ordered and the top 8 EMBR homologs were chosen for further analysis on their impact on clinical 
outcomes. For the top 8 EMBR homologs, expression levels across the high mutation burden 
tumor samples, or across low mutation burden tumor samples in a parallel analysis, were 
grouped into low (less than median expression of the given gene in the dataset) and high 
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expression (greater than median expression of the given gene in the dataset) cohorts. Kaplan-
Meier survival plots for the high and low expression cohorts were created and compared using 
the Log-rank (Mantel-Cox) test.  
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Supplementary Tables 
Table S1. Mutations called from DNA sequencing. 
Table S2. Differential expression of passaged wild-type compared to wild-type ancestor. 
Table S3. Differential expression of hypermutator ancestor compared to wild-type ancestor. 
Table S4. Differential expression of hypermutator after 125 generations compared to 
hypermutator ancestor. 
Table S5. Differential expression of hypermutator after 275 generations compared to 
hypermutator ancestor. 
Table S6. Differential expression of hypermutator after 500 generations compared to 
hypermutator ancestor. 
Table S7. Differential expression of hypermutator after 1250 generations compared to 
hypermutator ancestor. 
 
 
Supplementary Information 
Comparison of mutation rates in yeast lineages and human tumors 
We calculated the yeast mutation rate as the number of sequenced mutations relative to the 
parent strain, divided by the number of generations (assuming 25 generations per passage). This 
was normalized against the S. cerevisiae mutation rate as calculated by Zhu et al. (Zhu et al., 
2014b), 1.67 × 10-10 per base per generation. Multiple estimates of the human somatic cell 
mutation rate have been reported. We used the average of reported somatic cell mutation rate 
estimates, 0.77 × 10-9, as a reference (Lynch, 2010). We converted the reported frequency of 
mutations in different tumor types (Lawrence et al., 2013) to mutation rate by assuming that a 
1-cm3 tumor sample contains 1 × 109 cells, which would require 30 divisions to grow from a single 
cell (Del Monte, 2009).  
 
Distribution of mutations 
Using a Poisson distribution, we calculated the probability that any given base pair would be 
mutated over the course of our accelerated evolution experiment. At each generation, around 
two new mutations arise, satisfying the assumption of the Poisson distribution that the 
probability of any given base being mutated is small 2/(12 × 106). However, the mean number of 
mutations that arise in the population between the expansion of a single cell into a visible colony 
is roughly equal to twice the number of cells in the final colony. Given our assumption of 25 
generations per bottleneck, we expect to observe 221 (~2 × 106) mutations arising in the 
population per 20 generations. Integrated over 1000 generations, we have 108 mutations arising 
in each replicate of our experiment, or 8.7 mutations per base pair in the genome. The probability 
that a base pair is never mutated, assuming an equal chance of any base pair being mutated, is 
thus e-8.7 (~1.67 × 10-4). If we assume 25 generations per bottleneck, then this larger effective 
population size implies that ~280 mutations arise for each base pair across the experiment. 
 
Expected target size of epistatic interactions 
Approximately 1,000 of the ~6,000 genes in S. cerevisiae are essential (Giaever et al., 2002). 
Digenic interactions cause synthetic lethality of many more combinations of genetic knockouts; 
10,000 interactions involved over 3,000 genes. That is ~3% of all gene pairs display a negative 
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genetic interaction or synergistic epistasis (Costanzo et al., 2016). Positive genetic interactions or 
antagonistic epistasis was far less common (1.9%). This multitude of synthetic lethal interactions 
predicts that accumulation of random mutations will likely result in accelerated fitness decline. 
Fewer available trajectories or increasing number of positive genetic interactions does not 
explain the decreased fitness cost observed (Figure 2, Figure 2 – figure supplement 1). 
 
Limit of detection 
We examined the three smallest reasonably manipulatable colony of a highly passaged strain and 
directly measured the area from a microscope image. From this area (~0.25mm), we estimated 
the total number of yeast cells in the colony (assuming a half-sphere for volume and assuming 
an average haploid cell volume from BioNumbers, 37 µm3 (Milo et al., 2010)). This allowed us to 
estimate the average growth rate based on its appearance on the plate after 4 days (ln(𝑤) = -
1.36). The growth rate was well below the minimum measured for the MA lines (Figure 2, Figure 
2 – figure supplement 1) suggesting that we were not limited by failing to detect small colonies. 
 
 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/515460doi: bioRxiv preprint 

https://doi.org/10.1101/515460

