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Abstract

Action potential generation in a neuron depends on a membrane potential threshold and therefore

on how subthreshold inputs influence this voltage. In oscillatory networks, for example, different neu-

ron types have been shown to produce membrane potential (Vm) resonance: a maximum subthreshold

response at a nonzero frequency. Resonance is usually measured by recording Vm in response to a

sinusoidal current (Iapp), applied at different frequencies (f), an experimental setting known as current

clamp (I-clamp). Many recent studies, however, use the voltage clamp (V-clamp) method to control

Vm with a sinusoidal input at different frequencies (Vapp(f)) and measure the total membrane cur-

rent (Im). The two methods obey systems of differential equations of different dimensionality and ,

while I-clamp provides a measure of electrical impedance (Z(f) = Vm(f)/Iapp(f)), V-clamp measures

admittance (Y (f) = Im(f)/Vapp(f)). We analyze the relationship between these two measurement

techniques. We show that, despite different dimensionality, in linear systems the two measures are
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equivalent: Z = Y −1. However, nonlinear model neurons produce different values for Z and Y −1.

In particular, nonlinearities in the voltage equation produce a much larger difference between these

two quantities than those in equations of recovery variables that describe activation and inactivation

kinetics. Neurons are inherently nonlinear and, notably, with ionic currents that amplify resonance,

the voltage clamp technique severely underestimates the current clamp response. We demonstrate this

difference experimentally using the PD neurons in the crab stomatogastric ganglion. These findings

are instructive for researchers who explore cellular mechanisms of neuronal oscillations.

1 Introduction

Voltage and current clamp recording techniques are widely used in electrophysiological experiments

to explore the properties of the ionic currents expressed in neurons and their functional effect in

generating subthreshold and spiking activity [1–4]. Voltage (V-) clamp experiments consist of mea-

suring the current necessary to hold the voltage at a chosen level and involve a feedback amplifier.

Current (I-) clamp experiments, in contrast, consist on controlling the intensity of applied current

and measuring the resulting changes in voltage and require no feedback loop. When the injected

current is zero, I-clamp simply involves recording the intracellular voltage activity of neurons. I- and

V-clamp experiments are complementary tools to investigate different aspects of neuronal dynamics.

For instance, V-clamp is used to characterize the activation/inactivation curves and time constants of

voltage-dependent ionic currents, while I-clamp is used to investigate dynamic properties of neurons

such as the frequency-current relationships, sags exhibited by hyperpolarization and post-inhibitory

rebound.

Dynamically, a primary difference between the I- and V-clamp approaches is in the reduced dimen-

sionality in V-clamp due to the elimination the time derivative of V , associated with the capacitive

current. As a result, the V-clamp responses are typically less complex than the I-clamp ones. For

example, for any constant value of V , the ionic current activation and inactivation dynamics are typ-

ically linear and one-dimensional, and therefore explicitly solvable. However, spontaneous activities,
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such as spiking and subthreshold voltage oscillations, that depend on nonlinear mechanisms are only

observable in I-clamp.

In spite of the reduced complexity of V-clamp as compared to I-clamp, both approaches have been

used to investigate subthreshold (membrane potential) resonance, a description of preferred frequency

responses of neurons to oscillatory inputs. [5–58]. The presence of certain types of nonlinearities in

the interaction among ionic currents (the current-balance equation) results in nonlinear amplifications

of the voltage response to sinusoidal inputs as the input amplitude increases in I-clamp [59–61].

These nonlinear amplifications should be much less pronounced in V-clamp thus resulting in different

resonance properties compared to those measured in I-clamp. However, for certain neuron types both

approaches have shown to produce similar results [22].

Our goal is to compare the I-clamp and V-clamp responses of neurons to oscillatory inputs, in

order to clarify conditions in which the two methods produce similar or distinct results. We use a

variety of model neurons, ranging from linearized conductance-based models, to models with quadratic

nonlinearities in the voltage equation, capturing the interaction between resonant currents (e.g., Ih

and the slow potassium current IM ) and amplifying currents (e.g., the persistent sodium current

INap) [60–62].

2 Methods

2.1 Models

2.1.1 Linearized conductance-based models

We use linearized conductance-based models of the form

C
dv

dt
= −gLv − gw + I(t), (1)

τ
dw

dt
= v − w, (2)
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where v (mV) is voltage (with the resting potential translated to 0), t is time (ms), gL and g are

linearized conductances (mS/cm2), C is the capacitance (µF/cm2), τ is the linearized time constant

(ms) and I is a time dependent current (µA/cm2). The units of w are mV due to the linearization

procedure used to obtain eqs. (1)-(2) from conductance-based models of Hodgkin-Huxley type [2].

We refer the reader to [6, 63] for details.

2.1.2 Weakly nonlinear models

In order to capture some basic aspects of the differentiation between the nonlinear responses to

oscillatory inputs in current and voltage clamp, we extend the linearized models to include simple

types of nonlinearities with small coefficients either in the first or second equations.

The weakly nonlinear equations we use are

C
dv

dt
= −gL v − g w + ε σv v

2 + I, (3)

τ
dw

dt
= v − w + ε σw v

2, (4)

where ε is assumed to be small and the parameters σv = O(1) and σw = O(1). For simplicity we focus

on nonlinearities that involve only the variable v.

2.1.3 Caricature semilinear models

Generically, these models are of the form

C
dv

dt
= −gL F (v)− g w + I, (5)

τ
dw

dt
= G(v)− w. (6)

For F and G we use semi-sigmoidal nonlinearities of the form

4

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/515510doi: bioRxiv preprint 

https://doi.org/10.1101/515510


HX(v) =


vslp,X tanh(v/vslp,X) if v ≥ 0

v if v < 0.
(7)

The function HX(v) (X = v, w) is continuously differentiable and semi-linear, with a sigmoid type of

nonlinearity v ≥ 0, while it is linear for v < 0. Such functions allow one to investigate the effects of

non-symmetric nonlinearities, on the model response to external inputs, as simple deformations of the

linear nullclines. As we discuss later, they locally represent nonlinearities arising in neuronal models in

the subthreshold voltage regime. In contrast to the more realistic quadratic models discussed below,

the SIG-v and SIG-w models do not include an onset of spikes mechanism, and therefore allow for

stronger input amplitudes than for the quadratic models.

For F (v) = G(v) = v, system (5)-(6) reduces to the linear system (1)-(2). We refer to these models

as LIN. We refer to the models with a nonlinearity in the first equation (F (v) = Hv(v) and G(v) = v)

as SIG-v and to these having a nonlinearity in the second equation (F (v) = v and G(v) = Hw(v))

as SIG-w. Linearization of the SIG-v and SIG-w models yields LIN models with the same parameter

values.

2.1.4 Quadratic conductance-based models

We will use quadratic models of the form

dv

dt
= av2 − w + I(t), (8)

dw

dt
= ε [α v − λ− w ], (9)

where a, α, ε and λ are constant parameters. These models can be derived from conductance-based

models, with nonlinearities of parabolic type in the voltage equation, by using the so-called quadrati-

zation procedure described in [60,64] (see also [65]). Examples of these models involve the interaction

between INap and either Ih or IM [60]. The units of the variables and parameters in eqs. (8)-(9) are

[v] = mV, [w] = mV/ms, [ε] = 1/ms, [a] = 1/(ms mV), [α] = 1/ms, [λ] = mV/ms and [I] = mV/ms.
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Note that Eqs. (3)-(4) can be thought of as a particular case of Eqs. (5)-(6) and are included in

the quadratized formulation (8)-(9) after an appropriate change of variables.

2.1.5 Oscillatory inputs: current (I-) and voltage (V-) clamp

In current and voltage clamp states, we use sinusoidal current and voltage inputs of the form

Iin(t) = Ain sin(ω t) and Vin(t) = Ain sin(ω t), (10)

respectively, with

ω =
2π f

1000

where f is the input frequency (Hz). Henceforth, we refer to the corresponding experiments as I-clamp

and V-clamp respectively.

For input currents Iin(t) the output is V (t) computed as the result of the corresponding system

of differential equations. For voltage inputs Vin(t) the output is I(t) computed by adding up all the

other terms in the first equation (including the dv/dt term), after a proper rearrangement and using

the variable w computed by using the remaining differential equation.

2.2 Voltage and current responses to sinusoidal inputs

2.2.1 I-clamp: Impedance (Z-) and phase (Φ-) profiles

The voltage response Vout(t; f) of a neuron to oscillatory current inputs Iin(t) is captured by the

neuron’s impedance, defined as the quotient between the Fourier transforms of Vout and Iin:

Z(f) =
V̂out(f)

Îin(f)

Impedance is a complex number with amplitude Z(f) and phase Φ(f). We refer to the impedance

amplitude Z(f) simply as the impedance and to the graphs Z(f) and Φ(f), respectively, as the
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impedance and phase profiles.

For linear systems receiving sinusoidal current inputs Iin(t) as in eq. (10),

Vout(t; f) = Aout(f) sin (Ωt− Φ(f))

where Φ(f) is the phase shift between Iin and Vout, and

Z(f) =
Aout(f)

Ain
. (11)

Linear systems exhibit resonance if Z(f) peaks at some non-zero (resonant) frequency fZ,res (Fig. 1-a1)

and phasonance if Φ(f) vanishes at a non-zero (phasonant) frequency fZ,phas (Fig. 1a2). For nonlinear

systems, or linear systems with non-sinusoidal inputs, eq. (11) no longer provides an appropriate

definition of impedance. Here we use the following definition

Z(f) =
Vmax(f)− Vmin(f)

2Ain
(12)

where Vmax(f) and Vmin(f) are the maximum and minimum of the steady-state oscillatory voltage

response Vout(f) for each value of f . For linear systems receiving sinusoidal inputs, eq. (12) is equiv-

alent to eq. (11). Eq. (12) extends the concept of the linear impedance under certain assumptions

(input and output frequencies coincide and the output amplitude is uniform across cycles for a given

input with constant amplitude), which are satisfied by the systems we use in this paper. The resonant

frequency fZ,res is then the peak frequency of Z(f) in (12). Similarly to the linear case, the phase is

computed as the distance between the peaks of the output and input normalized by the period. We

refer to the curves Vmax(f) and Vmin(f) as the upper and lower Z-envelopes, respectively (Fig. 1a3).

2.2.2 V-clamp: Admittance (Y ) and phase (Ψ) profiles

The voltage response Iout(t; f) of a neuron to oscillatory voltage inputs Vin(t) is captured by the

neuron’s admittance, defined as the quotient between the Fourier transforms of Iout and Vin:
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Y(f) =
Îout(f)

V̂in(f)

As with impedance, admittance is also a complex number, with amplitude Y (f) and phase Ψ(f). As

before, we refer to Y (f) simply as the admittance and to the graphs of Y (f) and Ψ(f) as as the

admittance and phase profiles, respectively.

For linear systems receiving sinusoidal current inputs Vin(t) of the form (10),

Iout(t; f) = Aout(f) sin (Ωt−Ψ(f))

where Ψ(f) is the phase difference between Vin and Iout, and

Y (f) =
Aout(f)

Ain
. (13)

Linear systems exhibit resonance if Y (f) exhibits a trough at some non-zero (resonant) frequency

fY,res (Fig. 1b1) and phasonance if Ψ vanishes at a non-zero (phasonant) frequency fY,phas (Fig. 1b2).

As with impedance, for nonlinear systems we use the following definition

Y (f) =
Imax(f)− Imin(f)

2Ain
(14)

where Imax(f) and Imin(f) are the maximum and minimum of the oscillatory current response Iout(f)

for each value of f . For linear systems receiving sinusoidal inputs, eq. (14) is equivalent to eq.

(13). The resonant frequency fY,res is the frequency corresponding to the minimum of Y in eq. (14).

Similarly to the linear case, the phase is computed as the distance between the peaks of the output

and input normalized by the period. We refer to the curves Imax(f) and Imin(f) as the upper and

lower I-envelopes, respectively (Fig. 1-b3).
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Figure 1: Schematic diagrams of the impedance and admittance amplitude and phase profiles. (a1) Impedance

amplitude (Z) or, simply, impedance. The Z-resonant frequency fZ,res is the input frequency f at which the impedance

Z(f) reaches its maximum Zmax. The Z-resonance amplitude QZ = Zmax − Z(0) measures the Z-resonance power. (b1)

Admittance amplitude (Y ) or, simply, admittance. The Y -resonant frequency fY,res is the input frequency f at which the

admittance Y (f) reaches its minimum Ymin. The Y -resonance amplitude QY = Ymin − Y (0) measures the Y -resonance

power. (a2) Impedance phase (Φ) or, simple, Z-phase. The Z-phase-resonant frequency fZ,phas is the zero-crossing phase

frequency. (b2) Admittance phase (Ψ) or, simply, Y-phase. The Y -phase-resonant frequency fY,phas is the zero-crossing

phase frequency. (a3) V-envelope. The upper (Vmax) and lower (Vmin) envelopes correspond to the maxima and minima of

the voltage response for each input frequency. (b3) I-envelope. The upper (Imax) and lower (Imin) envelopes correspond to

the maxima and minima of the current response for each input frequency.
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2.2.3 Inverse admittance (Y −1) and negative phase (−Ψ)

In general, the impedance (Z) and admittance (Y ) are reciprocal quantities and can be used equiva-

lently to characterize the response of a system to oscillatory inputs regardless of whether we are using

I-clamp or V-clamp. Here, to avoid confusion, we use Z strictly for the voltage responses to current

inputs and Y strictly for the current responses to voltage inputs. In order to compare the results for

V-clamp and I-clamp, we will use the inverse admittance Y −1 and the negative phase −Ψ, measured

in V-clamp, as comparable quantities to Z and Φ, measured in I-clamp. We refer to the corresponding

curves as a function of the input frequency f as the inverse admittance (Y −1) and negative phase

(−Ψ) profiles.

2.3 Experiments

Adult male crabs (Cancer borealis) were purchased from local seafood markets and kept in tanks

filled with artificial sea water at 10-12 ◦C until use. Before dissection, crabs were placed on ice for

20-30 minutes to anesthetize them. The dissection was performed following standard protocols as

described previously [66]. The STG was desheathed to expose the neurons for impalement. During

the experiment, the preparation was superfused with normal Cancer saline (11 mM KCl, 440 mM

NaCl, 13 mM CaCl2 · 2H2O, 26 mM MgCl2 · 6H2O, 11.2 mM Trizma base, 5.1 mM maleic acid;

pH 7.4-7.5) at 10-12 ◦C. The PD neuron was identified by matching its intracellular activity with the

extracellular action potentials on the lateral ventricular and PD motor nerves. Intracellular recordings

were done using Axoclamp 2B amplifiers (Molecular Devices) with two intracellular electrodes, one

for recording the membrane voltage and the second for current injection. Intracellular sharp glass

electrodes were prepared using a Flaming–Brown micropipette puller (P97; Sutter Instrument) and

then filled with the electrode solution (0.6 M K2SO4 and 0.02 M KCl; electrode resistance 15-30 MΩ.

To examine the response of the PD neuron in a range of frequencies, a chirp function C(t) was applied

to the presynaptic neuron. This function can be described as:

C(t) = B +A sin(2π(S(t)− S(0)))
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where B is the baseline, A is the amplitude and S(t) is a monotonically increasing function which

determines the frequency range to be covered. When the chirp function was applied in voltage clamp,

B = −60 mV and A = 30 mV. To obtain a larger sample set at the lower frequency range, we used a

logarithmic chirp function by setting S(t) to be:

S(t) =
f0
L
eLt

where

L =
log(f1/f0)

T
,

f0 (here 0.1 Hz) and f1 (here 4 Hz) are the initial and final frequencies in the chirp range, and T is

its total chirp duration (here 100 s).

In both I-clamp and V-clamp experiments, the chirp functions were applied at least 3 times in

control saline, and 3 times following bath application of 1 µM proctolin.

3 Results

3.1 I-clamp and V-clamp produce different responses to the same

constant inputs

Because of the reduced dimensionality of the system in V-clamp, as compared to I-clamp, the I-clamp

response to constant inputs is expected to be more complex than its V-clamp response to a similar

input. 2D linear systems, such as LIN: (1)-(2) in I-clamp, can display overshooting and damped

oscillations that are absent in 1D linear systems, such as (1)-(2) in V-clamp (compare the blue curves

in Figs. 2-b and 2-c1).

In Figs. 2-a and 2-b we compare the I-clamp responses of the LIN, SIG-v and SIG-w models to

constant inputs. The input and the common parameter values (C, gL, g, τ) are identical for all three

models. We use the same values of vslp,v and vslp,w for the SIG-v and SIG-w models, respectively.
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The nonlinear v- (Fig. 2-a2) and w- (Fig. 2-a3) nullclines we use are concave up for the SIG-v model

(Fig. 2-a2) and concave down for the SIG-w model (Fig. 2-a3). This type of bending of the v- and w-

nullclines are locally representative of the types of nonlinearities arising in neuronal models given the

properties (i.e., monotonicity with respect to v) of the other nullcline. For monotonically increasing

w-nullclines (as in Fig. 2-a2), the sigmoidal bending of the v-nullcline is the first stage in the generation

of parabolic-like v-nullclines [62]. The use of the same type of nonlinearity for both the SIG-v and

SIG-w models allows comparison of the dynamic effects produced by nonlinearities in the the two

nullclines.

We define the response amplitude as the maximum value of v reached by the solution at steady

state. In the phase-plane diagrams, this is determined by the intersection between the trajectory

and the v-nullcline. In I-clamp, the SIG-v model exhibits a stronger nonlinear amplification of the

response than the SIG-w or LIN model (Figs. 2-b). As seen in the phase-plane diagrams, because of

the bending of the v-nullcline, the trajectory in panel a2 reaches further away from the fixed-point

in the v direction than in panel a3 [59]. These differences become larger when the nonlinearities are

more pronounced, i.e., for values of vslp,v and vslp,w (not shown).

In contrast, in the V-clamp responses there is little difference between the LIN, SIG-v and SIG-w

models (Figs. 2-c). The dynamics of the w-equation in the LIN and SIG-v models are identical and

F (Vin) < Vin for positive values of Vin (eq. 7). Therefore, the curves I(t) are parallel and lower for

the SIG-v model than for the LIN model (blue and red curves in Figs. 2-c1). The dynamics of the

w-equation in the LIN and SIG-w models are different, but there are no nonlinear effects in the first

equation. Since G(Vin) < Vin for positive values of Vin, the fixed-point for the LIN model is higher

than for the SIG-w model (blue and green curves in Figs. 2-c1). These relative relationships do not

change if the initial conditions for w are not equal among the three models, but are chosen is such a

way as to make the corresponding initial values of I equal (Figs. 2-c2).
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Figure 2: Dynamics of the autonomous LIN, SIG-v and SIG-w systems for representative parameter values.

(a) Phase-plane diagrams (I-clamp) for the LIN (a1), SIG-v (a2), and SIG-w (a3) models for Iapp = 1. Trajectories are

initially located at the fixed-point for Iapp = 0: (0, 0). The dotted-red curve in each panel corresponds to the v-nullcline for

Iapp = 1. (b) Voltage traces corresponding to panels a (current clamp). (c) Current traces (voltage clamp) for an applied

voltage Vapp = 1. In panel c2 the initial conditions for the variable w were adapted so that the initial current is equal to

zero. We used the following parameter values: C = 1, gL = 0.8, g = 1, τ1 = 10, Vslp,v = 1, vslp,w = 1, Iapp = 1 (panels a and

b), and Vapp = 1 (panel c)
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3.2 I-clamp and V-clamp produce equivalent responses for linear

systems receiving the same oscillatory input

In spite of the dimensionality differences between the I-clamp and V-clamp protocols, for linear systems

and time-dependent inputs within a large enough class, both approaches produce the same response,

so that Z = Y −1 and Φ = −Ψ (Fig. 3). We demonstrate this in detail for 3D linear systems and a

complex exponential in Appendix A and provide the analytic solutions to generic 2D linear systems

and linearized conductance based models in Appendix C. This result can be easily generalized to

higher-dimensional linear systems and other types of time-dependent inputs by using their Fourier

components.
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Figure 3: Equivalent impedance and admittance profiles for a representative linear system (a) Impedance (Z)

and admittance (Y ) satisfying Z = Y −1 (gray line). (b) Z- and Y -phases (Φ and Ψ resp.) satisfying Φ = −Ψ (gray line).

We used the following parameter values: C = 1, gL = 0.3, g = 2, τ1 = 60 and Ain = 1

The linear steady state responses to sinusoidal input satisfy three properties: (i) the input and

output frequencies coincide, (ii) the input and output profiles are proportional, and (iii) the output

envelope profiles for constant inputs are symmetric with respect to the equilibrium point from which

they are perturbed. Note that (i) implies that the amplitude of the steady state response is uniform

across cycles for each input frequency.

In terms of the I- and V-clamp responses to sinusoidal inputs, linearity implies that the Z (Y −1)

and Φ (Ψ) profiles are independent of the input amplitude Ain, and so are the V and I-envelope
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profiles when they are normalized by Ain (see Fig. 1). A dependence of any of these quantities on Ain

indicates nonlinearity. Because of the symmetry property, the voltage and current envelopes (and the

Z and Y −1 profiles) are redundant for linear systems [60].

The nonlinear models that we discuss in the next sections satisfy (i), but not necessarily (ii) and

(iii). In previous work [59,60] we have shown that for the quadratic model (8)-(9) and piecewise-linear

models that capture the nonlinearities of the SIG-v and SIG-w models, increasing Ain in I-clamp causes

the impedance profile to increase in amplitude for input frequencies around the resonant frequency.

We refer to this phenomenon as a nonlinear amplification of the voltage response. In the following

sections we investigate how the nonlinearities in these models affect their response to current and

voltage inputs and what similarities and differences arise between I-clamp and V-clamp.

3.3 Weakly nonlinear systems receiving oscillatory inputs: onset of

the differences between I-clamp and V-clamp

We first consider weak nonlinearities in order to understand how differences between nonlinear Z- and

Y −1- profiles emerge from the underlying linear profiles. We use the weakly nonlinear equations (3)-

(4), where ε is assumed to be small and the parameters σv = O(1) and σw = O(1). For σv = σw = 0

or, alternatively, ε = 0, Eqs. (3)-(4) reduce to the linear model discussed in the previous section.

In the following, we will assume the capacitance parameter C is proportionally incorporated into

the parameters gL, g, I and σv. The time constant τ , in contrast, cannot be scaled away and its value

affects the order of magnitude of the nonlinear term εσwv
2/τ in eq. 4. If τ = O(1), then this nonlinear

term is O(ε). However, if τ = O(ε−1), the nonlinear term is O(ε2) and therefore, to the O(ε) order,

eq. 4 is linear and slow [59]. Finally, if τ = O(ε), then the nonlinear term is O(1), but, in this case,

the other terms in eq. 4 are O(ε−1) and therefore the negative feedback due to this equation is too

fast for the underlying linear model to exhibit resonance.

We carry out a regular perturbation analysis for the system (3)-(4) in both I-clamp and V-clamp

and we consider two scenarios for each: (i) a nonlinearity only in the v-equation (σv = 1 and σw = 0)

or (ii) a nonlinearity only in the w-equation (σv = 0 and σw = 1). We refer to these models as
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WEAK-v and WEAK-w respectively.

The O(1) approximations (ε = 0) in both cases (I-clamp and V-clamp) are the linear systems

discussed in the previous section for which Z(ω) = Y −1(ω) and Φ(ω) = −Ψ(ω). We show that

the O(ε) approximation systems are different for I-clamp and V-clamp. In particular, with all other

parameters equal, (i) a nonlinearity in the v-equation (3) has a stronger effect on the Z and Y −1

profiles than the same nonlinearity in the w-equation (4), and (ii) the effect of the nonlinearity is

stronger on the Z profile than on the Y −1 profile. As a result, the O(ε) components and therefore the

overall impedance and admittance are also different.

The results presented below for system (3)-(4) are based on the results for general 2D systems with

weak nonlinearities presented in detail in the Appendix D. Along this section, we frequently refer to

these results and the solutions for generic 2D linear systems presented in the Appendix C.

3.3.1 Asymptotic approximation in I-clamp

We expand the solutions of (3)-(4) with I = Ain sin(ω t) in series of ε

v(t) = v0(t) + ε v1(t) +O(ε2) and w(t) = w0(t) + εw1(t) +O(ε2). (15)

Substituting into (3)-(4) and collecting the terms with the same powers of ε we obtain the following

systems for the O(1) and O(ε) orders, respectively.

O(1) system:


v′0 = −gL v0 − g w0 +Ain sin(ω t),

τ w′0 = v0 − w0,
(16)

The solution to this linear system (Appendix C.3) is given by

v0(t) = A0(ω) sin(ω t) +B0(ω) cos(ω t), (17)

where A0(ω) and B0(ω) are given by (74), and
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Z0(ω) =

√
A0(ω)2 +B0(ω)2

Ain
(18)

is the impedance for the linear system.

O(ε) system:


v′1 = −gL v1 − g w1 + σv v

2
0,

τ w′1 = v1 − w1 + σw v
2
0.

(19)

The solution to this forced linear system (Appendix D.1) is given by

v1(t) = KI(ω) +A1(ω) sin(2ω t) +B1(ω) cos(2ω t)

= KI(ω) +A2
in Z1(ω) sin(2ω t− Φ1(ω)) (20)

where

KI(ω) =
Z0(ω)2A2

in

2 ∆
τ−1 (σv − σw g), (21)

Z1(ω) =

√
A1(ω)2 +B1(ω)2

W (2ω)

1

A2
in

and tan(Φ1(ω)) = −B1(ω)

A1(ω)
, (22)

A1(ω) =
α1(ω) (∆− 4ω2)− 2β1(ω) η ω

W (2ω)
and B1(ω) =

2α1(ω) η ω + β1(ω) (∆− 4ω2)

W (2ω)

(23)

with ∆ and η given by (75), W (2ω) given by (57) with the frequency multiplier k = 2,

α1(ω) = σv [ τ−1A0(ω)B0(ω)− ω (B0(ω)2 −A0(ω)2) ]− σw τ−1 g A0(ω)B0(ω), (24)

and
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β1(ω) = σv [τ−1 (B0(ω)2 −A0(ω)2)/2 + 2ωA0(ω)B0(ω) ]− σw τ−1 g [B0(ω)2 −A0(ω)2 ]/2. (25)

Note that KI and Z1(ω) are independent of Ain.

3.3.2 The onset of nonlinear effects in I-clamp: The nonlinear effects are stronger

for the WEAK-v model than for the WEAK-w model

To the O(ε) order of approximation,

v(t) = Ain Z0(ω) sin(ω t− Φ0(ω)) + εKI(ω) + εA2
in Z1(ω) sin(2ω t− Φ1(ω)). (26)

The frequency-dependent constant term KI(ω) affects the v-envelope (Fig. 4-a1) in a frequency-

dependent manner, but has at most a negligible effect on Z, which involves the difference between

the upper and lower envelopes and not the envelopes themselves. (Note that the difference between

the upper and lower envelope is zero at the O(ε) order.) KI(ω) depends on τ only through the

dependence of Z0(ω) on τ , since the explicit occurrence of the τ term is canceled out by its occurrence

in the denominator of ∆ in (75). Therefore KI(ω) has an effect on the v-envelope even for large values

of τ .

From (21) follows that KI(ω) is positive for the WEAK-v model and negative for the WEAK-w

model (Fig. 4-a1). Had this been the only term in the O(ε) correction for v, the nonlinear effects would

have been amplified in the WEAK-v model and attenuated in the WEAK-w model. The origin of

KI(ω) is the quadratic form of the nonlinearity through the trigonometric transformation of squared

sinusoidal functions into into standard sinusoidal functions. Constant terms will not necessarily be

present for other types of nonlinearities (e.g., cubic).

The effects of Z1(ω) are more difficult to analyze due to its complexity. It is instructive to examine

the effects of Z1(ω) in the limit of large values of τ where eq. (22) is simplified. We show in the

Appendix E.1 that A0(ω) and B0(ω) in (18) areO(1) quantities for large enough values of τ . Therefore,
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for large enough τ , the terms that explicitly depend on τ in both α1(ω) and β1(ω) are O(τ−1), while

the remaining terms are O(1). In particular, the terms involving σw are O(τ−1). This implies that

for large enough τ , the nonlinearity in the WEAK-v model may have a relatively strong effect on the

impedance and phase profiles, while the nonlinearity in the WEAK-w model may have a much weaker

effect. This difference persists for smaller values of τ away from the limit (Fig. 4-b1).

It is important to note that Z1(ω) is not the O(ε) correction to the Z(ω)-profile. This correction

is Z(ω)−Z0(ω) and is affected not only by KI(ω) and Z1(ω), but also by the fact that the sinusoidal

term involves frequencies twice as large as the frequency of Z0(ω), as expected from the presence of

quadratic nonlinearities. Fig. 4-c1 shows that the O(ε) correction to Z(ω) is more pronounced for the

WEAK-v model than for the WEAK-w model and the nonlinear amplification of Z(ω) peaks at the

resonant frequency band.

An additional aspect to note is the effect of the presence of A2
in in the O(ε) correction to v. For

values of Ain < 1, the effects of Ain will be attenuated, while for values of Ain > 1 they will be

amplified. This effect is the same for both models.

3.3.3 Asymptotic approximation in V-clamp

We expand the solutions of (3)-(4) with v = Ain sin(ω t) in series of ε:

w(t) = w0(t) + εw1(t) +O(ε2) and I(t) = I0(t) + ε I1(t) +O(ε2). (27)

Substituting into (3)-(4) and collecting the terms with the same powers of ε we obtain the following

systems for the O(1) and O(ε) orders, respectively.

O(1) system:


τ w′0 + w0 = Ain sin(ω t),

I0 = Ain ω cos(ω t) +Ain gL sin(ω t) + g w0,
(28)

The solution to the first equation in (28) is given by (77) in Appendix C.4. Substitution into the
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second equation in (28) yields

I0 = C0 sin(ω t) +D0 cos(ω t) (29)

where C0(ω) and D0(ω) are given by (79), and

Y0(ω) =

√
C0(ω)2 +D0(ω)2

Ain
=

1

Z0(ω)
(30)

is the admittance for the linear system.

O(ε) system:


τ w′1 + w1 = σw A

2
in [1− cos(2ω t)] / 2,

I1 = g w1 − σv A2
in [1− cos(2ω t)] / 2.

(31)

The solution (Appendix D.2) is given by

w1(t) =
σw A

2
in

2
− σw τ

−1 ωA2
in

W0(2ω)
sin(2ω t)− σw τ

−2A2
in

2W0(2ω)
cos(2ω t) (32)

with W0(2ω) given by (62) with k = 2 and d = −τ−1. Substitution into the second equation in (97)

yields

I1 = KV + C1(ω) sin(2ω t) +D1(ω) cos(2ω t) (33)

or

I1(t) = KV +A2
in Y1(ω) sin(2ω t−Ψ1(ω)) (34)

where

KV = (−σv + g σw)
A2
in

2
, (35)
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Y1(ω) =

√
C1(ω)2 +D1(ω)2

A2
in

and tan(Ψ1(ω)) = −D1(ω)

C1(ω)
, (36)

C1(ω) = −σw
g τ−1 ω

W0(2ω)

A2
in

2
and D1(ω) =

(
σv − σw

g τ−2

W0(2ω)

)
A2
in

2
. (37)

3.3.4 The onset of nonlinear effects in V-clamp: The nonlinear effects are stronger

for the WEAK-v model than for the WEAK-w model

To the O(ε) order of approximation

I(t) = Ain Y0(ω) sin(ω t−Ψ0(ω)) + εKV (ω) + εA2
in Y1(ω) sin(2ω t−Ψ1(ω)). (38)

Similarly to the I-clamp protocol discussed above, the term KV (ω) affects the I-envelope (Fig.

4-a2) in a way that has at most a negligible effect on Y , but in contrast to the I-clamp protocol,

this term is independent of both ω and τ . As for I-clamp protocol, KV originates in the quadratic

nonlinearity and may not be present in other types of nonlinearities.

From (35) follows that KV is negative for the WEAK-v model and positive for the WEAK-w model

(Fig. 4-a2). Had this been the only term in the O(ε) correction for I, the nonlinear effects would have

been amplified in the WEAK-v model and attenuated in the WEAK-w model in terms of the inverse

impedance Y −1.

We show in the Appendix E.2 that for large enough values of τ , τ−1W0(2ω)−1 = O(τ−1) and

τ−2W0(2ω)−1 = O(τ−2) (in the limit τ → ∞ both quantities approach zero). Therefore, for large

values of τ both C1(ω) and the second term in D1(ω) are negligible. The remaining term in D1(ω) is

σv Ain/2, which is independent of both τ and ω. As with the I-clamp protocol, this implies that, in

V-clamp, for larger enough values of τ the nonlinearity in the WEAK-v model may have a relatively

strong effect on the admittance and phase profiles, while the nonlinearity in the WEAK-w model will

have a much weaker effect (Fig. 4-b2).

In Fig. 4-b3 we show the O(ε) correction to the Y (ω)-profile, which is affected by KV (ω), Y1(ω),
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and the sinusoidal term involves frequencies twice as large as the frequency of Y0(ω). This O(ε)

correction is more pronounced for the WEAK-v model than for the WEAK-w model.

3.3.5 The O(ε) correction to the Z-profile is larger than the O(ε) correction to the

Y -profile and these nonlinear differences increase with increasing values of Ain

We first examine this for large values of τ where, as we showed above, all the involved expressions are

simplified. From Appendices E.3 and E.2, for large enough values of τ

Z1(ω) = σv
1

2
√

1 + 4ω2

1

1 + ω2
A2
in and Y1(ω) = σv

1

2 (1 + ω2)2
A2
in, (39)

respectively. Therefore

Z1(ω)

Y1(ω)
=

1 + ω2

√
1 + 4ω2

.

This quotient is equal to 1 for ω = 0 and is an increasing function of ω, indicating that the

frequency-dependent O(ε) correction to Z0(ω) is larger than the O(ε) correction to Y0(ω). This

behavior is illustrated in Figs. 4-b1 and -b2 for τ = 100. Comparing the corresponding blue curves

(WEAK-v model) and red curves (WEAK-w model) shows that, for each model, Z1 > Y1 and the

difference is much larger for Z1 than for Y1. Figs. 4-c1 and -c2 show that the O(ε) approximation

to the Z-profile is larger than the O(ε) approximation to the Y -profile and, in both cases, the O(ε)

approximations to the Z- and Y - profiles are much stronger for the WEAK-v than for the WEAK-w

models. A similar behavior occurs for the frequency-independent O(ε) corrections. Comparing Figs.

4-c1 and -c2 illustrates that the O(ε) correction to the Z-profile is more pronounced than the O(ε)

correction to the Y -profile.

3.4 I-clamp and V-clamp responses for the SIG-v and SIG-w models

Here and in the next section we investigate the effects of the model nonlinearities on the I-clamp

and V-clamp responses to oscillatory inputs in the SIG-v and SIG-w models (5)-(6) for which we
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Figure 4: O(ε) approximation to the voltage and current responses to sinusoidal inputs for the weakly nonlinear WEAK-v

and WEAK-w models (3)-(4). (a) Constant terms in the O(ε) approximation of Z and Y . (a1) KI in (20). (a2) KV

in (34). (b) Coefficients of the oscillatory terms in the O(ε) approximation of Z and Y . (b1) Z1 in (20). (b2) Y1 in

(34). (c) Difference between Z and Y for the weakly nonlinear models and the O(1) approximations (linear system). (c1)

Z(f)− Z0(f). (c2) Y (f)− Y0(f). The Z- and Y -profiles for the WEAK-v and WEAK-w models up to the O(ε) terms was

calculated using (12) and (14), respectively. We used the following parameter values: C = 1, gL = 0.2, g = 0.5, τ1 = 100,

Ain = 1 and ε = 0.01. For the WEAK-v model we used σv = 1 and σw = 0 and for the WEAK-w model we used σv = 0 and

σw = 1.
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cannot find an analytical approximate solution. These nonlinear caricature models are useful because

they are natural extensions of the linearized models discussed above and, unlike the more realistic

quadratic model discussed below, lack parameter regimes where the solutions increase without bound,

thus allowing for the use larger input amplitudes.

I-clamp and V-clamp produce nonlinear amplifications of the Z- and Y −1-profiles

in the SIG-v, but not the SIG-w model

Figs. 5-a1 and -b1 show that for the SIG-v model both the Z- and Y −1- profiles (red) are larger than

the corresponding linear ones (blue). In addition to the nonlinear amplification, the v-response for

the SIG-v model peaks at a lower frequency than the LIN model. In contrast to the SIG-v model, the

Z- and Y −1-profiles (green) are not nonlinearly amplified (panels a1 and b1). However, fres,Z (panel

a1) is lower than the linear prediction (blue). The nonlinear amplification of Z- and Y −1-profiles

for the SIG-v model is more pronounced the stronger the nonlinearities (the smaller the values of

vslp,v and vslp,w), but the SIG-w model still exhibits quasi-linear behavior in these cases (not shown).

Consistent with previous work [59], the nonlinear amplification of the Z-profile for the SIG-v models

is less pronounced for smaller values of τ (due to smaller time scale separation between v and w; not

shown).

I-clamp and V-clamp produce nonlinear changes in the V - and I−1-envelopes in

both the SIG-v and SIG-w models

The behavior of the V - and I−1-envelopes (Figs. 5-a2 and -b2) for the SIG-w model is different from the

SIG-v and LIN models. Although the Z- and Y −1-profiles show quasi-linear behavior, both the upper

and lower envelopes are displaced above the linear ones (green). In other words, the upper envelopes are

nonlinearly amplified, while the lower envelopes are nonlinearly attenuated. Because the V - and I−1-

envelopes are displaced almost in a parallel manner, the Z- and Y −1-profiles remain almost identical

to the linear ones. This implies that the Z- and Y −1 profiles for the SIG-w model fail to capture

significant nonlinear aspects of the corresponding V - and I−1 envelopes, and therefore are not good
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predictors of the voltage and current response behaviors. This observation is important, particularly

when one wants to infer the neuronal suprathreshold resonant properties from the subthreshold ones,

where the action potential threshold depends primarily on the upper V -envelope.

The differences between the SIG-v and SIG-w models are more pronounced for stronger nonlin-

earities, but the lower I−1-envelope for the SIG-v model remains almost unaffected by changes in Ain

(not shown).

The nonlinear amplification of the response for the SIG-v model is significantly

stronger for I-clamp and V-clamp

Comparing Figs. 5-a1 and -b1 shows that the differences in the Z-profiles for the SIG-v and LIN models

(red and blue in panels a1 and b1) are significantly larger than the differences in the Y −1 profiles for

the same models. The same type of behavior is observed in the corresponding V - and I−1-envelopes

(panels a2 and b2). These phenomena are stronger with more pronounced nonlinearities, but the

relative differences between Z and Y −1 persist (not shown). The nonlinear amplification Y −1-profile

for the SIG-v model is less affected (not shown) by decreasing values of τ . Note that changes in τ

change both fZ,res and fY,res and therefore the Z- and Y −1 profiles are displaced with respect to the

values in Figs. 5-a1 and -b1.

I-clamp captures nonlinear phase-shift effects in both the SIG-v and SIG-w models

better than V-clamp

The Φ-profiles in Fig. 5-a3 show that fZ,phas both both the SIG-v and SIG-w models (red and green)

are not well approximated by fZ,phas for the LIN model, with fZ,phas for the SIG-w model smaller than

for the SIG-v model. In contrast, fY,phas for the SIG-v and LIN models are almost equal and slightly

higher than fY,phas for the SIG-w model. This behavior persists for stronger nonlinearities, although

the differences increase as the nonlinearities become more pronounced (not shown). This behavior

also persists for other values of τ although both fZ,phas and fY,phas change with τ (not shown).
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Figure 5: Linear and nonlinear voltage and current responses to sinusoidal current and voltage
inputs respectively for a representative set of parameter values. (a) Voltage response to sinusoidal
currents inputs. (b) Current response to sinusoidal voltage inputs. We used the following parameter values:
C = 1, gL = 0.25, g = 2, τ1 = 100, Vslp,sgv = 1, vslp,sgw = 1, Iin = 1 (panels a) and Vin = 1 (panels b).
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3.5 I-clamp and V-clamp responses for the quadratic model

We now extend our investigation of the I-clamp and V-clamp responses to oscillatory inputs to the more

realistic quadratic model v-nullcline in the quadratic model (8)-(9), which has a strictly parabolic v-

nullcline (Fig. 6). Such quadratic models can be derived from conductance-based models that describe

the interaction between a regenerative current (e.g., persistent sodium) and a restorative current (e.g.,

h- or M-), when the voltage (v-)nullcline in the subthreshold voltage regime is parabolic [60,64].

When the resting potential (fixed-point) is away from the knee of the v-nullcline (Fig. 6-b1) the

dynamics are quasi-linear, as reflected in the symmetry of the system’s response (Fig. 6-b2) to positive

(blue curve) and negative (cyan curve) constant inputs relative to the resting potential (gray). When

the resting potential is closer to the minimum of the v-nullcline (Fig. 6-a1), this symmetry is broken

due to the presence of the parabolic nonlinearity and the responses to positive constant inputs are

more amplified than the responses to negative constant inputs (Figs. 6-a1 and -a2).

Fig. 7 shows that the principles extracted from the previous models regarding the differences

between I-clamp and V-clamp persist for the quadratic model (8)-(9). Panels a and b correspond

to the same model parameters except for ε which is larger in panels a (ε = 0.01) than in panels b

(ε = 0.05). (The value of ε in panels a correspond to the value of τ in the weakly nonlinear models

investigated above.) The values of Ain in each case were adjusted to be just below the threshold value

for which the solution increases without bound, indicating the generation of spikes.

In both cases, the V-clamp responses (red) almost coincide with linear responses (green), while

the I-clamp responses (blue) are nonlinearly amplified. The red voltage envelopes (Fig. 7-a2 and

-b2) are displaced with respect to the green ones due primarily to the constant terms generated by

the quadratic nonlinearities. This has almost no effect on the corresponding Z- and Y −1-profiles (

Fig. 7-a1 and -b1). The amplification of the blue voltage envelopes is not symmetric, reflecting the

presence of the quadratic nonlinearities [60]. Because of the stronger time scale separation the Z- and

Y −1-profiles for ε = 0.01 (Fig. 7-a1) shows a sharper peak compared to the Z- and Y −1-profiles for

ε = 0.05.
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Figure 6: Dynamics of the autonomous quadratic model for representative parameter values and levels of λ.

(a) λ = −0.2. (b) λ = −0.7. λ represents the baseline applied (DC) current, which determines the steady state values of v

and the fixed-point (black dot on the intersection between the nullclines in panels a). The parameter ∆λ represents constant

deviations from λ. Panels a1 and b1. Superimposed phase-plane diagrams for ∆λ = 0, ∆λ = 0.15 and ∆λ = −0.15.

The solid-green w-nullcline corresponds to ∆λ = 0 and the dashed-green w-nullclines correspond to ∆λ = ±0.15. Their

intersection with the red v-nullcline determines the fixed-points for the perturbed systems. Trajectories initially at the

fixed-point for ∆λ = 0 evolve towards the perturbed fixed-points for ∆λ = 0.15 (blue) and ∆λ = −0.15 (cyan). The closer

the fixed-points to the knee of the V -nullcline, the more nonlinear and amplified is the response. The bottom panels are

magnifications of the top ones. Panels a2 and b2. Voltage traces. We used the following parameter values a = 0.1, α = 0.5,

ε = 0.1.
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Figure 7: Voltage and current responses to sinusoidal current and voltage inputs respectively for the quadratic

and linearized quadratic models for representative parameter values. (a) ε = 0.01 and Ain = 0.05. (b) ε = 0.05

and Ain = 0.13. The value of Ain in both cases is below, but close to the threshold value for spike generation. Top panels.

Z- and Y −1- profiles. Middle panels. V and I−1 envelopes. Bottom panels. Φ- and Ψ-profiles. We used the following

parameter values a = 0.1, α = 0.5, λ = −0.2.
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3.6 I-clamp and V-clamp responses in biological neurons

To examine the predictions of our mathematical analysis, we explored measurements of impedance

and admittance in the PD neurons of the crab stomatogastric ganglion. PD neurons have been

shown to produce resonance and their impedance profiles have been measured in both I-clamp and

V-clamp [66–68]. Additionally, it is known that the modulatory neuropeptide proctolin activates a

modulatory-activated inward current (IMI) in these neurons. The voltage-dependence of IMI and its

kinetics are very similar to that of the persistent sodium current INaP [69]. We therefore predicted

that proctolin should amplify the resonance properties [5] of the PD neuron, and sought to measure

the effect of proctolin in both V-clamp and I-clamp conditions.

A comparison between these two cases is shown in Fig. 8. We measured the response of the

neuron in I-clamp (Fig. 8a1) and V-clamp (Fig. 8a2), respectively, by injecting a sweeping-frequency

sinusoidal chirp function as a current or voltage input. Because the PD neuron resonance frequency

is close to 1 Hz, we allowed the chirp function to sweep frequencies from 0.1-4 Hz. As predicted from

our analysis, in I-clamp, addition of proctolin greatly enhanced the peak of the Z-profile (Fig. 8b1),

whereas, in V-clamp the same modulatory effect only produced a moderate change in the Y −1-profile

(Fig. 8b2).

Discussion

Membrane potential (subthreshold) resonance has been studied in neurons using both the I- and V-

clamp techniques [5–58]. Despite the differences in dynamic complexity between both approaches, for

linear systems, they produce equivalent results. This would apply to the quasilinear cases involving

only resonant processes such as Ih or IM , or their interplay with low levels of amplifying processes

such as INap where the system is at most quasi-linear [61, 62]. However, the subthreshold nonlinear

effects generated by higher levels of the amplification processes [15, 16, 60–62] may play significant

roles in the communication of the neuronal subthreshold resonance properties to the spiking level.

These effects include not only the monotonically increasing dependence of the impedance profile with
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Figure 8: Voltage and current responses to chirp current and voltage inputs respectively for the biological

PD neuron. (a) The membrane current response of the biological PD neuron, voltage clamped with a chirp function

sweeping frequencies of 0.1 to 4 Hz and the voltage range of -60 to -30 mV. Responses are shown in control saline (Ctrl,

a1) and in the presence of 1 µM proctolin (Proc a2). Proctolin activates the voltage-gated current IMI , which acts as an

amplifying current. (b) The impedance b1 and inverse admittance b2 profiles corresponding to the protocols shown in panel

a. Profiles shown are samoothed fits to N=4 experiments. Dots show all actual data point measurements.
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the input amplitude, but also the break of symmetry between the upper and lower envelopes of the

voltage response that renders the impedance an imprecise predictor of the voltage response peak.

We set out to clarify several aspects of the differences between the nonlinear subthreshold responses

to oscillatory inputs in I- and V-clamp using a variety of neuronal models. The primary dynamic

difference between the two methods is the lower dimensionality of V-clamp as compared to I-clamp,

which is the result of the elimination, in V-clamp, of voltage as a dynamic variable. Because of

this, complex responses to constant inputs such as overshoots (depolarization or sags) and damped

subthreshold oscillations that can be observed in I-clamp are not necessarily reflected in V-clamp. In

contrast, the steady state responses of linear systems to constant inputs are completely equivalent in

I-clamp and V-clamp, in the sense that they are the reciprocals of one another. Therefore it is not

surprising that for linear systems impedance and admittance are also reciprocals.

This equivalence between voltage and current responses in I-clamp and V-clamp, respectively,

breaks down for nonlinear systems. Even with simple nonlinearities, the differences between the two

methods are easier to see for constant inputs, but not for time-dependent inputs, since the equations

are not analytically solvable. For example, for the parabolic system (3)-(4), the steady state voltage

response to a constant I involves a square root with I inside the radical, while the steady state current

response to constant values of V is a quadratic function of V . In order to understand the onset of

the differences between I- and V-clamp we used asymptotic analysis (regular perturbation analysis)

on weakly quadratic models. As a result we concluded that effects of the nonlinearities are stronger

on the Z-profiles than on the corresponding Y −1-profiles and that the effects of the nonlinearities on

the voltage equation are stronger on both profiles than if the same nonlinearities are in the recovery

variable equation, consistent with previous findings [59].

We then set out to investigate numerically the differences between the I- and V-clamp responses

in additional nonlinear models. Our main findings are that the effects of nonlinearities are stronger

when they are located in the voltage equation than in the recovery variable equations, and in the

former case, the nonlinear amplifications are significantly stronger in I-clamp than V-clamp.

Finally, we examined the predictions of our analysis in an identified biological neuron, the PD
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neuron in the crab stomatogastric ganglion. The PD neuron shows resonance at a frequency of

around 1 Hz, as measured both I- and V-clamp conditions [66–68]. Additionally, the neuropeptide

proctolin activates a low-threshold voltage-gated inward current (IMI) in this neuron [70, 71], which

has a voltage-dependence and kinetics similar to a persistent sodium current and should therefore act

as an amplifying factor for the resonance properties of this neuron. As predicted from our analysis,

addition of proctolin only moderately increased the resonance peak of the inverse admittance profile

measured in V-clamp, but the same treatment produced a large enhancement of resonance of the

impedance profile in I-clamp. Biophysically, this difference could be explained by the fact that, in

V-clamp, the regenerative properties of the amplifying current IMI are restrained by limitations on

changes in the membrane potential.

In conclusion, although V-clamp allows for better control of the experimental measurements when

different conditions (modulators, synaptic effects, etc.) are compared (e.g. see [68]), in the presence

of large nonlinear currents, such as regenerative inward currents that act as amplifying factors of res-

onance, measurements in I-clamp provide a more reliable characterization of the frequency-dependent

responses of neurons.
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A Equivalence between the I-clamp impedance and the

V-clamp admittance for linear systems

The I-clamp impedance and the V-clamp admittance are equivalent if the corresponding amplitudes

are the reciprocal of one another and the corresponding phases have the same absolute value but

different sign. Using the notation introduced in this paper, Z(ω) = Y −1(ω) and Φ(ω) = −Ψ(ω).

We illustrate this for the following linear system,


V ′ = a V + bw1 + γ w2 + I,

w′1 = c V + dw1,

w′2 = αV + β w2,

(40)

where the “prime” sign represents the derivative with respect to time t and a, b, c, d, α, β and γ

are constants satisfying the condition that the eigenvalues of the characteristic polynomial for (40)

with a constant value of I have non-positive real part. System (40) has the structure of the linearized

conductance-based models [6, 72] for the voltage (V ) and two gating variables (w1 and w2).

We assume

I = AI(ω) eiωt and V = AV (ω) eiωt (41)

where ω is the frequency (a linear function of the input frequency f). In I-clamp AI = Ain and

AV = Aout, while in V-clamp AI = Aout and AV = Ain. Typically, Ain is independent of ω, but this

need not be the case. Note that eqs. (40) are forced 3D and 2D linear systems in I- and V-clamp,

respectively.

The I-clamp impedance and the V-clamp admittance are defined as

Z(ω) =
AV (ω)

AI
and Y(ω) =

AI(ω)

AV
, (42)

respectively, where Z and Y are complex quantities with amplitude (Z and Y , respectively) and phase
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(Φ and Ψ, respectively).

Alternatively, in I-clamp

I = AI sin(ωt) and V = AV sin(ωt− Φ), (43)

and in V-clamp

V = AV sin(ωt) and I = AI sin(ωt−Ψ), (44)

where AI and AV are real quantities. According to this formulation, AI = Ain and AV = Z(ω) =

|Z(ω)| in I-clamp, and AI = Y (ω) = |Y(ω)| and AV = Ain in V-clamp.

The particular solutions (neglecting transients) of the second and third equations in (40) are given,

respectively, by

w1 = − c

d− i ω
V and w2 = − α

β − i ω
V. (45)

Substituting (45) into the first equation in (40) and rearranging terms yields

V ′ − a V − I − F (ω)V = 0 (46)

where

F (ω) = −(b c β + αγ d)− i ω (b c+ αγ)

(d b− ω2)− i ω (d+ β)
. (47)

Substituting (41) into (46) gives the condition

i ω − a− F (ω) =
AI(ω)

AV (ω)
. (48)

Therefore,
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1

Z(ω)
= Y(ω). (49)

and

Z(ω) = Y (ω)−1 and Φ(ω) = −Ψ(ω) (50)

B Solutions to oscillatory forced linear ODEs

B.1 A system of two forced ODEs

Any system of ODEs of the form


v′ = a v + bw + F (t),

w′ = c v + dw +G(t),
(51)

can be written as

v′′ − η v′ + ∆ v = −dF (t) + bG(t) + F ′(t), (52)

where

η = a+ d and ∆ = a d− b c. (53)

If F (t) and G(t) are linear combinations of sinusoidal and cosinusoidal function of the same fre-

quency (k ω), so there is the right-hand side of eq. (52). Therefore it suffices to solve

v′′ − η v′ + ∆ v = α sin(k ω t) + β cos(k ω t). (54)

The solution of eq. (54) is given by
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v(t) = A sin(k ω t) +B cos(k ω t), (55)

where

A =
α (∆− k2ω2)− β η k ω

W (k ω)
and B =

αη k ω + β (∆− k2ω2)

W (k ω)
(56)

with

W (k ω) = (∆− k2ω2)2 + η2k2ω2. (57)

This solution satisfies

A2 +B2 =
α2 + β2

W (k ω)
. (58)

B.2 A single forced ODE

The solution to any ODE of the form

w′ − dw = α sin(k ω t) + β cos(k ω t) (59)

is given by

w(t) = C sin(k ω t) +D cos(k ω t) (60)

where

C =
−αd+ β k ω

W0(k ω)
and D = −αk ω + β d

W0(k ω)
(61)

with
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W0(k ω) = d2 + k2ω2. (62)

This solution satisfies

C2 +D2 =
α2 + β2

W0(k ω)
. (63)

C Linear systems receiving oscillatory inputs in I-clamp

and V-clamp

C.1 A linear system in I-clamp

System (51) with F (t) = Ain sin(ω t) and G(t) = 0 can be written as

v′′ − η v′ + ∆ v = −Ain d sin(ω t) +Ain ω cos(ωt), (64)

whose solution is given by (Appendix B.1)

v(t) = A0(ω) sin(ω t) +B0(ω) cos(ω t), (65)

where

A0(ω) = −d (∆− ω2) + η ω2

W (ω)
Ain and B0(ω) =

−d η ω + ω (∆− ω2)

W (ω)
Ain (66)

with W (ω) given by (57) with k = 1. From (58)

A0(ω)2 +B0(ω)2 =
d2 + ω2

W (ω)
A2
in = Z(ω)2A2

in. (67)
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C.2 A linear system in V-clamp

System (51) with F (t) = I, v(t) = Ain sin(ω t) and G(t) = 0 can be written as


w′ − dw = Ain c sin(ω t),

I = Ain ω cos(ω t)−Ain a sin(ω t)− bw,
(68)

The solution to the first equation in (68) is given by (Appendix B.2)

w(t) = −Ain
d c

W0(ω)
sin(ω t)−Ain

ω c

W0(ω)
cos(ω t) (69)

with W0(ω) given by (62) with k = 1. Substitution into the second equation in (68) yields

I = C0 sin(ω t) +D0 cos(ω t) (70)

where

C0(ω) =

(
d b c

W0(ω)
− a

)
Ain and D0(ω) =

(
ω b c

W0(ω)
+ ω

)
Ain. (71)

It can be shown that these constants satisfy

C0(ω)2 +D0(ω)2 =
(∆− ω2)2 + η2 ω2

W0(ω)
A2
in =

W (ω)

d2 + ω2
A2
in =

A2
in

Z(ω)2
= Y (ω)2A2

in. (72)

C.3 A linearized conductance-based model in I-clamp

The solution to System (1)-(2) with I(t) = Ain sin(ω t) (I-clamp) is given by (Appendix D)

v(t) = A(ω) sin(ω t) +B(ω) cos(ω t) (73)

where

A(ω) =
τ−1 (∆− ω2)− η ω2

W (ω)
Ain and B(ω) =

τ−1 η ω + ω (∆− ω2)

W (ω)
Ain (74)
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with

∆ =
gL + g

τ
, η = −1 + gL τ

τ
, and W (ω) = (∆− ω2)2 + η2 ω2. (75)

From (58),

Z(ω) =

√
A(ω)2 +B(ω)2

Ain
=

√
τ−2 + ω2

W (ω)

1

Ain
. (76)

C.4 A linearized conductance-based model in V-clamp

If, instead, we assume that v(t) = Ain sin(ω t) (V-clamp), then the solution to eq. (2) is given by

(Appendix D)

w(t) = Ain
τ−2

W0(ω)
sin(ω t)−Ain

ω τ−1

W0(ω)
cos(ω t) (77)

with

W0(ω) = τ−2 + ω2. (78)

Substitution into the second equation in (68) yields

I = C(ω) sin(ω t) +D(ω) cos(ω t) (79)

where

C(ω) =

[
g τ−2

W0(ω)
+ gL

]
Ain and D(ω) =

[
−ω g τ

−1

W0(ω)
+ ω

]
Ain. (80)

It can be easily shown that

C(ω)2 +D(ω)2 =
(∆− ω2)2 + η2 ω2

W0(ω)
A2
in =

W (ω)

τ−2 + ω2
A2
in =

A2
in

Z(ω)2
= Y (ω)2A2

in. (81)
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D Weakly nonlinear forced systems of ODEs in I- and

V-clamp: asymptotic approach

D.1 Oscillatory input in I-clamp

We consider the following weakly perturbed system of ODEs


v′ = a v + bw + ε σv v

2 + Iin(t),

w′ = c v + dw + ε σv v
2.

(82)

where

Iin(t) = Ain sin(ω t) (83)

and ε is assumed to be small. We expand the solutions of (82) in series of ε

v(t) = v0(t) + ε v1(t) +O(ε2) and w(t) = w0(t) + εw1(t) +O(ε2). (84)

Substituting into (82) and collecting the terms with the same powers of ε we obtain the following

systems for the O(1) and O(ε) orders, respectively,


v′0 = a v0 + bw0 +Ain sin(ω t),

w′0 = c v0 + dw0,
(85)

and


v′1 = a v1 + bw1 + σv v

2
0,

w′1 = c v1 + dw1 + σw v
2
0.

(86)

Solution to the O(1) system

The solution to System (85) is given in Appendix C.1 with v substituted by v0.
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Solution to the O(ε) system

System (86) can be rewritten as

v′′1 − η v′1 + ∆ v1 = −σv d v20(t) + σw b v
2
0(t) + 2σv v0(t) v

′
0(t) (87)

where

v20(t) =
A0(ω)2 +B0(ω)2

2
+
B0(ω)2 −A0(ω)2

2
cos(2ω t) +A0(ω)B0(ω) sin(2ω t) (88)

The solution to (87) is given (Appendix B.1) by

v1(t) =
A0(ω)2 +B0(ω)2

2 ∆
(−σv d+ σw b) +A1(ω) sin(2ω t) +B1(ω) cos(2ω t) (89)

where

A1(ω) =
α1(ω) (∆− 4ω2)− 2β1(ω) η ω

W (2ω)
and B1(ω) =

2α1(ω) η ω + β1(ω) (∆− 4ω2)

W (2ω)

(90)

with W (2ω) given by (57) with k = 2,

α1(ω) = σv [−dA0B0 − ω (B2
0 −A2

0) ] + σw bA0B0, (91)

and

β1(ω) = σv [−d (B2
0 −A2

0)/2 + 2ωA0B0 ] + σw b (B2
0 −A2

0)/2. (92)

D.2 Oscillatory input in V-clamp

We consider the following weakly perturbed system of ODEs
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v′ = a v + bw + ε σx v

2 + I,

w′ = c v + dw + ε σy v
2.

(93)

where

v = vin(t) = Ain sin(ω t) (94)

and ε is assumed to be small. We expand the solutions of (93) in series of ε

w(t) = w0(t) + εw1(t) +O(ε2) and I(t) = I0(t) + ε I1(t) +O(ε2). (95)

Substituting into (93) and collecting the terms with the same powers of ε we obtain the following

systems for the O(1) and O(ε) orders, respectively,


w′0 − dw0 = Ain c sin(ω t),

I0 = Ain ω cos(ω t)−Ain a sin(ω t)− bw0,
(96)

and


w′1 − dw1 = σw A

2
in [1− cos(2ω t)] / 2,

I1 = −bw1 − σv A2
in [1− cos(2ω t)] / 2.

(97)

Solution to the O(1) system

The solution to System (96) is given in Appendix C.2 with w and I and substituted by w0 and I0,

respectively.

Solution to the O(ε) system

The solution to the first equation in (97) is given by (Appendix B.2)

w1(t) = −σw A
2
in

2 d
− σw ωA

2
in

W0(2ω)
sin(2ω t) +

σw dA
2
in

2W0(2ω)
cos(2ω t) (98)
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with W0(2ω) given by (62) with k = 2. Substitution into the second equation in (97) yields

I1 = −
(
σv −

b

d
σw

)
A2
in

2
+ C1(ω) sin(2ω t) +D1(ω) cos(2ω t) (99)

where

C1(ω) = σw
b ω

W0(2ω)
A2
in, and D1(ω) =

(
σv − σw

b d

W0(2ω)

)
A2
in

2
. (100)

E Asymptotic formulas for large values of τ

E.1 Impedance zeroth-order approximation in I-clamp

For large enough values of τ , the coefficients of the solutions to the linear system (16) satisfy A0(ω) =

O(1) and B0(ω) = O(1), and

A0(ω) =
1

1 + ω2
Ain, B0(ω) = − ω

(1 + ω2)
Ain, (101)

and

Z0(ω) =

√
A0(ω)2 +B0(ω)2

Ain
=

√
1

1 + ω2
. (102)

We begin with eqs. (74) and (75) and assume all other parameter values are O(1). For large

enough values of τ these quantities behave as follows

∆ =
1

τ
, η = −

(
1

τ
+ 1

)
, and W (ω) =

(
1

τ
− ω2

)2

+

(
1

τ
+ 1

)2

ω2, (103)

and
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A0(ω) =
(τ−1 − ω2) + (1 + τ)ω2

τ W (ω)
Ain and B0(ω) =

−(τ−1 + 1)ω + ω (1− τ ω2)

τ W (ω)
Ain (104)

where

τ W (ω) =

(
τ1/2

τ
− τ1/2ω2

)2

+

(
τ1/2

τ
+ τ1/2

)2

ω2,

which can be reduced to

τ W (ω) = τ ω4 + τ ω2.

Substituting into (104) and rearranging terms yields (101) and 102.

E.2 Admittance first-order approximation in V-clamp

For large enough values of τ

C1(ω) = 0 and D1(ω) = σv
A2
in

2
. (105)

From (36) this implies that

Y1(ω) = σv
A2
in

2
. (106)

We begin with eqs. (37), for C1(ω) and D1(ω), and eq. (62) with k = 2 and d = −τ−1 for W0(2ω).

Multiplication of the latter by τ and τ2 yields, respectively,

τ W0(2ω) =
1

τ
+ 4τ ω2 and τ2W0(2ω) = 1 + 4τ2 ω2. (107)

For large values of τ
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1

τ W0(2ω)
=

1
1
τ + 4τ ω2

= O(τ−1) and
1

τ2W0(2ω)
=

1

1 + 4τ2 ω2
= O(τ−2).

Therefore, for large enough values of τ in (37) we obtain (105).

E.3 Impedance first-order approximation in I-clamp

For large enough values of τ

Z1(ω) = σv
1

2
√

1 + 4ω2

1

1 + ω2
. (108)

From (24) and (25) and the fact that A0(ω) = O(1) and B0(ω) = O(1) (Appendix E.1), it follows

that for large enough values of τ

α1(ω) = −σv ω [B0(ω)2 −A0(ω)2] and β1(ω) = σv [2ωA0(ω)B0(ω) ]. (109)

Substituting into (22) and rearranging terms we obtain

Z1(ω)2 = σ2v ω
2 [B0(ω)2 +A0(ω)2]2

W (2ω)

1

A2
in

. (110)

From (103) (and large enough values of τ)

W (2ω) = 16ω4 + 4ω2. (111)

Substituting (111) and (101) into (110) we obtain (108).
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