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Abstract 10 

Rapid image presentations combined with time-resolved multivariate analysis methods of EEG or MEG 11 

(rapid-MVPA) offer unique potential in assessing the temporal limitations of the human visual system. 12 

Recent work has shown that multiple visual objects presented sequentially can be simultaneously 13 

decoded from M/EEG recordings. Interestingly, object representations reached higher stages of 14 

processing for slower image presentation rates compared to fast rates. This fast rate attenuation is 15 

probably caused by forward and backward masking from the other images in the stream. Two factors 16 

that are likely to influence masking during rapid streams are stimulus duration and stimulus onset 17 

asynchrony (SOA). Here, we disentangle these effects by studying the emerging neural representation of 18 

visual objects using rapid-MVPA while independently manipulating stimulus duration and SOA. Our 19 

results show that longer SOAs enhance the decodability of neural representations, regardless of 20 

stimulus presentation duration, suggesting that subsequent images act as effective backward masks. In 21 

contrast, image duration does not appear to have a graded influence on object representations. 22 

Interestingly, however, decodability was improved when there was a gap between subsequent images, 23 

indicating that an abrupt onset or offset of an image enhances its representation. Our study yields 24 

insight into the dynamics of object processing in rapid streams, paving the way for future work using this 25 

promising approach. 26 
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Introduction 28 

The human brain processes rapidly changing visual input and can effortlessly extract abstract meaning 29 

when stimuli are presented in rapid sequences (Mack, Gauthier, Sadr, & Palmeri, 2008; Mack & Palmeri, 30 

2011; Potter, Wyble, Hagmann, & McCourt, 2014; Thorpe, Fize, & Marlot, 1996; VanRullen & Thorpe, 31 

2001). Recently, the temporal dynamics of the emerging representation of visual objects have been 32 

studied using fast presentation rates and multivariate analysis methods of electroencephalography 33 

(EEG) and magnetoencephalography (MEG) (Grootswagers, Robinson, & Carlson, 2019; Marti & 34 

Dehaene, 2017; Mohsenzadeh, Qin, Cichy, & Pantazis, 2018). Notably, multiple visual objects 35 

represented in different stages of the visual system can be decoded from the EEG signal at the same 36 

time (Grootswagers et al., 2019). Object representations persisted for longer when presented at slower 37 

presentation rates compared to faster rates (Grootswagers et al., 2019; Mohsenzadeh et al., 2018). 38 

Additionally, images presented at slower rates reached higher stages of processing, such that categorical 39 

abstraction of animacy was evident for images in 5Hz but not 20Hz RSVP sequences (Grootswagers et 40 

al., 2019). The extended neural representations for slower versus faster presentation rates could be 41 

ascribed to the longer stimulus duration, or the longer stimulus onset asynchrony (SOA) of images in 42 

slower sequences. 43 

 44 

Limitations in visual processing during rapid serial visual presentation (RSVP) is likely due to interference 45 

from processing multiple images in short succession. Decades of cognitive research have documented 46 

limitations in reporting targets during RSVP in phenomena such as the attentional blink (Broadbent & 47 

Broadbent, 1987; Raymond, Shapiro, & Arnell, 1992) and repetition blindness (Kanwisher, 1987). Such 48 

effects are typically studied to investigate high-level cognitive limitations rather than low-level visual 49 

processing interference (Raymond et al., 1992; Sergent, Baillet, & Dehaene, 2005). It is important to 50 

note, however, that target masking has a large effect on target detection during RSVP; for example, 51 

during the attentional blink, masking of the first target attenuates reporting of the second target 52 
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(Seiffert & Di Lollo, 1997) and masking of the second target is necessary to elicit the attentional blink 53 

(Giesbrecht & Di Lollo, 1998). These findings suggest an important effect of low-level visual masking on 54 

higher-level processing during RSVP. In fast sequences, images are likely subject to forward masking by 55 

the previous image and backward masking by the next image in the sequence. Changing the image 56 

presentation rates has the effect of altering the timing of the masks. Backward and forward masking 57 

seem to have dissociable effects on perception, with one study showing maximal forward masking for 58 

0ms gap between stimuli, and maximal backward masking at 30-90ms gap (Bachmann & Allik, 1976). 59 

EEG has shown that backward pattern masking influences processing after approximately 180ms, 60 

consistent with recurrent processing rather than feedforward processing deficits (Fahrenfort, Scholte, & 61 

Lamme, 2007). Understanding how masking affects the temporal dynamics of image processing during 62 

rapid-MVPA can yield important insights about the temporal limitations of the human visual system. 63 

 64 

Studies of periodic visual evoked potentials also provide insights into the effect of image presentation 65 

rate on the extent of visual object processing. Faces presented at slower frequencies reach further 66 

stages of processing than those at faster rates, such that 15Hz presentations seemed limited to early 67 

visual processes, 6Hz showed increased occipitotemporal responses, and 3.75Hz included higher level 68 

cognitive effects and frontal responses (Collins, Robinson, & Behrmann, 2018). Retter et al., (2018) 69 

showed that SOA and image duration had dissociable effects on the periodic response. Images at 10Hz 70 

had larger evoked responses than those at 20Hz, but a 50% on-off image duty cycle (50ms duration, 71 

100ms SOA) resulted in larger responses than 100% duty cycle with same SOA (100ms duration, 100ms 72 

SOA), a finding attributed to forward masking in the 100% duty cycle condition (Retter, Jiang, Webster, 73 

& Rossion, 2018). Taken together, it seems likely that SOA and image duration have separable influences 74 

on visual responses, but how these differentially influence the temporal dynamics of individual image 75 

processing remains to be seen. 76 

 77 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/515619doi: bioRxiv preprint 

https://doi.org/10.1101/515619


 

 5

Here, we investigate the effect of image masking on the temporal dynamics of image processing by 78 

studying the emerging neural representation of visual objects in fast visual streams while separately 79 

manipulating stimulus duration and SOA. These factors could be predicted to influence the temporal 80 

dynamics of individual image processing in a linear or non-linear fashion. Varying SOA, and thus the 81 

amount of time an image can be processed before another image (acting as a mask) appears, could 82 

linearly influence the duration of image processing if the length of processing is directly related to the 83 

amount of time dedicated to processing the uninterrupted images. Alternatively, there might be a limit 84 

on the number of items that can be held in the visual system at once. If SOA influences the dynamics of 85 

image processing depending on the stage of processing that is influenced by forward and backward 86 

masking, this would predict a non-linear increase in image processing. Our results show that a longer 87 

SOA enhances the decodability of the neural representations in a non-linear fashion, regardless of 88 

stimulus presentation duration. Our results also suggest that presenting stimuli with no gap between 89 

subsequent images (100% duty cycle) delays the processing of each image. 90 

 91 

Methods 92 

Stimuli, data, and code are available at: https://doi.org/10.17605/OSF.IO/3RMJ9. 93 

 94 

Stimuli 95 

We collected a stimulus set of 24 visual objects spanning 6 categories (Figure 1A). Stimuli were obtained 96 

from the free image hosting website www.pngimg.com. The top-level categories were animals and 97 

vehicles subdivided into 3 subcategories: birds, dogs, fish, boats, cars, and planes. Each of the 98 

subcategories consisted of 4 images each. These images allowed us to investigate visual representations 99 

for three different categorical levels: the animal/vehicle distinction (2 categories), object category (6 100 

categories, e.g., boats, birds) and image-level (24 images, e.g., yacht, duck). Images were presented 101 
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using Psychtoolbox (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) in Matlab. Images were each shown 102 

foveally within a square at approximately 3 x 3 degrees of visual angle. 103 

 104 

Participants and experimental procedure 105 

Participants were 20 adults recruited from the University of Sydney (12 female, 8 male; mean age: 106 

25.75, age range 18-52 years) in return for payment or course credit. The study was approved by the 107 

University of Sydney ethics committee and informed consent was obtained from all participants. 108 

Participants viewed 200 sequences of objects. Each sequence consisted of the 24 stimuli in a random 109 

order. To ensure all images were equally masked by other images, the sequences were padded with 12 110 

stimuli on both ends, which were excluded from the decoding analysis. The 12 padding stimuli consisted 111 

of the same sequence in reverse order, with mirrored versions of the images. Essentially, this meant 112 

that each of the 24 experimental images was presented twice per sequence. To keep participants 113 

engaged, at the end of each sequence, after a 1000ms blank screen, a random image from the stimulus 114 

set was presented for 100ms and participants categorised this stimulus as animal or vehicle using a left 115 

or right button press (response mappings were alternated between participants). The presentation rates 116 

of the sequences were chosen from one of five conditions, which were randomized throughout the 117 

study (40 sequences per condition). In conditions 1-3, the presentation duration varied (200ms, 100ms, 118 

and 50ms) while keeping the SOA at 200ms. In conditions 3-5, the SOA varied (200ms, 100ms, and 119 

50ms) while keeping the presentation duration at 50ms (Figure 1B). This set-up allowed us to use 120 

condition 3 as anchor point to compare the effects between varying SOA and duration. In total, 121 

participants viewed 9600 presentations, consisting of 80 presentations for each of the 24 images and for 122 

the 5 duration/SOA conditions. 123 

 124 
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 125 

Figure 1. Stimuli and design. A) Experimental stimuli consisted of 24 images of objects organised at three 126 

different levels: animal versus vehicle, object category (6 categories e.g., birds, boats) and image (e.g., 127 

duck, chicken). B) Example time-lines illustrating the timing of the first six stimuli in a sequence in the 128 

different conditions. Images were presented in sequences with image durations of 200ms, 100ms and 129 

50ms, and SOA of 200ms, 100ms and 50ms (5 conditions). 130 

 131 

EEG recordings and preprocessing 132 

EEG data were continuously recorded from 64 electrodes (arranged in the international 10–10 system 133 

(Oostenveld & Praamstra, 2001)) using a BrainVision ActiChamp system, digitized at a 1000-Hz sample 134 

rate. Scalp electrodes were referenced to Cz during recording. EEGlab (Delorme & Makeig, 2004) was 135 

used to pre-process the data offline, where data were filtered using a Hamming windowed sinc FIR filter 136 

with highpass of 0.1Hz and lowpass of 100Hz. Data were then downsampled to 250Hz and epochs were 137 
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created for each stimulus presentation ranging from [-100 to 1000ms] relative to stimulus onset. No 138 

further preprocessing steps were applied. 139 

 140 

Decoding analysis 141 

An MVPA time-series decoding pipeline (Grootswagers, Wardle, & Carlson, 2017; Oosterhof, Connolly, & 142 

Haxby, 2016) was applied to each stimulus presentation epoch in the sequence to investigate object 143 

representations in fast sequences. Linear discriminant analysis classifiers were trained using an image by 144 

sequence cross-validation procedure (Grootswagers et al., 2019) to distinguish between all pairwise 145 

groupings within the categorical levels (category, object). This entailed holding out one image from each 146 

category in one sequence as test data and training the classifier on the remaining images from the 147 

remaining sequences. For pairwise decoding of the non-categorical image-level, we used a leave-one-148 

sequence-out cross-validation procedure. The decoding analyses were performed separately for the five 149 

duration/SOA conditions. For each condition, this resulted in three decoding accuracies over time (for 150 

animacy, category, and image). At each time point, these accuracies were compared against chance 151 

(50%), and compared to each other. All steps in the decoding analysis were implemented in 152 

CoSMoMVPA (Oosterhof et al., 2016). 153 

 154 

Statistical inference 155 

We used Bayes factors (Dienes, 2011; Jeffreys, 1998; Kass & Raftery, 1995; Rouder, Speckman, Sun, 156 

Morey, & Iverson, 2009; Wagenmakers, 2007) to determine the evidence for the null and alternative 157 

hypotheses. For the alternative hypothesis of above-chance decoding, a uniform prior was used ranging 158 

from the maximum value observed during the baseline (before stimulus onset) up to 1 (i.e., 100% 159 

decoding). For testing the hypothesis of a difference between decoding accuracies, a uniform prior was 160 

set ranging from the maximum absolute difference between decoding accuracies observed during the 161 

baseline up to 0.5 (50%). We then calculated the Bayes factor (BF), which is the probability of the data 162 
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under the alternative hypothesis relative to the null hypothesis. We thresholded BF>6 as strong 163 

evidence for the alternative hypothesis, and BF<1/6 as strong evidence in favour of the null hypothesis 164 

(Jeffreys, 1998; Kass & Raftery, 1995; Wetzels et al., 2011). BF that lie between those values indicate 165 

insufficient evidence for either hypothesis. 166 

 167 

To determine onset, offset, and peak time signatures, we defined onset as the second time point where 168 

the Bayes factor exceeded 6 and offset as the second-to-last time point where the Bayes factor 169 

exceeded 6. Peak decoding time was defined as the latency at which the maximum decoding accuracy 170 

was observed in the entire time window. We calculated bootstrap distributions of these latency 171 

measures by sampling from the participants with replacement 1000 times and recomputing the 172 

abovementioned statistics. 173 

 174 

Results 175 

We examined the temporal dynamics of object processing using rapid-MVPA with sequences of varying 176 

image duration and SOA. During the experiment, participants reported whether an image presented 177 

after each sequence was an animal or a vehicle. Behavioural performance was high for discrimination of 178 

animal (M = 97.10%, SD = 5.23%) and vehicle (M = 98.10%, SD = 3.01%) stimuli.  179 

 180 

To investigate the temporal dynamics of object processing, we decoded the objects at three levels of 181 

categorical abstraction: animacy-level (animate versus inanimate), category-level (birds, dogs, fish, 182 

boats, planes, cars), and image-level (24 images; 4 per category). The decoding analyses were 183 

performed separately for each SOA and image duration condition. Figure 2 shows the temporal 184 

dynamics of all categorical representations varied by SOA and image duration. For the effect of duration 185 

(left columns), all durations followed a similar decoding trajectory, but classification was poorer in 186 

general for the longest duration, which also happened to be the 100% duty-cycle condition (200ms SOA, 187 
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200ms duration). For animacy and category decoding, the first peak (~100ms) was similar across the 188 

conditions, but the 200ms duration was lower than both the 50ms and 100ms conditions from 150-189 

200ms, suggesting poorer categorical abstraction for this condition. Additionally, for the individual 190 

image decoding analysis, the onset of decoding appeared to be delayed for the 200ms duration relative 191 

to the 50ms and 100ms durations. 192 

 193 

The right columns of Figure 2 show that for a given image duration (50ms), increasing SOA led to greater 194 

neural decoding for all categorical levels. For animacy and category decoding, the initial peak (~120ms) 195 

did not differ by SOA, but the larger second peak (~200ms) showed graded responses depending on 196 

SOA. At this peak, there was a small but reliable increase in decoding for the 200ms SOA relative to the 197 

100ms, and these were both substantially higher than the 50ms SOA. Again, for the image decoding the 198 

100% duty-cycle condition (50ms SOA/50ms duration) appeared delayed and had poorer decoding 199 

relative to the other conditions. Furthermore, the 200ms SOA had greater decoding than the 100ms 200 

SOA condition between 100 and 200ms. Overall, these results imply that longer SOA led to stronger 201 

image representations.  202 

 203 

To further assess the effect of image duration and SOA on object decoding, we analysed the timing of 204 

the decoding window (onset to offset of above-chance decoding) and the latency of peak decoding. 205 

Figure 3 shows that the medium duration condition (duration 100/SOA 200) had the longest decoding 206 

window for all decoding contrasts. In contrast, the shortest duration and SOA condition (duration 207 

50/SOA 50) had delayed onsets and the shortest decoding window. The peak latency results revealed 208 

that for animacy and category, the 100% duty-cycle conditions (200/200 and 50/50) had the latest 209 

peaks. For the image decoding, however, the 200/200 condition had the latest peak, whereas the 50/50 210 

condition had a much earlier peak, suggesting that ongoing processing in the latter condition was 211 

limited.  212 
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 213 

 214 

Figure 2. The effects of duration (left column) and stimulus onset asynchrony (right column) on decoding 215 

accuracy at three categorical levels (animacy, category, and image). Dots above the x-axis show the 216 

thresholded Bayes factors (see inset). The top three rows show the Bayes factors for above-chance 217 

decoding, and the bottom three show Bayes factors for differences between decoding accuracies. 218 

  219 
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 220 

Figure 3. Onset, offset, and peak latencies for each condition. Onset was defined as the second time 221 

point where the Bayes factor exceeded 6 and offset as the second-to-last time point where the Bayes 222 

factor exceeded 6. Top row: For each condition (y-axis), onset and offset are marked by a filled 223 

horizontal bar and are annotated at their respective time points. Shaded areas show the onset (above 224 

the filled bar) and offset (below the filled bar) latency distributions calculated by bootstrapping 225 

participants with replacement 1000 times and recomputing the statistics. Bottom row: Peak latency 226 

(time point of peak decoding) for each condition. Shaded areas show the peak latency distribution 227 

calculated by bootstrapping participants with replacement 1000 times. 228 

 229 

Discussion 230 

In this study, we disentangled the effects of duration and stimulus onset asynchrony (SOA) on decoding 231 

performance in rapid visual processing streams. Our results showed that shorter SOAs systematically 232 

reduced the duration of above-chance decoding, as well as the peak decoding accuracy, consistent with 233 

masking at earlier stages of visual processing. In comparison, there were no graded effects of 234 

presentation duration on decoding accuracies. Our results also suggest that presenting stimuli without a 235 

gap (100% duty cycle) leads to delays in visual processing. 236 

 237 
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Previous work found that fast presentation rates limits visual processing relative to slower presentation 238 

rates (Grootswagers et al., 2019). It was however unclear whether this difference was due to shorter 239 

stimulus duration or shorter SOA. The results of our study show that stimulus duration and SOA have 240 

separable effects on stimulus processing, with the most pronounced effect being that longer SOAs 241 

enhance decodability of stimuli relative to shorter SOAs. There also appeared to be an effect of duty 242 

cycle, such that neural responses were delayed when images were presented back-to-back (100% duty 243 

cycle). These findings are consistent with recent work that investigated the effect of duration and SOA 244 

on face response amplitudes in a fast periodic visual stimulation paradigm (Retter et al., 2018). Single 245 

unit recordings in temporal cortex of macaques have revealed a similar effect; neural responses to 246 

monkey faces in RSVP are stronger and last longer for slower presentation rates (Keysers, Xiao, Földiák, 247 

& Perrett, 2001, 2005). Interestingly, Keysers et al. (2001) found that the duration of image 248 

discrimination coincided with the SOA length plus 60 ms, an effect attributed to neural competition with 249 

other images in the sequence (Keysers & Perrett, 2002). Although we found that longer SOA led to 250 

longer neural decoding, there was no clear linear relationship between the SOA and length of decoding. 251 

Our decoding results utilise whole brain responses, however, which might be one reason for this 252 

difference. The current results suggest that SOA influences the degree of masking from subsequent 253 

images depending on the stage of processing that is disrupted.  254 

 255 

Our findings suggest that analysing the neural signatures of distractors in RSVP streams can yield insight 256 

into the mechanisms underlying visual masking. Without the need of a separate noise mask, a 257 

substantial number of presentations or conditions can be tested using rapid-MVPA, increasing the 258 

power of such experiments. By shortening the SOA, the masking affected earlier stages of processing, 259 

which has significant potential for studying hierarchical processing systems, such as vision (see also 260 

McKeeff, Remus, & Tong, 2007). For example, future work could apply rapid-MVPA and varying SOAs to 261 
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stimulus sets that vary on orthogonal features that are expected to occur at different stages in the 262 

processing streams, such as colour and shape. 263 

 264 

Taken together, our results can be used to guide future visual object representation studies that employ 265 

a rapid-MVPA design. Using a 5Hz rate, Grootswagers et al. (2019) obtained 40 epochs for 200 stimuli 266 

(8000 epochs in total) in a 40-minute session. Here, we did not observe strong differences between 5Hz 267 

and 10Hz presentation rates (200ms and 100ms SOA). Thus, a 10Hz 50% duty cycle presentation 268 

paradigm seems to provide a sensitive measure of object decoding accuracy. Notably, this is also a 269 

typical frequency used in RSVP paradigms to study target selection processes, which are postulated to 270 

involve alpha oscillatory activity (Janson, De Vos, Thorne, & Kranczioch, 2014; Zauner et al., 2012). At 271 

10Hz, a 30-minute EEG recording session (excluding breaks) yields 18000 epochs, which has 272 

unprecedented potential for studying a large number of different conditions and/or stimuli. It also 273 

suggests that it is possible to obtain enough epochs for a small number of conditions in a very short (<5-274 

minute) EEG session. This opens up exciting new possibilities to study special populations for whom long 275 

experiments often pose significant difficulties, such as children and patients. 276 
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