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Abstract1

Clustering of proteins is crucial for many cellular processes and can be imaged at nanoscale resolution using2

single-molecule localization microscopy (SMLM). Existing cluster analysis methods for SMLM data suffer3

from major limitations, such as unsuitability for heterogeneous datasets, failure to account for uncertainties4

in localization data, excessive computation time, or inability to analyze three-dimensional data. To address5

these shortcomings, we developed StormGraph, an algorithm using graph theory and community detection6

to identify and quantify clusters in heterogeneous 2D and 3D SMLM datasets. StormGraph accounts for7

localization uncertainties and, by determining thresholds adaptively, it allows many heterogeneous samples8

to be analyzed using identical parameters. Consequently, StormGraph improves the potential accuracy,9

objectivity, and throughput of cluster analysis. Furthermore, StormGraph generates a hierarchical clustering,10

and it quantifies cluster colocalization for two-color SMLM data. We use simulated data to show that11

StormGraph is superior to existing algorithms. Finally, we demonstrate its application to two-dimensional12

B-cell antigen receptor clustering and three-dimensional intracellular LAMP-1 clustering.13
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Introduction14

Single-molecule localization microscopy (SMLM) techniques, such as direct stochastic optical reconstruc-15

tion microscopy (dSTORM) (1; 2) and photoactivated localization microscopy (PALM) (3), overcome the16

diffraction limit of conventional microscopy by acquiring many sequential images, each containing very few17

fluorescing labels. Individual labels can then be computationally super-resolved and precisely localized to18

generate a list of localization coordinates, often with estimated positional uncertainties (4; 5; 6). This is19

possible in both two and three dimensions (7; 8; 9; 10).20

SMLM is commonly used to investigate nanoscale clustering of cell-membrane and intracellular proteins21

(11; 12; 13; 14; 15; 16; 17; 18; 19; 20), which usually exhibits both cell-to-cell and within-cell heterogene-22

ity. Notwithstanding, clustering is frequently analyzed using spatial summary statistics that fail to capture23

the heterogeneity of clusters within a sample, such as Ripley’s functions (21; 22). Instead, clusters can be24

individually quantified by using a clustering algorithm to assign localizations to specific clusters. However,25

using existing clustering algorithms, it is difficult to accurately and objectively analyze multiple heteroge-26

neous samples. Subjective bias can result from algorithm parameter selection, or from selection of a small27

number of “representative samples” to analyze using slow or cumbersome algorithms. Failure to account for28

localization uncertainties can also make conclusions unreliable.29

The most widely used clustering algorithms in SMLM literature, including Density-Based Spatial Cluster-30

ing of Applications with Noise (DBSCAN) (23), identify clusters based on a user-specified minimum number31

of points within a user-specified radius. However, these parameters are difficult to select and, for hetero-32

geneous samples, should be sample-specific. Recently, algorithms based on Voronoi diagrams, for example33

ClusterViSu, have been developed for 2D (24; 25) and 3D SMLM data (26). Importantly, however, none of34

the above clustering algorithms account for localization uncertainties. A pixelated variant of DBSCAN (27)35

partially addresses this deficiency but is limited to 2D datasets. Simulation-aided DBSCAN (28) offers a more36

complete strategy, but it remains limited by user-determined DBSCAN parameter selection. A Bayesian,37

model-based cluster identification method (29) uses localization uncertainties and has been extended to 3D38

(30), but it assumes that clusters are circular or spherical and it is prohibitively slow.39

To address all of the limitations of existing cluster analysis methods described above, we developed40

StormGraph, a comprehensive graph-based clustering algorithm inspired by PhenoGraph (31), which was41

developed for single-cell cytometry data. StormGraph converts SMLM data into a graph using localization42

coordinates and their uncertainties to specify nodes and weighted edges. It then utilizes graph theory and43

community detection algorithms (32) to assign nodes to specific clusters. Crucially, StormGraph determines44
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key thresholds from the data for each region of interest (ROI) adaptively, using at most three user-specified45

parameters that can remain fixed across experiments, enabling unbiased comparison of results. Unlike the46

Bayesian method, StormGraph makes no assumptions about the shapes of clusters and it is at least an47

order of magnitude faster. Moreover, StormGraph has both 2D and 3D implementations and it can quantify48

cluster overlap for two-color SMLM data.49

Furthermore, SMLM data often exhibits hierarchical clustering at multiple spatial scales. For example,50

SMLM revealed multiscale organization of RNA polymerase in Escherichia coli (33). To enable multiscale51

cluster analysis, StormGraph generates a hierarchical clustering. This is an advantage over existing meth-52

ods, for which users must repeatedly change parameters to perform multiscale analysis. Notwithstanding,53

StormGraph also generates an appropriate single-level clustering.54

Here, we describe StormGraph and its capabilities, and we use simulated data to compare its accuracy55

to that of DBSCAN and ClusterViSu. We then apply StormGraph to characterize nanoscale clustering of56

B-cell antigen receptors (BCRs) from heterogeneous 2D SMLM data. We also demonstrate StormGraph’s57

ability to quantify 3D clusters of the lysosomal protein LAMP-1 and to quantify cluster overlap for two-58

color SMLM data. Because of cell-to-cell heterogeneity as well as non-uniformity of cellular compartments59

such as the plasma membrane, it is essential to compile SMLM data from ROIs from multiple cells for each60

experimental condition. To make this practical, we developed software to crop ROIs and batch process61

StormGraph analysis for multiple samples. We will make the software and source code freely available upon62

publication of this manuscript.63
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Results64

The StormGraph algorithm65

To identify clusters in SMLM data, dense localization neighborhoods must be identified. To this end,66

StormGraph first determines an ROI-specific length scale r0 from the data using either of two methods (see67

Methods and Figure S1). One method, which seeks a balance between inter-localization and inter-cluster68

distances, is fully automatic but heuristic. The other is semi-automatic, using k-nearest neighbor (kNN)69

distances with user-defined k. The automatic method reduces user input but is designed primarily for data70

with very few dispersed localizations between clusters, whereas the kNN method is universally applicable.71

Next, using the localizations as nodes (Figure 1a), StormGraph essentially constructs a weighted r0-72

neighborhood graph (Figure 1b) as follows. Define73

sij =


1− rij/r0 if rij ≤ r0,

0 if rij > r0,

where rij is the Euclidean distance between nodes i and j. If localization coordinate uncertainties are74

unknown, StormGraph assigns to each node pair {i, j} an edge of weight Wij = sij . Otherwise, StormGraph75

uses the uncertainties to estimate 〈sij〉, the expectation of sij , from Monte Carlo simulations (Methods) and76

assigns Wij = 〈sij〉.77

At this stage, unclustered localizations are identified and removed by applying a threshold to the weighted78

node degree,79

deg(i) =
∑
j 6=i

Wij ,

a proxy for local density. In principle, nodes are classified as unclustered and removed if their degree80

falls below a data-dependent threshold (Figure 1c). StormGraph automatically determines this threshold81

from random point clouds using the user-defined significance parameter α (Methods). The value of α is82

the maximum probability of a completely randomly distributed localization being classified as clustered, a83

subjective choice for the user but typically 0.05. Figure S2 shows the effects of varying the parameters α84

and k. Removed localizations are reported as an algorithm output.85

The graph is then regenerated using a new r0 value determined automatically from only the retained86

nodes. If localization coordinate uncertainties are available, edges are subsequently pruned from the graph87
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to ensure that any pair of edges have at least an estimated 50% probability of co-occurring in the r0-88

neighborhood graph for the unknown true localization positions (Methods). StormGraph then finds a hi-89

erarchy of node clusters (Figure 1e) using the multi-level Infomap algorithm (34), followed by additional90

cluster merging when warranted (Methods).91

To obtain a single-level clustering from the hierarchy, we developed a novel, fast method motivated92

by the idea of consensus clustering (35; 36). Briefly, clusters are recursively divided into their coarsest93

constituent subclusters if they closely match the connected components of an alternative neighborhood94

graph (Methods). Optionally, the user may specify the minimum number of points per reported cluster95

(MinCluSize). As output, StormGraph provides the single-level and hierarchical cluster assignments of every96

localization. Combined with localization coordinates, this provides the information necessary to quantify97

individual cluster properties, such as area (Figure 1d). Our software automatically quantifies the single-level98

and coarsest-level clusterings.99

Lastly, a common caveat of SMLM is multiple counting of single molecules, often causing single molecules100

to spuriously appear as clusters. This can be due to multiple labeling of single molecules or individual101

fluorophores yielding multiple localizations. Therefore, StormGraph includes optional functionality that102

uses localization uncertainties to reclassify as unclustered localizations any putative clusters that cannot be103

confidently distinguished from multiply counted single molecules (Methods).104

Validation using simulated data and comparison to other algorithms105

To compare StormGraph with DBSCAN and ClusterViSu, we simulated a wide variety of 2 µm × 2 µm ROIs106

containing isolated and heterogeneously aggregated circular nanoclusters (e.g. Figure 2a; Methods). Outside107

the clusters we added randomly distributed molecules. Individual simulated molecules were allowed to yield108

multiple localizations, each with a positional uncertainty sampled from a real dSTORM experiment. We109

tested both the automatic and kNN (k = 10, 15 or 20) methods for determining r0 while maintaining α = 0.05.110

We set a minimum cluster size of 5 localizations in both StormGraph and ClusterViSu. For DBSCAN, we111

tested 16 different parameter choices based on the underlying parameters used for data simulation, although112

such knowledge is generally unavailable for real data. To assess cluster assignments from each algorithm, we113

used normalized mutual information (NMI) (37) and mean F-measure (38). Higher values indicate superior114

performance.115

StormGraph consistently outperformed ClusterViSu regardless of whether localization uncertainties were116

used and regardless of the method used to determine r0 (Figures 2b–c and S3). DBSCAN’s performance117
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was very sensitive to the choice of parameters and no single choice was suitable for all of the data (Figure118

S4), demonstrating its unsuitability for batch processing analysis of heterogeneous samples. StormGraph was119

generally superior to DBSCAN regardless of parameter choices among those tested. Moreover, StormGraph’s120

performance was not very sensitive to varying k from 10 to 20, particularly when localization uncertainties121

were used (Figures 2b and S3).122

For simulated data with nanoclusters of 50 nm radius, we were able to manually identify a level of123

clustering from StormGraph’s cluster hierarchy that accurately recovered the ground-truth nanoclusters that124

composed larger aggregations (Figure S5). This demonstrates that StormGraph is able to identify meaningful125

clusters at multiple scales. Additionally, we performed tests using simulated data without multiple counting126

of single molecules and found that StormGraph still outperformed ClusterViSu and DBSCAN (Figure S6).127

Finally, we compared StormGraph to Ripley’s H-function (22) using simulated circular clusters. Ripley’s128

H-function was biased towards the clusters containing the most points, as mathematically expected, and129

it did not provide an accurate measure of cluster radius (Figure S7). Conversely, StormGraph provided130

excellent estimates (Figure S7).131

StormGraph quantifies heterogeneous B-cell receptor clustering from dSTORM132

data in 2D133

To test StormGraph on real SMLM data, we used it to analyze the clustering of immunoglobulin M (IgM)-134

isotype B-cell antigen receptors (BCRs) on the cell membranes of B lymphocytes. IgM-BCRs are thought135

to exist in nanoclusters on resting B cells (12; 39) and form larger “microclusters” during B-cell activation136

induced by antigen engagement (40; 41). The exact changes in IgM-BCR arrangement are controversial,137

however (12; 39; 41).138

Using dSTORM, we imaged fluorescently labeled IgM-BCRs on ex vivo murine splenic B cells that139

were either resting or treated with bivalent antibodies against the BCR’s Igκ light chain, used as antigen140

surrogates. Localization coordinates and their associated uncertainties were computationally determined141

from the fluorescence data. We then used StormGraph (α = 0.05, MinCluSize = 5 localizations) to batch142

process the analysis of IgM-BCR clustering in, respectively, 28 and 24 rectangular ROIs that were > 1 µm2,143

from separate cells, and entirely within cell boundaries (Figure 3a). We applied StormGraph’s functionality144

to remove from the results any clusters of localizations that could not be confidently distinguished from145

overcounted single molecules (Methods).146

Using StormGraph’s single-level clustering results, we compared cluster areas between conditions. Using147
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k = 15, we found that the mean area of IgM-BCR clusters was significantly larger on anti-Igκ-treated cells148

than on resting cells (Figure 3b(i), p < 10−5), as expected. This difference was mainly due to an increase149

in the size and frequency of clusters > 6000 nm2, rather than a uniform increase in cluster areas (Figure150

3b(ii)). In fact, the majority of clusters present on anti-Igκ-treated cells were small multimers that were151

comparable to, or even smaller than, the IgM-BCR clusters on untreated cells. The automatic (no k value)152

implementation of StormGraph yielded consistent conclusions (Figure S8).153

Large BCR clusters have been associated with chronic BCR signaling in a subset of activated B-cell like154

(ABC) diffuse large B-cell lymphomas (DLBCLs). Diffraction-limited microscopy revealed large IgM-BCR155

microclusters in the absence of any stimulus on the ABC DLBCL cell lines HBL-1 and TMD8 but not on156

the Burkitt’s lymphoma cell line BJAB (42). To further investigate this observation, we used dSTORM157

to image IgM-BCRs on HBL-1, TMD8 and BJAB cells. We then batch processed StormGraph analysis158

of, respectively, 39, 33 and 81 ROIs > 1 µm2 (Figure 3c), which contained between 5 × 103 and 3 × 105159

localizations.160

Using k = 15, StormGraph revealed that the mean areas of IgM-BCR clusters on HBL-1 and TMD8161

cells were significantly larger than on BJAB cells (p < 10−4 and p < 10−14 respectively; Figure 3d(i)).162

Interestingly, the relative distributions of IgM-BCR cluster areas on BJAB and HBL-1 cells resembled those163

for resting and anti-Igκ-treated B cells, respectively. Both BJAB and HBL-1 cells had many small IgM-BCR164

clusters, but HBL-1 displayed a notable increase in the size and frequency of large clusters exceeding 104 nm2.165

In contrast, TMD8 cells displayed an overall increase in cluster areas compared to BJAB (Figure 3d(ii)).166

Again, the automatic implementation of StormGraph yielded similar results (Figure S8). Our observations167

reveal that IgM-BCR organization can differ substantially between DLBCL cell lines of the same ABC168

subtype. Furthermore, assuming that BCR signaling is mostly due to large clusters, the presence of many169

small IgM-BCR clusters suggests that only a fraction of IgM-BCRs participate in chronic BCR signaling in170

HBL-1 cells, unless the clusters are highly dynamic.171

Finally, we repeated all StormGraph analyses ignoring localization uncertainties. Although the magnitude172

and statistical significance of our results were altered, the overall conclusions were unchanged (Figure S8).173

Importantly, this demonstrates that StormGraph can still detect differences in clustering when localization174

uncertainties are unavailable.175
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StormGraph is robust to changes in global density of SMLM localizations176

Because the average density of SMLM localizations can vary between ROIs, a clustering algorithm must not177

depend on the average localization density if batch processing is to be implemented and clustering results178

are to be compared across samples with different localization densities. We verified that StormGraph is179

robust in this regard by repeating StormGraph analysis after randomly removing 0%, 25%, 50% or 75%180

of the localizations from a dSTORM ROI containing heterogeneous clusters (Figure 4a). Although small,181

low-density clusters were eventually lost, the identification and area quantification of large, unambiguous182

clusters was robust, and the overall distribution of cluster areas was not significantly impacted (p > 0.05;183

Figure 4b).184

We also tested StormGraph’s sensitivity to random noise by artificially adding random localizations185

(with uncertainties) to the same ROI (Figure S9). StormGraph’s ability to detect all but small, low-density186

clusters was again robust, and its overall sensitivity to random noise was minimized by including localization187

uncertainties and using the kNN method to determine r0. This implementation with k = 15 resulted in188

no statistically significant (p < 0.05) change in the distribution of cluster areas until the ratio of true189

localizations to artificial localizations was < 2.190

Two-color analysis of cluster overlap191

To quantify colocalization of differently colored (e.g. red and blue) clusters in two-color SMLM data, our192

software quantifies the total area of overlap divided by each of the following: (1) total red cluster area; (2)193

total blue cluster area; and (3) total area covered by clusters of either color, yielding the Jaccard index194

(43) (Figure 5d). Our software also reports analogous quantities using numbers of localizations instead195

of areas (not shown). To estimate the maximal experimentally observable colocalization, colocalization196

analysis should first be applied to the same molecular species labeled with two different probes. This rarely197

yields 100% colocalization for several reasons, including differing affinities of antibody-fluorophore conjugates,198

differing photophysical properties of fluorophores, and the inability of two probes to occupy the same binding199

site.200

To demonstrate cluster overlap analysis by StormGraph, we performed such a positive control experiment201

by simultaneously labeling cell-surface IgG-BCRs on murine A20 B cells with anti-IgG antibodies conjugated202

to either Alexa Fluor 647 (AF647) or Cy3B fluorophores. These antibodies were bivalent, thus inducing203

formation of large clusters prior to cell fixation. Both color channels were imaged using dSTORM and204

aligned using custom MATLAB code to correct for chromatic aberrations. We then analyzed multiple ROIs205
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using StormGraph (Figure 5). On average, we found 79% overlap of the IgG-AF647 clusters with the IgG-206

Cy3B clusters and 66% overlap of the IgG-Cy3B clusters with the IgG-AF647 clusters (Figure 5e). This207

difference is likely due to differing qualities of the AF647- and Cy3B-conjugated antibodies. The Jaccard208

index cannot exceed either one-sided overlap score, and we obtained an average Jaccard index of 0.5. In a209

similar experiment but for tubulin, ClusterViSu obtained ∼40% overlap of each probe with the other. This210

shows that StormGraph performs well as part of a pipeline for analyzing cluster colocalization by SMLM.211

Clustering in three dimensions212

To extend StormGraph to 3D, we considered some particular features of 3D SMLM. StormGraph implicitly213

assumes that all dimensions should be weighted equally during graph construction, but most 3D SMLM214

techniques achieve lower axial resolution than lateral resolution. Therefore, StormGraph pre-processes the215

data, for cluster identification but not subsequent quantification, by rescaling the axial (z) dimension so216

that average axial and lateral positional uncertainties, when known, become equal. Furthermore, 3D SMLM217

localizations are often concentrated around a focal plane, causing their axial distribution to be nonuniform.218

Accordingly, StormGraph uses the parameter α to obtain a z-dependent node-degree threshold from random219

point clouds with normally distributed z-coordinates (Methods). This provides a clear advantage over220

DBSCAN, which is unable to adapt to axial variation in localization density. For situations with localizations221

distributed uniformly in z, StormGraph still retains the option to use a constant threshold instead.222

We compared the performances of StormGraph and DBSCAN in 3D using simulated 3D data (Meth-223

ods). As in 2D, we found that, overall, StormGraph was superior to DBSCAN regardless of parameter224

choices (Figure S10). We also performed 2D clustering of the xy-projections of our simulated 3D data. To225

achieve results with DBSCAN that were comparable between 2D and 3D, it was inevitably necessary to226

use different parameter values. In contrast, StormGraph required no changes to parameters, thus making it227

easy to switch between 2D and 3D analyses. Nonetheless, including the z-component of 3D data improved228

clustering accuracy (Figure S10). This is because localizations and clusters that are separated only in z are229

indistinguishable in the xy-projection.230

To illustrate StormGraph’s application to 3D SMLM data, we used dSTORM to image intracellular231

lysosomal-associated membrane protein 1 (LAMP-1). We simultaneously immunostained LAMP-1 in B16232

melanoma cells with two different labels, AF647 and Cy3B, and applied StormGraph (k = 15, α = 0.1,233

MinCluSize = 5 localizations) to a 3D ROI with axial variation in localization density and known localization234

uncertainties (Figure 6a–b). StormGraph detected 363 LAMP-1 AF647 clusters and 129 LAMP-1 Cy3B235
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clusters (Figure 6c-d). The AF647 clusters had volumes ranging from 1.5× 103 nm3 to 7.1× 107 nm3 with a236

median of 3.5× 105 nm3, and Cy3B clusters had volumes ranging from 3.1× 103 nm3 to 3.7× 107 nm3 with237

a median of 9.0× 105 nm3 (Figure 6e). The discrepancy in cluster volumes was likely caused by variance in238

labeling or probe detection. Indeed, we detected almost four times as many AF647 localizations as Cy3B239

localizations (9.0 × 104 versus 2.5 × 104). Hence, when performing one-color SMLM, choosing the optimal240

fluorescent label can improve cluster detection and quantification.241

Additionally, we computed volumetric overlap between AF647 clusters and Cy3B clusters (Figure 6f–g).242

To our knowledge, our software is the first to offer this functionality for two-color, 3D SMLM data. We243

found that 31% of the total AF647 cluster volume overlapped with Cy3B clusters, whereas 50% of the total244

Cy3B cluster volume overlapped with AF647 clusters. The comparatively low overlap of AF647 with Cy3B245

was likely due to weaker labeling or detection with Cy3B than AF647. The Jaccard index was 0.24. In sum,246

our results for LAMP-1 clearly show that StormGraph can identify and quantify clusters of localizations in247

3D SMLM ROIs and, furthermore, that it can detect overlap between 3D clusters in two-color data despite248

experimental limitations.249
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Discussion250

By converting 2D or 3D SMLM localization data into a neighborhood graph, StormGraph leverages concepts251

from graph theory, especially community detection, to assign localizations to individual clusters that can be252

quantified. It enables analysis of clustering at multiple scales within datasets by generating a hierarchical253

clustering, but it also provides a single-level clustering to simplify interpretation of results. The StormGraph254

can be run in MATLAB using either a script or a simple graphical user interface. The software automatically255

quantifies clusters and it includes MATLAB functions for data visualization in 2D or 3D. The software and256

a user manual are available from the authors on request.257

StormGraph has three optional, user-definable parameters. If by visual inspection the vast majority258

(> approximately 90%) of localizations are organized into clear, well-separated clusters, then all three user-259

definable parameters could be discarded from StormGraph. Otherwise, we provide guidelines for their260

selection in the Methods. Each parameter specifies either a number of localizations (k and MinCluSize) or261

a probability (α) and can therefore be set without any knowledge of the scale or density of the localization262

data. StormGraph then adaptively determines scale- and density-dependent thresholds from the data using263

k, or automatically without k, and using α respectively. This allows disparate datasets to be analyzed using264

identical parameters, which increases both the objectivity and, by means of batch processing, the potential265

throughput of cluster analysis. This is in sharp contrast to DBSCAN, where two user-defined parameters266

explicitly define a threshold density.267

Another distinguishing feature of StormGraph is its full utilization of individual localizations’ positional268

uncertainties, when available. This is important because these uncertainties locally determine the minimum269

scale at which clusters can be reliably resolved. Only StormGraph and Bayesian methods (29; 30) have this270

feature in addition to being suitable for batch processing of heterogeneous ROIs. However, StormGraph271

has significant advantages over the Bayesian methods. First and foremost, it has superior computational272

efficiency. On a standard desktop computer, StormGraph analyzed a 2D ROI containing 5,349 localizations273

in less than 40 seconds and a 2D ROI containing 26,941 localizations in less than 3 minutes. The largest274

ROIs that we analyzed using StormGraph contained more than 105 localizations. On the other hand, the275

2D Bayesian method took ∼50 minutes to analyze the 5,349-localization ROI and it failed to analyze the276

26,941-localization ROI due to memory limitations. The second notable advantage of StormGraph is that,277

unlike the Bayesian methods, it makes no assumptions about the shapes of clusters. These advantages make278

StormGraph widely applicable and make it the standout choice for cluster analysis of SMLM data.279

Using simulated data, we demonstrated that StormGraph is superior to both DBSCAN and the most280
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recent algorithm based on Voronoi diagrams, ClusterViSu, at assigning localizations to clusters. We also281

applied StormGraph to actual dSTORM data. This revealed the presence of many small BCR clusters, in282

addition to the expected large clusters, on the cell membranes of activated B cells. Our discoveries here283

highlight the importance of being able to objectively analyze nanoscale protein clustering in heterogeneous284

samples. By providing improved, high-throughput quantitative characterization of nanoscale receptor clus-285

tering, StormGraph should enable new insights into the relationship between receptor clustering and receptor286

signaling.287

It should be noted that measurement errors generally cause clusters to appear slightly larger than the288

true underlying molecular clusters, and they can also cause over- or under-estimation of cluster overlap for289

two-color data. StormGraph does not correct for this during cluster quantification. However, for data with290

approximately Gaussian clusters, mathematical correction methods (44) could be applied to StormGraph’s291

clusters prior to quantification. Nonetheless, we believe that StormGraph will advance cluster analysis in the292

SMLM field thanks to its generality, its ability to utilize information about localization uncertainties, and293

its potential to increase the throughput of single-molecule localization cluster analysis via batch processing294

of heterogeneous datasets.295
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Methods296

Calculation of the length scale r0297

(1) The fully automatic, heuristic method298

To automatically determine a length scale r0 without user input, we implement a variation of the elbow299

method heuristic. For values of ε ranging from 0 to a sufficiently large value based on the optimal affinity300

scale stated by Arias-Castro (45), we construct the ε-neighborhood graph for the data. We then plot the301

number of connected components (including singletons) against ε. This must be monotonically decreasing302

and typically bears resemblance to a decaying exponential or logistic function. As ε increases, an “elbow”303

region occurs as rapid linking of nodes within clusters at small values of ε transitions to slower linking of304

distinct clusters and dispersed nodes at larger values of ε. Eventually all nodes would belong to a single305

connected component.306

Sometimes, a natural number of clusters will be evident as a horizontal (i.e. constant) plateau occurring307

at > 1 connected component in this plot. In such cases, we find the plateau corresponding to the largest fold308

increase in the area or volume of the ε-neighborhood. Let ε1 be the value of ε at the start of this plateau,309

and let ε2 = 21/dε1, where d is the dimensionality of the data, be chosen such that the ε2-neighborhood310

is twice the area or volume of the ε1-neighborhood. If the ε1- and ε2-neighborhood graphs have the same311

number of connected components, then we set r0 = ε2 (Figure S1).312

Otherwise, we fit a curve f(ε) to the number of connected components versus ε (Figure S1). We choose313

f(ε) to be the sum of a constant b and either one or two generalized logistic functions of the form314

L(ε) =
a

(1 + exp(s(ε− ε0)))1/ν
,

where b ≥ 0, a ≥ 0, s ≥ 0, ν > 0, and ε0 are coefficients to be fit. To avoid overfitting, we only include315

the second logistic function if it yields a substantial improvement in the goodness of fit and we restrict its316

allowable values of ν. The elbow of this curve is not mathematically well defined, but intuitively it is related317

to the concavity: the curve achieves maximum (positive) concavity as it approaches the elbow region, and318

then its concavity decreases as it traverses the elbow region. StormGraph chooses the length scale r0 to be319

towards the end of the elbow region as follows. Let εmax be the value of ε at which f ′′(ε), the concavity of320

f(ε), is maximized. StormGraph sets r0 to be the value of ε > εmax where f ′′(ε) first falls below 2% of its321

maximum value (Figure S1).322
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When localization uncertainties are available in the data, they are initially excluded when utilizing the323

elbow method to set the initial length scale r0, which is used for classifying localizations as either clustered324

or unclustered. The uncertainties are subsequently taken into account during the final use of the elbow325

method, which sets the value of r0 that is used for construction of the final graph following elimination of326

unclustered localizations. Specifically, the graph in which we count the number of connected components for327

a given ε is constructed from Monte Carlo simulated realizations of the data with two nodes connected to328

each other by an edge if and only if they are within a distance ε of each other in at least 75% of the Monte329

Carlo simulations. Note that edge weights are not relevant here because they do not affect the number of330

connected components.331

(2) The kNN method332

To determine the length scale r0 for a selected ROI using a k-nearest neighbors (kNN) approach, StormGraph333

first finds the distance of every point in the ROI to its kth nearest neighbor. If localization uncertainties are334

available in the data, this is performed for 100 Monte Carlo simulated realizations of the data, and the 95%335

confidence level for the kth nearest neighbor distance is obtained for every localization. The distribution336

of kth nearest neighbor distances is also obtained for Monte Carlo simulations of random data with the337

same global average point density as the ROI. A histogram of kth nearest neighbor distances should initially338

increase more rapidly for clustered data than for random data, but the histograms for clustered and random339

data will eventually intersect each other (Figure S1). Inspired by the automated version of ClusterViSu340

(25), StormGraph defines r0 as the distance at which these histograms of kth nearest neighbor distances first341

intersect. Points closer than r0 to their kth nearest neighbor are more likely to exist in clustered data, while342

points farther than r0 from their kth nearest neighbor are more likely to exist in random data. Moreover,343

points in clusters will tend to have more than k neighbors within a distance r0, while randomly distributed344

points will tend to have fewer than k neighbors within a distance r0. However, if this first histogram345

intersection occurs after the median of the random data’s histogram, this indicates that, on average, the real346

data is actually more dispersed than the random data, and in this case StormGraph defines r0 simply as the347

median of the random data’s kth nearest neighbor distances.348

Simulating multiple data realizations and calculation of graph edge weights349

StormGraph uses Monte Carlo simulations to simulate multiple realizations of the data by resampling each350

localization’s coordinates. The new x, y and, if applicable, z coordinates for a particular localization are351
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drawn independently from normal distributions centered at the original observed localization position. The352

standard deviations are equal to the corresponding uncertainties recorded in the data. StormGraph then353

determines the graph edge weights Wij = 〈sij〉 from the Monte Carlo simulations by calculating 〈sij〉 to be354

the mean of the simulated values of sij for each specific node pair {i, j}.355

Thresholding of node degrees to eliminate unclustered nodes356

Setting α = 1 skips the thresholding step altogether, allowing all nodes to be considered for clustering.357

Otherwise, to set the node-degree threshold, StormGraph first constructs r0-neighborhood graphs with edge358

weights sij for simulated random point clouds with the same global average point density as the SMLM data.359

For 2D data (and for 3D data with uniform axial acquisition), the random points are uniformly distributed360

in x and y (and z). Then StormGraph sets the degree threshold as the ((1 − α) × 100)th percentile of361

the aggregated degree distribution of the random simulations. For 3D data with localizations concentrated362

around a focal plane, StormGraph simulates random data with z-coordinates that are distributed normally363

with the same interquartile range as the data. StormGraph then obtains a z-dependent node-degree threshold364

by fitting a Gaussian curve to node degree versus z for the simulated random points and finding the (1 −365

α)× 100% confidence upper bound curve. Thus, for both 2D and 3D data, an expected α× 100% of nodes366

in any of the random simulations would have degrees exceeding the threshold.367

For actual data, because the edge weights are calculated by averaging sij over Monte Carlo simulations,368

the number of localizations that would be classified as clustered in random data would usually be less than369

α × 100%. Hence, this averaging using localization uncertainties reduces the detection of spurious, small370

clusters arising from random spatial fluctuations in density.371

If localization uncertainties are not known, then we take a different approach to reduce detection of372

spurious clusters. Preliminary clusters are defined using a community detection algorithm. A node is then373

classified as unclustered if it meets any of the following four criteria: (1) it belongs to a preliminary cluster374

whose mean degree is below the threshold; (2) its own degree is below the threshold and is also a lower outlier375

(< lower quartile (LQ)−1.5×interquartile range (IQR)) for its preliminary cluster; (3) its own degree passes376

the threshold but is a strong lower outlier (< LQ− 3× IQR) for its preliminary cluster; (4) its own degree377

is less than half of the threshold. The first criterion provides robustness by spatially averaging node degrees378

over small areas. This prevents the inclusion of spurious, small clusters. The other three criteria prevent the379

inclusion of nodes that are visually separate from a cluster but still within a distance r0 of one.380

To avoid biases arising from the choice of algorithm used for the preliminary clustering, StormGraph381
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performs this twice, independently, using two different community detection algorithms, and it then classifies382

nodes as unclustered if either method does. The two algorithms used are the two-level version of Infomap383

(46) and the Louvain method (47), which are two of the top performing community detection algorithms (32).384

Infomap is an information theoretic algorithm based on flow on the graph, while the Louvain method is one385

of several algorithms that aims to maximize a property of the graph called “modularity”. See Supplementary386

Note 1 for further technical details.387

Edge pruning388

When localization uncertainties are used in the StormGraph algorithm, we prune edges from the final graph389

that is constructed from only the nodes that are retained after thresholding node degrees. To do this, we390

delete every edge that has nonzero sij in less than 75% of the Monte Carlo simulations that were used to391

calculate the edge weights. This guarantees that any pair of retained edges have at least an estimated 50%392

probability of co-occurring in the r0-neighborhood graph for any realization of the data, and the unknown393

true localization positions is one possible realization. In turn, this prevents the linking of clusters that are394

disconnected in most realizations of the r0-neighborhood graph but connected in the average graph.395

Merging clusters at the top of the multi-level Infomap hierarchy396

To facilitate the identification and quantification of particularly large clusters, StormGraph creates an ad-397

ditional level at the top of the multi-level Infomap cluster hierarchy, if possible, by merging sufficiently398

interconnected clusters. It is natural to consider the connected components of a graph to be the clusters399

at the coarsest level of a cluster hierarchy. We therefore use this concept to define the top level of Storm-400

Graph’s cluster hierarchy by merging Infomap clusters that form connected components. However, due to the401

uncertainties in SMLM data, StormGraph only merges clusters if they form stable connected components,402

which we define as connected components that would remain connected following the random removal or403

displacement of any one node. Oftentimes, this step results in no merging of clusters and so no additional404

level of clustering is created.405

Algorithm to obtain single-level clustering from cluster hierarchy406

Although various methods exist to select one level from a cluster hierarchy, for example silhouette scores407

(48) and the gap statistic (49), existing methods are either very computationally intensive or otherwise408
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incompatible with StormGraph. We therefore developed our own fast algorithm to obtain a single-level409

clustering from the cluster hierarchy output by StormGraph, which we describe here.410

The hierarchical clustering output by StormGraph is generated from an r0-neighborhood graph. An411

alternative type of graph commonly used for clustering problems is the symmetric k-nearest neighbor (kNN)412

graph, in which two nodes are connected by an edge if either of them is among the k nearest neighbors of413

the other. A related graph is the mutual kNN graph, a subgraph of the symmetric kNN graph, in which two414

nodes are connected by an edge if and only if each node is among the k nearest neighbors of the other. One415

simple clustering algorithm would be to identify the connected components in a symmetric kNN graph or in416

a mutual kNN graph, where k is an adjustable parameter.417

In a symmetric kNN graph, it is guaranteed that every node has at least k edges. However, as k increases,418

nodes in low-density regions between two distinct clusters quickly become connected to both clusters, while419

the high-density regions inside the clusters may remain fragmented into multiple connected components420

until higher values of k. A mutual kNN graph, in which every node is guaranteed to have at most k421

edges, more faithfully represents such clusters by preventing nodes in low-density regions from making too422

many connections. However, mutual kNN graphs often suffer from having singletons and small connected423

components due to the weak connectivity. We therefore chose to combine the concepts of both the symmetric424

kNN and mutual kNN graphs.425

For a set of points V and positive integers M and K > M , we define GM,K(V ) to be the union of the426

symmetric MNN graph and the mutual KNN graph for vertices V . This is still a subgraph of the symmetric427

KNN graph, but it has stronger connectivity than the mutual KNN graph by guaranteeing that every node428

has at least M edges, which in turn ensures that GM,K(V ) contains no connected components with fewer429

than (M + 1) nodes.430

For each cluster at the top level of the cluster hierarchy, StormGraph decides whether to split the cluster431

into its subclusters at the next level down in the hierarchy according to the algorithm described below. If432

the split is rejected, then StormGraph keeps the current cluster and does not examine any of the finer levels433

of the hierarchy within that cluster. If the split is accepted, then this process is repeated recursively for434

each of the newly accepted subclusters. A split is automatically rejected if more than 1% of the points in435

the cluster belong to subclusters with fewer than the minimum number of points, specified by the user, that436

constitute a cluster.437

Let V be the set of nodes in a cluster C, let A = {C1, C2, . . . , Cn} be the set of n subclusters of C at438

the next finest level of the cluster hierarchy, and let B(M,K) = {C ′1, C ′2, . . . , C ′n′} be the set of n′ connected439

18

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/515627doi: bioRxiv preprint 

https://doi.org/10.1101/515627


components of the graph GM,K(V ). StormGraph decides whether to split cluster C into its constituent440

subclusters A using the following algorithm:441

1. Construct G2,K(V ) for all integers K ∈ {6, . . . ,K1}, where K1 is the smallest integer such that442

G2,K1(V ) is connected. We empirically chose the minimum value of K to be 6 because this usually443

results in randomly distributed points forming a single connected component.444

2. Find the value of K for which B(2,K) is most similar to A according to some measure of similarity.445

Denote this value of K by K∗.446

3. Split cluster C into subclusters A if the similarity between A and B(2,K∗) is greater than both a447

threshold similarity and the similarity between C and B(2,K∗).448

The most obvious choices for a similarity measure to score the similarity between two clusterings of the449

nodes V are normalized mutual information (NMI) (37) and mean F-measure (38). We require a similarity450

measure that is defined even if one of the clusterings being compared consists of only a single cluster. This451

eliminates NMI as a suitable choice, so we use mean F-measure.452

Let F (A,B) denote the similarity of clustering A to clustering B as measured by the mean F-measure.453

The F-measure or F1 score for a binary classification problem in which a cluster Ci is compared to a reference454

cluster C ′i (usually the ground-truth cluster that the cluster Ci, found by a clustering algorithm, is supposed455

to recover) is defined as the harmonic mean of precision (P ) and recall (R):456

F1(Ci, C
′
i) =

2 · P (Ci, C
′
i) ·R(Ci, C

′
i)

P (Ci, C ′i) +R(Ci, C ′i)
.

The precision P (Ci, C
′
i) is the fraction of Ci that belongs to C ′i, and the recall R(Ci, C

′
i) is the fraction of457

C ′i that belongs to Ci. The mean F-measure F (A,B) is then defined as the weighted arithmetic mean of the458

maximum F-measures for each of the clusters C ′i in B:459

F (A,B) =

∑n′

i=1 |C ′i|max1≤j≤n{F1(Cj , C
′
i)}∑n′

i=1 |C ′i|
,

where |C ′i| denotes the number of points in C ′i.460

The mean F-measure is not symmetric, i.e. F (A,B) 6= F (B,A), which is not desirable in our situation461

where we wish to compare two clusterings, neither of which is necessarily ground-truth. To avoid having462

to choose one of the clusterings A and B to be the reference, we define a symmetric similarity measure,463
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F (A,B), as the arithmetic mean of F (A,B) and F (B,A):464

F (A,B) =
1

2
(F (A,B) + F (B,A)) .

This is the similarity measure that we use in our algorithm for obtaining a single-level clustering from the465

hierarchy. It ranges from 0 to 1, and F (A,B) = 1 if and only if A and B are identical. We impose a minimum466

similarity score of Fmin = 0.8 for a cluster split to be considered. Thus, we split cluster C into its highest467

level of subclusters, A, if A is at least 80% similar to B(M,K∗) and is also a closer match to B(M,K∗) than468

the single, unified cluster C is. The 80% similarity threshold prevents the fragmentation of a cluster if there469

is not substantial consensus between the two independent subclusterings. This threshold could be tuned to470

make it more or less difficult to split a cluster into finer levels of subclusters. In particular, a threshold of471

Fmin = 1 would demand perfect agreement between the subclusters of C and the alternative, independent472

clustering B(M,K∗) for the subclusters to be accepted as a better clustering of V than a single cluster. We473

chose a threshold of 0.8 to allow some leniency.474

Identifying clusters that can be confidently distinguished from multiply counted475

single molecules476

Localizations arising from multiply counted single molecules may be falsely identified as clusters. As an477

optional step during StormGraph analysis, clusters of localizations that cannot be distinguished with high478

confidence, due to their positional uncertainties, from multiply counted single molecules can be identified479

and subsequently reclassified as unclustered (cluster label 0). To do this, StormGraph checks each cluster480

systematically as follows.481

First, for each pair of localizations, Xi = (xi, yi, zi) and Xj = (xj , yj , zj), in the cluster, let Yij = Xi−Xj
482

be their vector difference, and let Σij be the covariance matrix for the coordinates of Yij. The off-diagonal483

elements of Σij are assumed to all be 0 (i.e. the uncertainty in each coordinate of a localization is assumed484

to be independent of its other coordinates). Assuming each molecule to be approximated by a point particle485

of zero size, the mth diagonal element of Σij is V ijm = σim
2

+ σjm
2
, where σim denotes the standard deviation486

for the uncertainty in the mth coordinate of localization i, as given by the input data.487

This assumes that the true position is identical for all localizations originating from the same molecule.488

In practice, the fluorophore positions may be different from the actual molecule positions. For example,489

when molecules are detected using antibodies, the fluorophore conjugated to the antibody may be located490
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as much as 10 nm away from the antibody’s binding site. In addition, if each molecule can be labeled by491

more than one fluorophore, then the true positions of localizations originating from a single molecule will492

not only be different from the actual molecule but also from each other. If the sizes of the molecule and493

fluorescent label are not negligible, they can be approximately taken into account in the following way. For494

mathematical simplicity, we approximate the uncertainty due to the molecule and label size as an isotropic495

Gaussian distribution with variance (r/3)2, where r is the effective radius of the molecule and fluorescent496

label combined, which is specified by the user based on underlying biophysical knowledge. We then add this497

variance term twice (once each for localizations Xi and Xj) to each of the diagonal elements in Σij. For498

our simulated data, this was not necessary as the true position of every localization was at the centre of a499

simulated molecule. For our BCR dSTORM data, we used r = 8 nm.500

Next, we construct the statistic Zij =
∑d
m=1 Y

ij
m

2
/V ijm for each pair of localizations, where d is the number501

of dimensions (2 or 3) and Y ijm denotes the mth coordinate of the vector Yij. If two localizations Xi and Xj
502

have the same true position, then Zij is chi-squared distributed with d degrees of freedom. We then look503

for pairs of localizations for which Zij exceeds a desired quantile of the appropriate chi-squared distribution,504

indicating confidence that they originated from different molecules. Because we are testing multiple pairs505

of localizations for significance, we correct for multiple hypothesis testing using the S̆idák correction. If we506

desire a significance level of 1− q, then we look for pairs of localizations for which Zij exceeds the
(
q1/N

)th
507

quantile of the chi-squared distribution with d degrees of freedom. Here, N is the number of localizations508

in the cluster. Even though there are N(N − 1) pairs of localizations, the null hypotheses are that each509

localization originated from the same molecule as all other localizations in the cluster, and so there are only510

N hypotheses to test. By default, StormGraph uses a significance level of 0.05, so it uses the
(
0.951/N

)th
511

quantile. Finally, since a cluster must always contain at least three localizations (we do not consider pairs512

of localizations to be clusters), StormGraph increases confidence further by demanding that at least two513

localizations are each, probabilistically, sufficiently far from at least two other localizations. This way, a514

single outlying localization within a cluster is not sufficient on its own to qualify the cluster as containing515

multiple molecules with high confidence.516

Guidelines for StormGraph parameter selection517

StormGraph has three user-controllable parameters. The parameter α controls the node-degree threshold518

used to identify and remove unclustered nodes prior to clustering. For data that does not suffer from519

overcounting of molecules, or for which overcounting has already been corrected, α is effectively the maximum520
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false positive rate (FPR) for classifying localizations as clustered if all localizations in a random distribution521

should be classified as unclustered. When overcounting is present in the data, the FPR may be greater522

than α. Nevertheless, for any given α < 1, StormGraph takes steps to minimize the FPR as far as possible.523

Hence, we suggest setting α as the maximum fraction of localizations that the user would accept as being524

clustered if they were completely randomly distributed. For most applications, we recommend α = 0.05, the525

default value. Larger values of α may be suitable if the user is already confident that the localizations are526

strongly clustered but there is large variation in the density of clusters. For example, α = 0.5 would simply527

demand that clusters are at least as dense as the average density of a random distribution, but this could528

result in as many as 50% of localizations in a random distribution qualifying as clustered. Alternatively, the529

user can choose to skip the thresholding step and instead allow all localizations to be possibly assigned to530

clusters by setting α = 1, which ultimately removes all use of α from the StormGraph algorithm.531

The optional parameter k specifies the number of nearest neighbors to use when calculating the graph532

neighborhood radius r0. The value of k, if set, is the minimum (respectively maximum) number of neighbors533

that most clustered (respectively unclustered) localizations should have. It should be smaller than the534

number of localizations in a typical cluster, but preferably larger than the estimated number of times that535

a typical single molecule might blink. These values can be estimated by visual inspection of localization536

clusters within cell boundaries and on the coverslip outside of cells. Increasing k, and consequently r0, can537

influence the exact placement of cluster boundaries, and hence cluster quantification, by allowing more low-538

density localizations on the periphery of clusters to be included in the clusters. This highlights the inherent539

ambiguity in clustering problems, which results from the lack of a clear definition of a cluster. Nonetheless,540

we found values of k between 10 and 20 to be generally appropriate. Alternatively, if k is not set, StormGraph541

will determine r0 heuristically without any user input.542

Finally, the user can optionally set the minimum number of localizations that a cluster must contain,543

MinCluSize. One possible strategy for setting its value is to investigate background regions outside of cells,544

where most clusters of localizations are likely to be due to individual fluorescent labels stuck to the coverslip,545

and assess how many localizations are typical of these apparent clusters. However, because StormGraph546

provides an option to use localization uncertainties to identify and reclassify localization clusters that could547

have arisen just from overcounting of single molecules, clusters that could be due to single molecules can548

be automatically removed from analysis without the need for a minimum cluster size parameter. Note that549

StormGraph requires all clusters to contain at least three localizations, even if MinCluSize is not set.550
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Computational approximations in StormGraph551

In order to improve computational efficiency, StormGraph includes some computational approximations.552

Firstly, neighborhood searches about each node are performed using the MATLAB function “rangesearch”,553

which uses a k-d tree, as this is faster than computing distances between all pairs of nodes. Without554

uncertainties in localization positions, rangesearch is implemented with a search radius of r0. However,555

when Monte Carlo simulations are used to perturb localization positions using their uncertainties, it is556

inefficient to perform rangesearch for every simulation. Instead, we perform rangesearch just once, using an557

expanded search radius, to identify candidate edges for the graph. StormGraph then calculates expected558

edge weights only for the candidate edges. Since the computational time for rangesearch increases as the559

search radius increases, we chose (r0 + 6 × mean localization uncertainty) as the expanded search radius560

because most pairs of nodes separated by distances greater than this would have only negligible or zero edge561

weights anyway. Increasing the search radius further would not only make rangesearch slower, but it could562

also add more edges to the graph and consequently increase the computational cost of community detection,563

even though the additional edges would be mostly negligible.564

Secondly, StormGraph limits nodes to having no more than 500 neighbors in the graph. This is to565

prevent extremely dense, large clusters from dramatically slowing down community detection, since the566

computational time required by Infomap scales with the number of edges in the graph. In practice, for567

reasonably chosen values of k, e.g. in the range from 10 to 20, and for r0 values determined heuristically,568

very few nodes, if any, in most datasets should have this many neighbors.569

Lastly, we note that StormGraph is not deterministic, meaning that it can give slightly different results570

each time that it is run. This is for two reasons. The first reason is because StormGraph uses Infomap571

or the Louvain method to perform community detection. Infomap seeks to optimize the map equation and572

the Louvain method seeks to optimize modularity. In both cases, the full optimization problem is NP-573

hard. Therefore, both methods take a greedy approach to the optimization, which generally finds a local,574

but not necessarily global, optimum. They then select the best optimum from multiple iterations started575

from random initiations. In StormGraph, the default number of iterations used for finding the final cluster576

hierarchy is 50. Results can be improved at the expense of increasing computational time by increasing the577

number of iterations. Conversely, computational time can be reduced at the expense of cluster accuracy by578

decreasing the number of iterations. The second reason for slight variability in results is the use of Monte579

Carlo simulations by StormGraph. This variability can be decreased, again at the expense of increasing580

computational cost, by increasing the number of Monte Carlo simulations.581
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The non-deterministic nature of StormGraph is only a minor drawback, as variability in clustering results582

for a single dataset is small. To demonstrate this, we repeatedly applied StormGraph using identical settings583

to a heterogeneous dSTORM ROI containing visually ambiguous clusters. We did this in both 2D and 3D584

and for both the automatic and kNN methods for determining r0, each time generating 11 StormGraph585

repeats. We then assessed the similarity of cluster assignments from each of the last 10 repeats to the first586

one using NMI, which can range from 0 to 1. We always achieved NMI > 0.94, indicating very high similarity587

(Figure S11).588

Simulating SMLM data in 2D and 3D589

In both 2D and 3D, we distributed 3000 molecules into circular nanoclusters with a fixed radius, r, and590

fixed molecular density, ρ. Each molecule was assigned uncertainties, which were sampled randomly from591

a real dSTORM dataset, in its x-, y- and (for 3D) z-coordinates and a number of blinks, which was drawn592

from a geometric distribution (50) supported on {1, 2, 3, ...} with success probability parameter λ. Within593

each nanocluster, molecules were distributed uniformly at random, and for each molecule the observed594

localizations (blinks) were drawn from a normal distribution with mean equal to the molecule’s position595

and standard deviations equal to the uncertainties assigned to the molecule. Every observed localization596

was assigned the same uncertainties as its associated molecule. The total number of nanoclusters, Nnano,597

was determined by the total number of molecules in clusters (3000) and the density, ρ, of molecules within598

clusters.599

The nanoclusters were positioned inside a 2 µm × 2 µm ROI in 2D or a 2 µm × 2 µm × 1 µm ROI in600

3D such that some existed as isolated nanoclusters and others were randomly aggregated into larger clusters601

according to the following process, which was adapted from a Dirichlet process: for i from 1 to Nnano, draw602

a random number from the uniform distribution on [0,1]; if it is less than or equal to ((p+ 10)/(p+ i− 1))q603

for positive integers p and q, then place the ith nanocluster away from existing clusters; otherwise, add the604

ith nanocluster to a randomly selected existing cluster, excluding the first 10 nanoclusters that were placed.605

If a nanocluster was added to an existing cluster, it was placed such that its centre was exactly a distance606

2r from the centre of another nanocluster in the same aggregate cluster, and without overlapping with any607

other existing nanoclusters in the aggregate cluster.608

This process ensures that there are at least 10 isolated nanoclusters and a variable number of larger609

aggregate clusters of variable size, thus creating heterogeneous clusters. The heterogeneity is controlled by610

the parameters p and q. In our simulations, we fixed p = 5 and varied q from 1 to 5, with larger values of q611
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resulting in larger (and fewer) cluster aggregates. Outside of the clusters, we added molecules uniformly at612

random at a specified average density, and the number and positions of observed localizations corresponding613

to each of these background molecules were drawn from geometric and normal distributions respectively, as614

described for the in-cluster localizations.615

If the simulations were performed in 3D, points were then randomly removed such that the probability616

of a localization being observed in the final simulated data decayed according to a Gaussian profile as the617

axial distance from a central focal plane increased. This was to imitate the realistic scenario for most 3D618

SMLM techniques in which fluorescent blink events are more likely to be collected and localized the closer619

they are to the focal plane.620

We generated 64 2D datasets with multiple blinking of molecules (e.g. Figures 2a(i) and S5) by varying621

the following parameters: (1) the radius of the nanoclusters (20 nm, 30 nm or 50 nm), (2) the density of622

clustered molecules (0.01 nm−2 or 0.02 nm−2), (3) the density of the random molecules (1%, 5%, 10%, 20%623

or 40% of the within-cluster molecular density), (4) the average number of blinks per molecule (4/3, 2 or 4;624

these values provide examples ranging from cases in which most molecules blink only once to cases where625

the molecules could be bivalent and labeled by fluorophores that blink on average twice, which is typical626

for the photoactivatable fluorophore mEos2 (4; 51)), and (5) the propensity for nanoclusters to coalesce into627

larger aggregate clusters (parameter q).628

We generated 130 3D datasets analogously but using within-cluster molecular densities of 1×10−4 nm−3629

and 2×10−4 nm−3. In 3D, we used nanoclusters of radii 30 nm and 50 nm, and we used densities of random,630

unclustered molecules equal to 1%, 5%, 10% or 20% of the within-cluster molecular density. At 20%, clusters631

were barely visible in 2D projections of the simulated 3D data onto the xy-plane.632

Running ClusterViSu on simulated data633

The ClusterViSu algorithm consists of running a series of two functions provided as part of its source code,634

specifically the functions “VoronoiMonteCarlo” and “VoronoiSegmentation”. However, the authors did not635

provide a script for running ClusterViSu. Hence, for users with zero programming expertise, it can only636

be run using a graphical user interface that requires each file to be loaded and analyzed separately. Also,637

ClusterViSu outputs the bounding polygon for each detected cluster but not the actual cluster assignments of638

the localizations, which we needed to compute NMI and mean F-measure scores for assessing the performance639

of cluster assignment. Therefore, we wrote our own custom MATLAB script (available upon request) to run640

and batch process ClusterViSu from its source code and subsequently determine the cluster assignments of641
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the localizations. In addition, we found that ClusterViSu prefers input ROIs to be at least 18 µm × 18 µm,642

so we rescaled our 2 µm × 2 µm simulated data by a factor of 9, which drastically improved ClusterViSu’s643

performance, at least in terms of computational time.644

Furthermore, we only included ClusterViSu results for simulated datasets on which ClusterViSu analysis645

completed in under 2 hours. This resulted in 15 out of 64 simulated datasets being excluded from our646

summary of test results for ClusterViSu, but these 15 datasets were still included for assessing StormGraph647

and DBSCAN. However, these 15 datasets were excluded in Figures 2c and S3b, where NMI or mean F-648

measure results for StormGraph and DBSCAN are shown as a ratio to the NMI or mean F-measure results649

for ClusterViSu.650

Functionalization of glass coverslips for cell adherence651

Glass coverslips were cleaned and functionalized as previously described (52). Briefly, acid-cleaned glass cov-652

erslips (Marienfeld #1.5H, 18 mm × 18 mm; catalogue #0107032, Lauda-Königshofen, Germany) were incu-653

bated with 0.01% poly-L-lysine (Sigma-Aldrich; catalogue #P4707) or 0.25 µg/cm3 of the non-stimulatory654

M5/114 anti-MHCII monoclonal antibody (Millipore; catalogue #MABF33) or 2 µg/cm2 fibronectin (Sigma655

Aldrich; catalogue #F4759) for at least 3 h at 37 ◦C. The slides were then washed with phosphate-buffered656

saline (PBS) prior to being used for experiments.657

Monovalent Fab fragments and antibodies658

The anti-mouse-Igκ antibody for clustering BCRs was purchased from Southern Biotech (Birmingham,659

AL; catalogue #1050-01). AF647-conjugated anti-mouse-IgM Fab fragments (catalogue #115-607-020) and660

AF647-conjugated anti-human-IgM Fab fragments (catalogue #109-607-043) were from Jackson ImmunoRe-661

search Laboratories (West Grove, PA). All Fab fragments were routinely tested for aggregation using dynamic662

light scattering (Zetasizer Nano) and unimodal size distributions were observed. Anti-LAMP-1 antibody was663

purchased from Abcam (catalogue #ab24170). AF647-conjugated goat anti-mouse-IgG (catalogue #A21236)664

and AF647-conjugated goat anti-rabbit-IgG (catalogue #A21244) were purchased from ThermoFisher Sci-665

entific. Goat anti-mouse-IgG (Jackson ImmunoResearch Laboratories; catalogue #115-005-008) and goat666

anti-rabbit-IgG (Jackson ImmunoResearch Laboratories; catalogue #111-001-008) were conjugated to Cy3B667

using a Pierce antibody conjugation kit (catalogue #44985).668
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Cell labeling for dSTORM669

(1) Murine splenic B cells670

Animal protocols were approved by the University of British Columbia and all animal experiments were671

carried out in accordance with institutional regulations. Splenic B cells were obtained from 6- to 10-week672

old C57BL/6 mice (Jackson Laboratory) of either sex using a B-cell isolation kit (Stemcell Technologies;673

catalogue #19854) to deplete non-B cells. To induce IgM-BCR clustering, 5×106 ex vivo splenic B cells/mL674

were stimulated with 20 µg/mL anti-Igκ in PBS for 10 min at 37 ◦C. A similar volume of PBS was added to675

control samples (resting B cells). All subsequent procedures were performed at 4 ◦C. Cells were washed three676

times with ice-cold PBS, and IgM-BCRs on the cell surface were labeled using AF647-conjugated, monovalent677

anti-mouse-IgM Fab fragments for 15 min. These Fab fragments bind to the constant region of the µ heavy678

chain of IgM-BCRs, which is distinct from sites on the IgM-BCR that the anti-Igκ treatment antibody binds679

to. Following multiple PBS washes, cells were settled onto pre-cooled anti-MHCII-functionalized coverslips680

for 10 min and subsequently fixed with PBS containing 4% paraformaldehyde and 0.2% glutaraldehyde for 90681

min. The coverslips were washed thoroughly with PBS and fiducial markers (100 nm diameter; ThermoFisher682

Scientific, catalogue #F8799) were allowed to settle onto the coverslip overnight at 4 ◦C. Unbound fiducial683

markers were removed by PBS washes and the stuck particles were used for real-time drift stabilization (53).684

(2) Human and murine B-lymphoma cell lines685

A20 and BJAB B-lymphoma cells were obtained from American Type Culture Collection (ATCC). HBL-1686

cells were obtained from Dr. Izidore S. Lossos, Sylvester Comprehensive Cancer Center, University of Miami687

(Miami, FL). TMD8 cells were a gift from Dr. Neetu Gupta, Lerner Research Institute, Cleveland Clinic688

(Cleveland, OH). All B-cell lines were cultured in RPMI-1640 (Life Technologies; catalogue #21870-076),689

supplemented with 10% heat-inactivated fetal bovine serum, 2 mM L-glutamine, 50 µM β-mercaptoethanol,690

1 mM sodium pyruvate, 50 U/mL penicillin, and 50 µg/mL streptomycin (complete medium). All cell lines691

were authenticated by STR DNA profile analysis.692

All staining procedures were performed at 4 ◦C. Cell-surface IgM-BCRs on BJAB, HBL-1 and TMD8 cells693

were labeled using AF647-conjugated anti-human-IgM Fab fragments for 15 min. Cell-surface IgG-BCRs on694

A20 cells (ATCC) were labeled using both AF647-conjugated anti-mouse-IgG and Cy3B-conjugated anti-695

mouse-IgG at 1:1 stoichiometry for 15 min. Fc receptors on A20 cells were blocked prior to staining using the696

2.4G2 rat anti-Fcγ receptor monoclonal antibody. Cells were washed in PBS and subsequently fixed with697
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ice-cold PBS containing 4% paraformaldehyde and 0.2% glutaraldehyde for 60 min. Following multiple PBS698

washes, the cells were settled onto pre-cooled poly-L-lysine-coated coverslips for 15 min and subsequently699

fixed again for 30 min. The coverslips were washed thoroughly with PBS and fiducial markers were added700

and incubated overnight at 4 ◦C.701

(3) B16 melanoma cell lines702

B16F1 melanoma cells (ATCC) were grown in RPMI-1640 complete medium. Approximately 3 × 104 cells703

were seeded on fibronectin-coated coverslips for 1 h and fixed with PBS containing 4% paraformaldehyde704

for 30 min. Cells were permeabilized with 0.1% Triton X-100 for 10 min, washed with PBS, and incubated705

for 30 min at room temperature (RT) with Image-IT FX Signal Enhancer (Life Technologies, catalogue706

#I36933) to neutralize surface charge. Cells were washed briefly in PBS and then incubated with BlockAid707

blocking solution (Life Technologies; catalogue #B10710) for 1 h at RT. The cells were incubated with708

anti-LAMP-1 antibody (diluted in BlockAid) for 4 h at RT. Following PBS washes, cells were incubated709

with both AF647-conjugated anti-rabbit-IgG and Cy3B-conjugated anti-rabbit-IgG at 1:1 stoichiometry for710

90 min. Cells were washed in PBS and subsequently fixed again with 4% paraformaldehyde for 10 min. The711

coverslips were washed thoroughly with PBS and fiducial markers were added and incubated overnight at712

4 ◦C.713

dSTORM714

Imaging was performed using a custom-built microscope with a sample drift-stabilization system that has715

been described previously (53; 54). Briefly, three lasers were used in the excitation path. These were a 639 nm716

laser (Genesis MX639, Coherent) for exciting the AF647, a 532 nm laser (Laser quantum, Opus) for exciting717

the photo-switchable Cy3B, and a 405 nm laser (LRD 0405, Laserglow Technologies) for reactivating the718

AF647 and Cy3B. All three lasers were coupled into an inverted microscope equipped with an apochromatic719

TIRF oil-immersion objective lens (60x; NA 1.49; Nikon). The emission fluorescence was separated using720

appropriate dichroic mirrors and filters (Semrock) (53; 54), and detected by EM-CCD cameras (Ixon, Andor).721

A feedback loop was employed to lock the position of the sample during image acquisition using immobile722

fiducial markers. Sample drift was controlled to be less than 1 nm laterally and 2.5 nm axially.723
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dSTORM image acquisition and reconstruction724

Imaging was performed in an oxygen-scavenging GLOX-thiol buffer consisting of 50 mM Tris-HCl, pH725

8.0, 10 mM NaCl, 0.5 mg/ml glucose oxidase, 40 µg/ml catalase, 10% (w/v) glucose and 140 mM 2-726

mercaptoethanol (55). The coverslip with attached cells was mounted onto a depression slide filled with727

imaging buffer and sealed with Twinsil two-component silicone-glue (Picodent; catalogue #13001000).728

For SMLM imaging, a laser power density of 1 kW/cm2 for the 639 nm and 532 nm lasers was used729

to activate the AF647 and Cy3B, respectively. For each sample, 4 × 104 images were acquired for each730

color channel at 50 Hz. Localization coordinates and their associated uncertainties were computationally731

determined simultaneously by fitting a function to the intensity profile of each fluorescence event using732

MATLAB (Figure S12), as described previously (54). Expressed as standard deviations, lateral uncertainties733

were typically < 10 nm while axial uncertainties were typically < 40 nm (Figure S12).734

For two-color SMLM, image acquisition was performed sequentially for each color with AF647 imaged735

first to prevent photobleaching by the Cy3B excitation laser. Two-color SMLM images were acquired using736

a beam splitter with appropriate filters to direct each signal to one of two independent cameras. Alignment737

of these two colors was carried out using ∼ 4 × 104 images of fluorescent beads simultaneously recorded at738

various positions to find an optimal geometric transformation. The resulting color-alignment error is ∼10 nm739

root mean squared.740
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Figures and figure legends

Figure 1.

Figure 1: Schematic illustration of StormGraph’s workflow. (a–d) SMLM localizations are used as
nodes (a) and converted into a weighted graph (b). This graph is based on r0-neighborhood graphs, where
edges connect each node to all other nodes within a distance r0. Two nodes i and j are connected by an
edge of weight Wij , which describes their similarity based on the distance between them and, if known, their
positional uncertainties. Nodes are classified as either clustered (green) or unclustered (blue) based on their
node degree, i.e. sum of adjacent edge weights, (c). A new graph is constructed from only the clustered nodes,
which are then assigned to specific clusters using a community detection algorithm (d). Cluster properties
(e.g. area) can then be quantified. The bottom panels in (a), (c), and (d) illustrate each step for an actual
SMLM region of interest (scale bar = 500 nm). (e) StormGraph identifies a hierarchy of clusters at multiple
scales and then generates an appropriate single-level clustering from the hierarchy. Shown are three different
levels from the cluster hierarchy for the region in the white box in the lower panel of (c), along with the
single-level clustering for this region. Colors distinguish different clusters.
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Figure 2.

Figure 2: StormGraph consistently outperforms ClusterViSu and DBSCAN on simulated data.
(a) (i) An example simulated dataset (color bar = density, scale bar = 500 nm), (ii) its ground-truth clusters,
and cluster assignment results for (iii) StormGraph and (iv) ClusterViSu. Colors distinguish distinct clusters.
(b) Accuracy of assigning data points to clusters as assessed by normalized mutual information (NMI; 1 =
perfect). A total of 64 simulated datasets were analyzed using StormGraph, ClusterViSu, and DBSCAN.
StormGraph was run either with (+) or without (-) localization uncertainties. The value of r0 used by
StormGraph was determined using the heuristic method (auto.) or the k-nearest neighbor method with
k = 10, 15 or 20. DBSCAN was implemented using 16 different selections of its two parameters, MinPts
and ε, of which the two best-performing are shown here. ClusterViSu results are only shown for the 49
datasets on which the analysis was completed in under 2 h. Boxes show medians and interquartile ranges.
(c) The same results as in panel (b) are displayed normalized to ClusterViSu’s performance for each of the
49 simulated datasets for which analysis by ClusterViSu was completed in under 2 h. StormGraph was
consistently more accurate than ClusterViSu at assigning points to clusters, indicated by ratios > 1.
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Figure 3.

Figure 3: StormGraph analysis of IgM-isotype B-cell antigen receptors (IgM-BCRs) on ex vivo
murine splenic B cells (a–b) and human B-lymphoma cell lines (c–d) imaged using dSTORM.
(a) StormGraph analysis of IgM-BCRs imaged by dSTORM on ex vivo murine splenic B cells that were
either resting (left panels) or treated with bivalent anti-Igκ antibodies (anti-Igκ-treated; right panels). Top
row: Total internal reflection fluorescence microscopy images taken prior to dSTORM imaging of the same
cells. Scale bar = 1 µm. Second row: Reconstructed images of IgM-BCRs from dSTORM localizations. Scale
bar = 1 µm. Third row: IgM-BCR dSTORM localizations in the ROIs shown in the second row. Scale bar =
500 nm, color bar = density (nm-2). Bottom row: Clusters identified by StormGraph, colored by their areas
(nm2). (b) Cumulative distribution functions (CDFs) for cluster areas in ROIs from 28 resting (blue) and
24 anti-Igκ-treated (red) ex vivo murine splenic B cells. Panel (i) shows the mean cluster area in each ROI.
Panel (ii) shows all cluster areas from all ROIs. The increased mean cluster areas in anti-Igκ-treated cells
compared to resting cells is due to clusters larger than ∼6000 nm2. (c) StormGraph analysis of IgM-BCRs
imaged by dSTORM on resting BJAB, HBL-1 and TMD8 cells. Top: ROIs containing IgM-BCR dSTORM
localizations from one Burkitt’s lymphoma (BJAB) and two ABC DLBCL (HBL-1 and TMD8) cells. Scale
bar = 500 nm, color bar = density (nm-2). Bottom: Clusters identified by StormGraph, colored by their
areas (nm2). (d) CDFs for cluster areas in ROIs from 81 BJAB (blue), 39 HBL-1 (red), and 33 TMD8
(green) cells. Panel (i) shows the mean cluster area in each ROI. Panel (ii) shows the areas of all clusters in
all ROIs. The larger mean area of clusters on HBL-1 cells than on BJAB cells is due to small numbers of
very large clusters. All StormGraph results shown here were generated using localization uncertainties and
k = 15.

38

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/515627doi: bioRxiv preprint 

https://doi.org/10.1101/515627


Figure 4.

Figure 4: StormGraph results are not sensitive to the global average density of localizations.
(a) StormGraph cluster results (color bar = cluster area (nm2)) for a dSTORM dataset with 0%, 25%,
50% or 75% of the localizations randomly removed (left panels, color bar = density (nm-2)). Localization
uncertainties were either used (+) or not used (-) by StormGraph during clustering. The value of r0 was set
using either the kNN method with k = 15 or the heuristic method (auto.). Scale bar = 500 nm. (b) Cluster
areas quantified by each implementation of StormGraph for each of the four datasets, showing that the
distribution of quantified cluster areas was not significantly affected by the random removal of localizations
(p > 0.05 as determined by two-sample Kolmogorov-Smirnov tests). Boxes show medians and interquartile
ranges.
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Figure 5.

Figure 5: Two-color cluster overlap analysis using StormGraph. (a) IgG-isotype B-cell antigen
receptors (IgG-BCRs) on A20 B cells were labeled simultaneously with bivalent anti-IgG antibodies that
were conjugated to either AF647 (top panel; red) or Cy3B (bottom panel; pseudo-colored blue) and imaged
using dSTORM. Bivalent antibodies were used to induce clustering, since each antibody can bind to up
to two IgG-BCRs. Figure shows the IgG-BCR dSTORM localizations in a region of interest (ROI) from
one representative cell analyzed using StormGraph. Scale bar = 500 nm, color bars = density (nm-2).
(b) Binary images of the AF647 (top) and Cy3B (bottom) clusters identified by StormGraph in the ROI
shown in (a). (c) Merged image of the outlines of the AF647 clusters (red) and Cy3B clusters (blue)
identified by StormGraph, with the overlapping area colored in magenta. (d) Pictorial description of the
three area-based cluster overlap scores calculated by StormGraph, in the same order as the columns in panel
(e). (e) Cluster overlap scores calculated using the formulae in panel (d) for 31 StormGraph-analyzed ROIs
from multiple A20 cells imaged in the same experiment. Each ROI contributes one dot to each column. Boxes
show medians and interquartile ranges. These scores determine the maximum observable overlap that could
be expected for clusters of IgG-BCRs and a different molecule labeled using these same two fluorophores on
A20 cells, imaged using the same imaging setup and analyzed by StormGraph.
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Figure 6.

Figure 6: Analysis of 3D SMLM data using StormGraph. (a) Localizations of intracellular LAMP-
1 detected by simultaneous staining with anti-LAMP-1 antibodies that were visualized using the same
secondary antibody labeled with either (i) AF647 (red) or (ii) Cy3B (pseudo-colored blue). A murine B16
melanoma cell was imaged by two-color, 3D dSTORM and a 5 µm × 5 µm × 700 nm ROI was selected
for analysis. Color bars = density (nm−3). (iii) Merge. (b) 2D projections of the (i) AF647 and (ii) Cy3B
localization data onto the xy-plane. Color bars = density (nm−2). Scale bar = 1 µm. (c) (i) AF647 and (ii)
Cy3B clusters found by StormGraph using localization uncertainties, k = 15, α = 0.1, and a minimum cluster
size of 5 localizations. Clusters of localizations that could not be confidently distinguished from a single,
multiply counted fluorescent probe were removed. Colors distinguish different clusters. (d) 2D projections
of the clusters in panel (c) colored by their volumes (nm3). (e) All volumes of AF647 and Cy3B clusters
detected by StormGraph, as in (d). Boxes show medians and interquartile ranges. (f) Overlapping volumes
(magenta) of the AF647 and Cy3B clusters in panel (c). (g) Enlarged region showing overlap (magenta)
between one AF647 cluster (red) and two Cy3B clusters (pseudo-colored blue).
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