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Abstract 
Somatic DNA copy number variations (CNVs) are prevalent in cancer and can drive cancer              
progression albeit with often uncharacterized roles in altering cell signaling states. Here, we             
integrated genomic and proteomic data for 5598 tumor samples to identify CNVs leading to              
aberrant signal transduction. The resulting associations recapitulated known        
kinase-substrate relationships and further network analysis prioritized likely driver genes. A           
total of 44 robust pan-cancer gene-phosphosite associations were replicated in cell line            
samples. Of these, ARHGEF17, a predicted regulator of hippo-signaling, was further studied            
through (phospho)proteomics analysis where ARHGEF17 knockdown cells showed        
dys-regulation of hippo- and p38 signaling as well as immune related pathways. Using,             
RNAi, CRISPR and drug screening data we find evidence of kinase addiction in cancer cell               
lines identifying inhibitors for targeting of ‘kinase-dependent’ cell lines. We propose copy            
number status of genes as useful predictors of differential impact of kinase inhibition, a              
strategy that may be of use in the future for anticancer therapies. 
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Introduction  

 
Kinases are druggable proteins that are key targets for cancer treatment as they are highly               
prone to acquire somatic mutations and act as oncogenes (Gross et al., 2015). Several              
studies have proposed that cancer cells can become dependent or addicted to changes in              
kinase signaling (Sawyers, 2004). However, the challenge remains to identify the genomic            
context in which specific kinase inhibitors are more likely to be effective. Cancer genomes              
harbour a large number and variety of mutations including somatic point mutations and copy              
number aberrations. These mutations may have many direct and indirect effects which are             
likely to rewire signaling pathways giving cancer cells a growth advantage. Several studies             
have reported evidence of somatic mutations that affect kinase activity (Miller et al., 2015;              
Olow et al., 2016; Reimand and Bader, 2013). However, the impact of copy number              
aberrations on kinase signaling activity are often unknown besides a some well            
characterized cases of CNV in signaling genes such as PTEN (Chalhoub and Baker, 2009)              
and HER2 (Moasser, 2007). Several tumor types including breast (Curtis et al., 2012) and              
ovarian cancer (Macintyre et al., 2018) show large-scale genomic aberrations and have            
been known to contribute to cancer development and progression. Identifying downstream           
effects of copy number changes is complicated by the fact that they encompass large              
segments of genomes with many genes and therefore it is difficult to identify the likely ‘driver’                
gene within the CNV region.  
 
Large scale phosphorylation measurements of tumor samples have relied primarily on           
Reverse Phase Protein Arrays (RPPA), that consists of a (phospho-)protein antibody           
microarrays used to estimate protein abundances in a high-throughput manner. The TCGA            
RPPA platform (TCPA) currently has estimates for around 150 proteins and 50            
phospho-proteins for nearly 10,000 tumor samples (33 tumor types) (Li et al., 2013). The              
phospho-proteins measured include extensively annotated functional sites on kinases and          
transcription factors belonging to key signaling pathways implicated in cancers including Akt            
signaling, EGFR signaling, RAS-RAF pathway and hippo-signaling pathways. These sites          
can be used as a proxy for kinase signaling in cancer related pathways. 
 
From the integration of large-scale pan-cancer genomic, transcriptomic and RPPA          
phosphoproteomic datasets we identified genes likely to drive changes in kinase signaling.            
These associations were found to be enriched in known kinase-substrate relationships and            
were then systematically filtered to select reliable associations that also replicated by            
analyzing cancer cell line data. A top-ranked predicted regulator (ARHGEF17) of           
hippo-signaling (YAP) was experimentally verified in two breast cancer cell lines and through             
(phospho-)proteomic analysis was shown to play a role in regulation of hippo-signaling and             
MAP Kinase pathway having an apparent downstream effect on cytoskeleton organization           
and immune effector processes. In parallel, we also found evidence of kinase addiction in              
cancer cell lines and identified inhibitors for targeting of ‘kinase-dependent’ cell lines. This             
work suggests that copy number status of genes may be indicative of kinase activity              
differences and predictive of sensitivity to kinase inhibition. In the long-term this strategy can              
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be used to stratify patients for targeted therapy based on the copy number status of driver                
genes. 
 
Results 

Copy number alterations associated with phosphorylation changes in tumors 

 
We have developed a computational method to predict genes driving changes in            
phosphorylation signaling in patient derived cancer samples (Figure 1a). A genetic           
association model was built to predict phosphorylation changes in tumor samples, obtained            
from RPPA data (TCPA), using CNVs as predictors of signaling events. The changes in              
phosphorylation, as measured in RPPA, could be either due to changes in total protein or               
changes in the stoichiometry of phosphorylation. In order to focus on changes in             
stoichiometry we restricted our analysis to 37 phosphosites which also had matched protein             
abundances in the RPPA Datasets for normalization purposes (Methods). CNVs and gene            
expression levels were obtained for 15,524 protein-coding genes after excluding genes           
whose CNVs have been predicted to be post-transcriptionally attenuated (Gonçalves et al.,            
2017). We then associated CNVs with phosphosite activity of 37 phosphosites across 5,598             
tumor samples from 17 tumor types, taking into account total protein abundance and tumor              
type as covariates (Methods). Since copy number aberrations cover large chromosomal           
regions, phosphosite changes will show significant CNV associations with many genes in            
each co-amplification region, many of which are likely spurious. As an example, the genes              
found to be associated with changes in phosphorylation of Akt1 are shown in Figure 1b . On                
average, each phosphosite was predicted to be associated with 419 genes (10% FDR,             
Effect size  > 0.05).  
 
Before filtering for spurious associations due to co-amplification, we tested if the            
CNV~phosphosite associations can recapitulate prior knowledge on kinase-substrate        
relationships. For this we analysed 118 known kinase-substrate relationships curated in the            
PhosphositePlus (Hornbeck et al., 2012) database involving the 37 phosphosites analysed           
here. Overall, we observe that known kinase~phosphosite pairs tend to have significant            
association more often than random expectation (P-value < 0.01) using both CNV and             
expression levels (Figure 1c). For instance the phosphorylation of YAP pS127, after            
regression for YAP total protein levels, showed a significant correlation with both expression             
and copy number changes of LATS2 kinase (Meng et al., 2016). Similarly, expression of              
PRKD1 (Scheid et al., 2002), PDPK1 (Sato et al., 2002), and MAP3K5 (Gu et al., 2009)                
kinases are positively correlated with Akt T308, Akt pS473 and p38 pT180,Y182            
phosphosites respectively (Figure 1d).  
 
Given that copy number alterations affect multiple genes within altered regions, many of the              
above defined associations are likely to be spurious passenger associations. We then            
sought to identify the most likely ‘driver’ gene controlling the downstream kinase signaling             
change for each region. Firstly, we selected CNV associated genes whose expression was             
also associated with the phosphosite activities (FDR < 5%). We then selected the top ranked               
associated genes within each chromosome region based on a combined rank from 3             
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measurements: 1) the CNV and 2) gene expression association effect size and 3) the              
gene~phosphoprotein distance in a functional interaction network (Methods). We exemplify          
in Figure 1b the genome-wide gene associations found as putative regulators of AKT1             
pT308 phosphorylation levels and the selected driver genes predicted within each segment.            
For this site we recover the very well-known PTEN regulator(Lin et al., 2013), along with               
other novel candidate regulators. Using this approach an average of 8 predicted ‘driver’             
genes per phosphosite were obtained, with each ‘driver’ gene as a representative of a              
genomic segment. All phosphosites except for PEA15 pS116 had at least one gene as a               
predicted regulator and 12 phosphosites including those on CHEK1, CHEK2, AKT, MAPK            
and YAP were predicted to be regulated by more than 10 driver genes. 
 
We obtained a total of 303 associations between driver genes and regulated phosphosites in              
the pan-tumor dataset (Supplementary Figure S1 and Supplementary Table S1 ). These           
associations comprised of 264 driver genes among which 11% (29/264) of driver genes had              
more than one association. The driver genes showed significant enrichment for genes            
involved in cell cycle process, TOR signaling, regulation of protein kinase activity and             
positive regulation of response to DNA Damage stimulus (Fisher Adjust p-value < 0.01;             
Figure 1e ). The driver genes were also enriched for kinases (19/264; Fisher Adjust p-value              
< 0.01) including FLT1, PTK6 and YES1 and phosphatases (11/264; Fisher Adjust p-value <              
0.01) including PPA2 and PPP1CC. Consistent with their broad spectrum activity,           
phosphatases were found associated with multiple phosphosites when compared to other           
gene types (Wilcoxon rank-sum p-value < 0.05). For instance, PPP1R3B was predicted to             
regulate several phosphosites including p90RSK, Tuberin and FOXO3 (Supplementary         
Table S1 ). Similarly PTEN was predicted to regulate both Akt phosphosites (S473 and             
T308) and GSK3AB pS21,9. We also found a significant enrichment for known cancer driver              
genes from COSMIC database in our predicted driver genes list such as CDK4, EGFR,              
PTK6 and CCND1 (29/264; Fisher Adjust p-value < 0.01). 
 
Several recurrent protein missense genetic variants are well known to cause changes in             
kinase signaling (Creixell et al., 2015). Given that some of the copy-number changes can              
co-occur with missense variants, we tested whether any of the 303 CNV associations with              
phosphosites can be explained by missense variants. From 1002 genes having missense            
variants in at least 50 patient pan-cancer samples we found 24 associations between             
recurrently mutated genes and phosphosite levels (Supplementary Figure S2). These          
include a positive association between EGFR mutation and EGFR pY1068 and HER2            
pY1248 activity. Similarly, missense mutations in NRAS were positively associated with           
MAPK pT202, Y204 and mutations in KRAS were positively associated with MEK1 pS217,             
S221. We then asked if any of the CNV associations can be fully explained by one of the                  
recurrently mutated genes. While in some cases there was a decrease in significance for the               
CNV~phosphosite associations, in only 6 cases the CNVs were not a significant added             
predictor. For example, the association between PDPK1 CNV with mTOR pS2448 activity            
could be explained by missense mutations in IL7R. Similarly, association between ZMYM1            
CNV and EGFR pY1068 could be explained by mutations in EGFR.  
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Figure 1. Prediction of regulators of phosphosite activity based on somatic DNA copy number              
aberrations and gene expression. (a) Key steps in the gene (CNV/Expression)~phosphosite           
phosphorylation association method. Red colour indicates strength of positive associations while blue            
colour represents strength of negative associations. Edge thickness are scaled by weights in the              
schematic network. (b) A Manhattan plot showing the genome-wide associations between gene copy             
number changes and Akt phosphosite levels (Akt pT308). Dashed red line indicates cutoff for              
significant copy number based associations (10% FDR). Genes highlighted in brown are supported             
by gene expression based associations. Genes highlighted in blue are the top-ranked gene within              
each genomic region. (c) significance of correlation between CNV (in purple) or mRNA (in yellow)               
levels with phosphosite changes for known kinase-substrate interactions (coloured) or any           
gene-phosphosite pair (in grey). (d) RPPA phosphosite levels, after regressing away protein changes,             
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binned by mRNA levels of regulators in pan-cancer data from TCGA/TCPA for known             
regulator~substrate relationships. (e) Gene ontology over-representation analysis of predicted         
regulators.  
 

Replication of predicted drivers of signaling changes in cancer cell lines 

 
To investigate the reliability of the predicted associations from the pan-tumor analysis, we             
attempted to replicate the significant associations in the cancer cell line cohort from CCLE              
with publicly available copy number (Barretina et al., 2012), expression (Barretina et al.,             
2012) and phosphorylation (Zhao et al., 2017) information. We interrogated two independent            
RPPA datasets from DepMap and MCLP to test the replicability of these associations in              
cancer cell lines. A total of 130 out of 303 of the predicted driver gene ~ phosphosite were                  
replicated in the larger set of 890 cancer cell lines in DepMap (10% FDR; Supplementary               
Table S1 ). Separately, 66 out of 303 predicted driver gene ~ phosphosite were replicated in               
the smaller set of 319 cancer cell lines in MCLP (10% FDR; Supplementary Table S1),               
using the mRNA levels of the predicted driver genes. Differences in predictions may be              
partially due differences in sample size and/or differences in heterogeneity of the tumor             
versus cell line samples, such as presence of non-tumor cells or changes during in vitro               
culturing. To assess the overall predictive power of activity of individual phosphosite, we             
trained models of phosphosite activities as a linear combination of expression profiles of the              
predicted driver genes (Methods). For 8 out of 37 phosphosites, at least 20% of the               
variance in phosphosite activities in DepMap cell lines could be significantly explained by the              
expression of predicted driver genes in the cell lines. One of these phosphosite, MEK1              
pS217,S221, at least 20% of variance in activity in DepMap cell lines could be predicted               
using linear model trained on the TCGA tumor dataset. For 12 out 37 of phosphosites, at                
least 20% of the variance in phosphosite activities in MCLP cell lines could be significantly               
explained by the expression of predicted driver genes (Figure 2a). For three of these              
phosphosites, HER3 pY1289, EGFR pY1068 and YAP pS127, at least 20% of variance in              
activity in MCLP cell lines could be predicted using linear model trained on the TCGA tumor                
dataset (Figure 2a ). 
  
A stringent set of 44 driver gene~phosphosite pairs were defined which were replicated in at               
least 20% of different tumor types (4/18) and also replicated independently in two different              
cancer cell line datasets (Figure 2b). Among the replicated associations were well-known            
examples (Figure 2b and 2c) such as loss of PTEN correlated with increase in              
phosphorylation of Akt pT308 and Akt pS473 (Lin et al., 2013) and the EGFR amplification               
correlated with HER2 pY1248 phosphosite activity(Dittmar et al., 2002). In addition to these             
known examples, we were able to identify several novel potential regulators of phosphosite             
levels which have been previously reported to play a key role in cancer development and/or               
progression. For instance, MTDH gene known to be involved in regulation of several             
signaling pathways including Akt, Wnt and MAPK leading to tumor metastasis(Emdad et al.,             
2013), was predicted to positively regulate p27 pT198 (cyclin-dependent kinase inhibitor)           
activity.  
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Figure 2. Shortlisted gene~phosphosite pairs replicated in cancer cell line data. (a) Variation             
explained in phosphosite levels as predicted by a linear model for each phosphosite based on               
expression of putative driver genes. Linear models derived from TCGA (dark), DepMap (light) and              
MCLP (light) based RPPA data were used to predict phosphosite activity on cell line based               
expression data and correlated with the measured DepMap and MCLP RPPA measurements. (b)             
Shortlist of gene~phosphosite pairs predicted in pan-tumor analysis and replicated in both DepMap             
and MCLP cell lines. (c) Changes in phosphosite levels (after regressing out protein changes), binned               
by mRNA levels or copy number levels of predicted regulators for some top ranked and replicated                
pairs.  
 
 

Evidence of kinase addiction in cancer cells 

 
Having shown that copy number alterations lead to kinase signaling changes we next sought              
to find cases where such signalling differences create potential genetic vulnerabilities.           
Previous studies have proposed that cancer cells have a tendency to become dependent on              
the activity of proteins such as kinases (Tyner et al., 2013) and are therefore likely to be                 
sensitive to loss of the kinase gene. We exploited the recently generated RNAi (Tsherniak et               
al., 2017) and CRISPR (Meyers et al., 2017) knock-down and KO data for cancer cell lines in                 
Project Achilles to test the generality of this concept. RPPA phosphosites were classified into              
activating (25 sites) and inhibitory (9 sites) based on evidence in literature (Hornbeck et al.,               
2012; Korkut et al., 2015). Protein activities as measured by phosphosites in DepMap were              
then correlated with sensitivity to loss of the corresponding gene across 406 cancer cell lines               
in the CRISPR screen. Increased protein activity in a given cell line showed an overall               
tendency for increased essentiality of the gene in the respective cell line (median log10              
P-value = -0.44; Figure 3a ). Activation sites showed an overall tendency for negative             
correlation and inhibitory sites show an overall tendency for positive correlation (Figure 3b).             
The protein activity dependencies varied across different genes and were recapitulated for            
several proteins using a RNAi data with matched RPPA phosphoproteomic measurements           
(Figure 3b ). The strongest reproduced activity dependencies were observed for YB1, AKT,            
Her2, ER alpha and MEK with other strong dependencies observed in at least one study. We                
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repeated the same analysis of associations between RNAi/CRISPR screens with RPPA data            
from MCLP dataset and observed the same trend of phosphosite activity to be correlated              
with cellular sensitivity to loss of phosphosite gene although stronger associations were            
observed for different phosphosites such as YAP pS127 (Supplementary Figure S3). This            
analysis confirms that, on average, cancer cell lines show increased dependency on the             
activity of kinases and other proteins and are sensitive to their inhibition.  
 
We next investigated drug response datasets to interrogate the relationship between           
phosphosite levels and drugs. We correlated protein activity as measured by 37            
phosphosites with sensitivity of 265 Drugs in 746 cancer cell lines from GDSC database              
(Yang et al., 2013), with 30 phosphosites showing significant correlation with sensitivity of at              
least one drug target (Supplementary Figure S4, FDR < 5%). A substantial fraction of these               
phosphosites (18/30) were associated with sensitivity to more than 25 drugs. For instance,             
cancer cell lines with high MEK1 pS217,S221 activity were more sensitive to the majority of               
RAF/MEK/ERK inhibitors (such as Refametinib, SB590885). Similarly, YAP pS127 activity          
correlated with Methotrexate inhibition. We further refined these associations to identify 870            
cases where the drug sensitivity was also correlated with sensitivity to loss of the              
kinase/phosphosite gene in either RNAi or CRISPR screen (Figure 3c). In 31 of these cases               
there was a concordance in both gene perturbation screens. For instance, cell lines sensitive              
to EGFR inhibitors (Pelitinib and Afatinib), as predicted by high EGFR phosphosite activity,             
were also sensitive to loss of EGFR gene in both CRISPR and RNAi datasets. Similarly, cell                
lines sensitive to ERBB2 inhibitor (CP724714) also correlated with high HER2 pY1248 and             
HER3 pY1289 phosphosite activity, were also sensitive to loss of ERBB2 gene in both              
CRISPR and RNAi datasets. Many of these associations between phosphosite activity and            
drug response were also replicated using the RPPA data from MCLP (Supplementary            
Figure S3 ). 
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Figure 3. Evidence of kinase addiction in DepMap cancer cell lines. (a) Distribution for the               
significance of association (-log10 (p-value)) between phosphosite activity and gene essentiality          
(Crispr). (b) Significance of association (-log10(p-value)) between phosphosite activity and gene           
essentiality for each phosphosite using both RNAi and CRISPR Screen. (c) Association between             
phosphosite activity and drug sensitivity (1% FDR). Positive and negative associations and also             
supported by RNAi~Drug response are indicated in red and blue respectively. * indicates associations              
also supported by CRISPR~Drug association.  
 

CNVs as predictors of kinase related genetic susceptibility 

 
Our results indicate that copy number changes in genes can be predictive of changes in               
phosphosite levels and that cancer cells can become dependent on activity levels as             
measured by these phosphosites. Therefore, copy number changes correlated with kinase           
activity should also be predictive of kinase susceptibility. Indeed, we found several examples             
where the CNVs predictive of protein activity differences also correlated with the            
down-regulation, knock-out or inhibition of the corresponding protein. For instance, ERBB2           
and EPN3 CNVs were predictive of EGFR pS1068 phosphosite activity and also correlated             
with sensitivity to loss of EGFR gene and sensitivity to EGFR inhibitors including Afatinib and               
Gefitinib (Figure 4a and Figure 4b ).  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted January 9, 2019. ; https://doi.org/10.1101/515932doi: bioRxiv preprint 

https://doi.org/10.1101/515932
http://creativecommons.org/licenses/by/4.0/


 

 
Figure 4. CNVs as predictors for kinase related genetic susceptibility. Levels of EGFR pY1068              
activity, RNAi sensitivity to loss of EGFR (and ERBB2 and ERBB3) gene and sensitivity to related                
kinase inhibitors when (a) binned or (b) ordered according to ERBB2 expression levels. 
 
From the CNV~phosphosite association analysis, we have identified 12 genes as potential            
drivers of YAP pS127 phosphorylation, 5 of which were replicated in cancer cell lines              
(Figure 5a ). We ranked the genes based on their association with YAP phosphosite activity              
in a multiple linear regression model using tumor (TCGA) and the two different cell line               
RPPA datasets (Figure 5b). In the combined model, the CNVs of ARHGEF17 and             
PLA2G16, showed the strongest association of YAP pS127 activity in tumor and at least one               
cell line dataset (Figure 5b). Expression of ARHGEF17 and PLA2G16 was also associated             
with sensitivity to loss of YAP gene and other core components of hippo-signaling pathway              
such as LATS2 (Figure 5c,d,e). YAP, a transcription co-factor, is a key component of the               
hippo-signaling pathway (Gumbiner and Kim, 2014). Phosphorylation of YAP at S127 leads            
to the retention of YAP in the cytoplasm (Zhao et al., 2007) and further phosphorylation of                
YAP at S381 and S384 is associated with YAP degradation (Zhao et al., 2010). For these                
reasons, the phosphorylation of S127 should result in a decrease in the transcriptional             
activity of YAP. However, phosphorylation at S128 can also block the 14-3-3 mediated             
cytoplasmic retention of S127 phospho YAP (Moon et al., 2017). In order to disambiguate              
the transcriptional activity changes as detected by the S127 RPPA antibody we studied the              
gene expression changes of 45 positively regulated targets of YAP (Kim et al., 2015). We               
observed on average a positive correlation between the changes in expression of these             
genes and the changes in total YAP, total phosphorylated YAP and also the changes in               
phosphorylated YAP after normalizing for YAP protein levels (Supplementary Figure S5).           
This was the case in both the patient tumor samples and MCLP cell lines (Supplementary               
Figure S5 ). This would suggest that the RPPA antibody for S127 is positively associated              
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with YAP activity. In line with this there is a positive correlation between the RPPA YAP                
S127 levels and the sensitivity of cells to knock-down or knock-out of YAP. 
We experimentally tested the effect of loss of ARHGEF17 and PLA2G16 genes on YAP              
pS127 phosphosite levels. We selected cell lines with different baseline levels of YAP             
phosphorylation levels and confirmed that YAP pS127 levels were low in MCF7 and             
MDA-MB-361 cells and high in MDA-MB-468 and T-47D cells consistent with the            
measurements in MCLP RPPA phosphoproteomics dataset from cancer cell line cohort           
(Supplementary Figure S6 ). Effective lentiviral shRNA mediated knockdown of both          
ARHGEF17 and PLA2G16 in MDA-MB-468 and T-47D cells was confirmed using qRT-PCR            
(Figure 5f and Supplementary Figure S6 ). Knockdown of ARHGEF17 resulted in a small             
but significant decrease in the levels of YAP pS127 in both cell lines which was consistent                
with the predictions (p < 0.05; Figure 5g ). Loss of PLA2G16 had also a reproducible but                
modest effect on YAP pS127 (Supplementary Figure S6 ).  
 

 
 
Figure 5. Experimental validation of predicted regulators of YAP pS127 in breast cancer cells.              
(a) Schematic representation of predicted regulators of YAP pS127. Red and blue arrows indicate              
positive correlation and negative correlation respectively. (b) Contribution of individual regulator to            
YAP pS127 activity in a multiple linear regression model. (c) Schematic representation of             
Hippo-signaling pathway adapted from Plouffe et al.(Plouffe et al., 2016) where red and orange circles               
indicate critical/important components of YAP/TAZ regulation. (d) Levels of YAP co-factor activity,            
RNAi/Crispr sensitivity to loss of YAP gene and sensitivity to predicted drugs when binned according               
to ARHGEF17 levels. (e) Pairwise correlation coefficient values between the: expression levels of             
PLA2G16 and ARHGEF17 (grey); sensitivity to drugs (dark blue); YAP transcriptional activity (red);             
phosphorylation levels from MCLP dataset (orange); and sensitivity to knockdown of hippo pathway             
members (light blue). (f) Western blot analysis of YAP protein and YAP pS127 levels and (g)                
quantification of relative YAP pS127 levels on knockdown of PLA2G16 and ARHGEF17. 
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ARHGEF17 knockdown disrupts YAP activity and down-regulates       
immuno-responsive pathways 

 
To further dissect the regulatory role of ARHGEF17 in hippo-signaling , we performed            
proteomics and phospho-proteomics of MDA-MB-468 and T47D cells treated with shRNA           
targeting ARHGEF17 along with their matched controls (Figure 6a). Differential phosphosite           
analysis data showed significant changes in 3182 and 259 phosphosites after ARHGEF17            
knockdown (5% FDR) in MDA-MB-468 and T47D cells respectively (Supplementary Table           
S2). These include significant decrease in multiple YAP phosphosites in both cell lines             
(Figure 6b,S6 ). We next estimated the changes of kinase activity after ARHGEF17            
knockdown by studying the changes in known kinase target phosphosites(Ochoa et al.,            
2016). The substrates of four kinases, NDR1, CK2A1, P38G and PKG showed significant             
down-regulation in both MDA-MB-468 and T47D cells on knockdown of ARHGEF17 (Figure            
6c). NDR1 (STK38) is reported to be a kinase directly interacting with YAP pS127 (Zhang et                
al., 2015), and P38G, a ser/thr MAP kinase which has been previously associated with YAP               
signaling (Huang et al., 2016; Liu et al., 2016). Notably, this association between the two               
pathways is also observed in pan-cancer TCGA data with a strong correlation between YAP              
pS127 and p38 pT180,pY182 (P38A) (Supplementary Figure S7).  
 
We then studied the protein abundance changes and particularly that of components of             
hippo-signaling pathway upon ARHGEF17 knockdown. Differential protein abundance        
analysis showed significant changes in 1754 and 308 proteins after ARHGEF17 knockdown            
(5% FDR) in MDA-MB-468 and T47D cells respectively (Supplementary Table S2).           
ARHGEF17 protein levels was reliably decreased in both cell lines with 5-fold and 10-fold              
down-regulation in MDA-MB-468 and T47D cells respectively. We also observed a           
significant decrease in YAP protein levels in both breast cancer cell lines which may explain               
most of the changes in phosphorylation. Several “core” components of hippo pathway            
including STK3, STK38 and SAV1 were also found to be significantly dys-regulated in             
MDA-MB-468 cell lines (Figure 6d). Importantly we again accessed the changes in YAP             
co-factor activity, derived from positively regulated targets of YAP observing a strong            
decrease in T47D cells (P-value < 0.01) and a more modest decrease in MDA-MB-468 cells               
(Figure 6e ). Finally, we analyzed the changes in protein abundance to identify biological             
processes that were dys-regulated upon ARHGEF17 knockdown. Gene set enrichment          
analysis of biological processes showed down-regulation of cytoskeleton organization,         
defense response to virus and immune effector process and up-regulation of electron carrier             
activity and fatty acyl coA binding pathways (Figure 6f). In order to relate these changes to                
the tumor samples we correlated the gene expression changes occurring for the same gene              
sets with YAP copy number, mRNA, protein and YAP pS127 levels. In line with the               
observations from the ARHGEF17 knockdown experiments YAP activity measurements         
were associated with changes in gene expression of the same biological processes in the              
patient tumor samples (Figure 6f).  
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Together these analyses indicates a role for ARHGEF17 in regulation of hippo-signaling            
pathway and hippo pathway affecting cytoskeleton organization and immune response          
pathways in cancer cells. 

 
Figure 6. ARHGEF17 regulates hippo-signaling pathway. (a) Experimental design of          
(Phospho-)Proteomics data generation on knockdown of ARHGEF17. (b) Differential analysis of           
phosphorylation data in T47D and MDA-MB-468 cells with YAP phosphosites highlighted in red. (c)              
Change in predicted kinase activity after ARHGEF17 knockdown. (d) Changes in protein abundances             
of component of hippo-signaling pathway after ARHGEF17 knockdown. (e) Comparisons of YAP            
cofactor activity on ARHGEF17 knockdown estimated from the proteomics data. The downstream            
targets of YAP were obtained from Kim et al. (Kim et al., 2015) (f) Gene Set Enrichment Analysis of                  
biological processes from gene expression changes after ARHGEF17 knockdown or genes whose            
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expression levels correlates with different measurements of YAP activity or levels in the TCGA              
patient data.  
 
 

Discussion 

 
We propose here a genetic association approach to identify genes whose expression            
changes can drive differences in kinase-signaling. We note that such “regulators” are            
unlikely to be direct as they are found through genetic association for differences in steady               
state phosphorylation levels. We make use of copy number variation, instead of recurrent             
missense mutations, given that they form a critical mass of genomic aberrations            
encountered in multiple tumor types and compared to point mutations the impact of copy              
number changes on an individual gene is easier to interpret. For the majority of genes, their                
copy number profiles tend to be well correlated with gene expression data (Hyman et al.,               
2002). While the degree of changes and interpretability makes CNVs an attractive choice for              
association analysis, these changes typically involve a large number of genes and in some              
cases entire chromosomal segments. In these scenarios, it is a challenge to identify the key               
driver gene of downstream signaling changes among the co-amplified or co-deleted block of             
genes. Here we have defined an approach to prioritize copy number events that are              
regulators of signaling pathways, showing that the method was able to recover previously             
known regulatory relationships. However, it is possible that the top-selected gene will not be              
the driver gene for the associated genomic region and we provide in the Supplementary              
Table 1  the rank of genes associated with a phosphosite for each segment.  
 
We selected for further analysis ARHGEF17 as a putative novel regulator of hippo-signaling             
pathway. ARHGEF17 is a Rho GTPase with a functional role in maintenance of actin              
cytoskeleton organization and focal adhesion (Mitin et al., 2013). In the tumor patient             
samples, cancer cell lines and in the direct knockdown experiments the levels of ARHGEF17              
were positively correlated with the transcriptional activity of YAP. However, the relationship            
between YAP phosphorylation and protein levels is not easy to disentangle and we cannot              
rule out, based on the current set of results, that the ARHGEF17 mediated regulation of YAP                
is primarily driven by protein level changes. 
 
The current study relied on antibody measurement of phosphorylation and protein           
abundance levels. More recently, mass spectrometry has started to be used to profile tumor              
samples in large scale for an increasing number of samples (Edwards et al., 2015). While               
the current limited set of samples makes it difficult to perform genome-wide association level              
analysis, as these efforts progress the approach described here can be applied to those data               
providing potentially with a much higher resolution description of how different CNVs rewire             
kinase signaling in cancer. 
 
Cancer cells often become dependent on changes in the genes that led to the cancer               
development, a phenomena dubbed oncogene addiction. When a signaling pathway is           
observed to be hyperactive in a tumor, relative to healthy tissue, it is often assumed that                
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such activation is a driving event and a requirement for cell viability. For this reason, cellular                
dependency on kinase activity has been exploited in many targeted therapies (Bhullar et al.,              
2018; Gross et al., 2015). We tested here the generality of such dependencies finding that               
on average it is observed although it is highly variable depending on the specific signaling               
protein. Our results suggest that the copy number profile of a cancer cell can, in principle, be                 
used as a ‘molecular fingerprint’ to stratify those tumors more likely to be sensitive to specific                
kinase inhibition. Since copy number events do not occur in isolation, additional work will be               
needed to understand how the combinatorial effect of multiple mutations can change the             
way signaling network works.  
 

Methods 

Compilation of molecular and phenotypic data 

Normalized copy number (log2) datasets (10,654 samples) and RNAseq expression          
datasets (9,548 samples) for 31 different tumor types generated as part of TCGA (Cancer              
Genome Atlas Research Network et al., 2013) consortium were obtained from           
cBioPortal (Gao et al., 2013) database. Normalized copy number (log2) dataset (995 cell            
lines) and RNAseq expression dataset (967 cell lines) were obtained from cancer cell lines              
(CCLE) (Barretina et al., 2012). Normalized RPPA (phospho)proteomics datasets for 31           
different tumor types comprising of 7694 samples were obtained from TCPA (Li et al., 2013)               
database. Normalized RPPA (phospho)proteomics dataset were download for 651 cancer          
cell lines from MCLP (v1.1) (Li et al., 2017) and 899 cancer cell lines from DepMap. 
 
Genome-wide RNAi (Tsherniak et al., 2017) screen and CRISPR (Meyers et al., 2017)             
screens were obtained from the Broad Institute portal        
(https://portals.broadinstitute.org/achilles). These datasets were generated by Project       
Achilles to catalog gene essentiality across cancer cell lines. The RNAi screen (Ach 2.20.2)              
has high coverage targeting 17,098 genes in 501 cell lines. Out of these, and 406 cell lines                 
had DepMap-RPPA data and 166 cell lines had available MCLP-RPPA data (Li et al., 2017)               
permitting pan-cancer correlative analysis. The CRISPR screen (Avana CRISPR-Cas9)         
targets 17,670 genes across 517 cell lines. 420 of these cell lines also had DepMap-RPPA               
data and 163 cell lines also had MCLP-RPPA data. IC50 values of sensitivity to              
inhibitors/drugs were obtained from Genomics of Drug Sensitivity in Cancer Database (Yang            
et al., 2013). The dataset comprises of sensitivity values for 265 drugs across 746 cell lines.                
These cell lines were mapped with those in CCLE to identify 596 cell lines with               
DepMap-RPPA estimates and 259 cell lines with MCLP-RPPA estimates. 

Modelling the genetic association between gene copy number and         
phosphosite levels 

A total of 6,558 samples were compiled with information on Copy Number, Expression and              
phosphorylation levels measured with RPPA for patient samples from TCGA. We restricted            
our analysis to 5598 samples from 17 tumor types which had more than 150 samples. We                
predicted associations between 18,350 CNVs and 37 RPPA phosphosites across 17           
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different tumor types using linear mixed effect models. Each linear model had phosphosite             
activity as response variable, CNV as the explanatory variable and matched protein            
abundance (same as phosphosite) and tumor type as covariates. A separate covariate            
model was run for each phosphosite. Two models were compared using a likelihood ratio              
test to predict the effect of a given CNV on phosphosite activity after taking into account the                 
matched protein abundance and tumor specificity. A network-based score to rank genes was             
derived by calculating a network-based score between the CNV gene and phosphosite gene             
in the STRING network. 
 

Network Score = Spw / Sp l
2Σ  

 
Where Spw and Spl are edge weights and length of the shortest path between the CNV gene                 
and the phosphosite gene in the STRING network respectively. 
 
Significant associations predicted in tumor samples were also tested in 890 cancer cell lines              
with RPPA and expression data in DepMap database and 319 cancer cell lines with              
Expression and RPPA datasets. To evaluate the quality of our predictions from the             
pan-tumor analysis, we predicted the phosphosite activity from expression data in cancer            
cell lines using models trained using TCGA, MCLP and DepMap data and correlated with the               
‘true’ phosphosite activities measured independently in MCLP or DepMap databases.  
 

Cells lines and maintenance and RNA Interference 

MDA-MB468, MDA-MB-361, T-47D and MCF7 were all maintained at 37°C with 5% CO2. All              
cells were grown in DMEM with 10% FBS. For serum starvation, cells were incubated in               
DMEM without other supplements for 24 h. ShRNA hairpins were designed using            
(http://sherwood.cshl.edu:8080/sherwood/) and cloned into the expression vector       
pZIP-SSFV-Ultra-Puro_ZsGreen (a generous gift of the Hannon Lab, CRUK CI). ShRNA           
plasmids together with pMDL, pCMV-Rev, and pVSV-G were used to produce virus in 293FT              
cells. Resulting viruses were used to infect and generate stable cell lines for both              
MDA-MB-468 and T-47D using puromycin selection. For shRNA primer details see           
supplementary methods 
  

Cell lysates, Immunoblotting and qRT-PCR Gene Expression Analysis 

Cells were lysed in 50 mM Tris-Cl, pH 7.6; 150 mM NaCl, 1% NP-40 supplemented with                
Protease inhibitors (cOmplete EDTA free and PhosStop phosphatase inhibitor, Sigma). Cells           
lysates were centrifuged for 10 min at 4oC to remove insoluble debris. Lysates were              
separated using 4-20% Gradient gels (Miniprotein TGXTM Gel, Biorad) and immunoblotted           
using standard protocol. Primary antibodies used were YAP (4912S/Cell Signaling          
Technology, 1:1000), p-YAP (S127)(4911S/ Cell Signaling Technology, 1:1000) and GAPDH          
(MAB374/EMD Millipore, 1:5000). Blots were probed with mouse or rabbit specific IRDye            
800 (LiCOR) and acquired, and quantified, using Odyssey Classic. Total RNA was isolated             
and purified from cells using miRNeasy Mini Kit (Qiagen). cDNA was synthesised using the              
High Capacity RNA-to-cDNA kit (ABI) according to manufacturer’s instructions. qRT-PCR          
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was performed using Fast SYBR™ Green Master Mix (ABI) on the QuantStudio 12K Flex              
Real-Time PCR System (ABI). Relative expression levels were defined using the DDCt            
method and normalising to 36B4/RPLP0. For PCR primers details see supplementary           
methods. 
 

Proteomics and Phosphoproteomics analysis 

Samples were collected for 3 biological replicates of ARHGEF17 knockdown and after            
protein sample preparation, proteins were trypsin-digested and TMT labelled. Each sample           
was split for full proteome analysis (10%) and phosphoproteome analysis (90%). The portion             
for the phospho-proteome analysis was fractionated using basic reversed phase C18           
chromatography, each fraction was enriched using the High-Select Fe-NTA Phosphopeptide          
Enrichment kit (Thermo Scientific, #A32992) according to manufacturer’s instructions. The          
Phosphopeptide-enriched fractions were analysed on the Q-Exactive HF (Thermo Scientific)          
The total proteome was fractionated using basic reversed-phase C18 chromatography and           
analysed with the Fusion-Lumos Orbitrap mass spectrometer (Thermo Scientific). Both          
systems were configured with a Dionex Ultimate 3000 RSLC nanoHPLC system. Both total             
proteome and phospho-proteome raw files were processed with the SequestHT search           
engine on Proteome Discoverer 2.1 software for peptide and protein identification. 
Quantification of 65,535 peptides were generated for both t47d and mb468 cells. The data              
were quantile normalized separately for each cell line and summarized at protein level based              
on the median abundance of all the peptides mapped to each protein in a sample. Therefore,                
a total of protein abundance measurements were obtained for 7,963 and 7,943 proteins from              
T47D and MDA-MB-468 cells respectively with 7,119 proteins common between the two cell             
lines. Gene set enrichment analysis (GSEA) (Barbie et al., 2009) to identify to differentially              
regulated biological processes in proteome data was performed using clusterProfiler (Yu et            
al., 2012) package in R. Annotations for biological processes were obtained from Molecular             
Signature Database (MSigDB) (Liberzon et al., 2011). Downstream targets of YAP           
transcription co-factor were obtained from Kim et al (Kim et al., 2015) from which we retained                
only positively regulated targets for our analysis.  
The phosphoproteomics measurements were obtained for 41,249 and 40,754         
phosphopeptides in t47d and mb468 cells respectively. These were quantile normalized and            
differential phosphoproteome analysis was performed using the limma (Ritchie et al., 2015)            
package in R. Activity of kinases were estimated using the changes in phosphorylation of              
known substrates on the phosphoproteomics experiments. Known kinase-substrate        
relationship in literature have been collated from the PhosphositePlus (Hornbeck et al.,            
2012) database and only kinases with at least five known substrates with measurements in              
the phosphoproteomics dataset were analysed. There are several statistical variants of           
Kinase Set Enrichment Analysis (KSEA) approach and we used the KS statistics which is              
faster and has been shown to perform comparably with traditional ssGSEA based statistic             
(Hernandez-Armenta et al., 2017).  
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