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Abstract 

Topological Data Analysis (TDA) network models can represent continuous variation in the 
shape of disease pathology. We generated a TDA network model of asthma using 498 gene 
expression profiles of peripheral blood from asthma and healthy participants. The TDA 
network model was characterised by a core region with increased prevalence of healthy 
participants and connected routes to increased prevalence of severe asthma associated with 
increases in circulating inflammatory cells and modulated expression of inflammatory genes. 
However, stratified medicine requires discretisation of disease populations for targeted 
treatments. Therefore, a discrete Morse theory algorithm was developed and applied, 
identifying nine clusters, BC1-9, representing molecular phenotypes with discrete profiles of 
immune cell populations and activation of Type-1, 2 & 17 cytokine inflammatory pathways. 
The TDA network model was also characterised by differential activity of glucocorticoid 
receptor signalling associated with different expression profiles of glucocorticoid receptor 
(GR), according to microarray probesets targeted to the start or end of the GR mRNA’s 3’ 
UTR; suggesting differential GR mRNA processing as a possible driver of asthma 
phenotypes including steroid insensitivity.  

Key words: asthma, topological data analysis, discrete Morse theory, inflammation, 
cytokines 

 

Introduction 

Asthma is ranked 16th among the leading causes of years lived with disability and affects 339 
million people worldwide. Asthma is characterised by an expiratory airflow limitation, 
typically reported as forced expiratory volume in one second (FEV1). Treated is primarily 
with β2-agonists which relax airway smooth muscle, and corticosteroids which reduce 
underlying inflammation. Drugs have also been developed to target specific inflammatory 
pathways such as the T2 biologics, which reduce asthma exacerbation frequency by around 
50%1,2. Improved understanding of asthma disease progression and molecular sub-
phenotypes should improve the use and development of new targeted therapeutics. In this 
study, we used data from the U-BIOPRED (Unbiased BIOmarkers for the Prediction of 
respiratory disease outcomes) project, the largest multi-centre asthma programme to date, 
involving 20 academic institutions, 11 pharmaceutical companies and patient groups and 
charities, with the aim to improve understanding of the complex molecular mechanisms 
underpinning asthma and identify useful biomarkers3–10.  

Asthma is characterized by variability in symptoms and treatment response. Around half of 
asthma is thought to arise from T-2 immunity, driven by IL4, IL5 and IL13 cytokine 
associated with recruitment of  eosinophils into airways11. Additionally, high sputum 
neutrophil counts are associated with reduced post-bronchodilator FEV1

12. Corticosteroids are 
routinely used to reduce airway inflammation in asthma by activating glucocorticoid receptor 
(GR) and suppressing NF-κB activity which regulates expression of pro-inflammatory 
cytokines and cyclo-oxygenase 2 (COX2) as well as inducible nitric oxide synthase (iNOS). 
However, patients with severe asthma, particularly T-2-low and T-17-high asthma13, respond 
poorly to corticosteroids, but it is not known why. The relative expression of GR-α and GR-β 
protein isoforms, resulting from alternative splicing, influences steroid insensitivity, as GR-β 
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does not bind GC and inhibits GR-α activity by forming a heterodimer14. GR protein 
expression is further regulated by ARE-mediated degradation of GR mRNA targeting the 
AU-rich elements within the 3’ UTR15. 

Topological Data Analysis (TDA) is an unsupervised machine learning tool suitable for 
analysis of high-dimensional datasets16,17,18. Application of TDA via the Mapper algorithm 
generates a TDA network model, a compressed representation of high-dimensional data with 
major features embedded where similar data points are grouped into nodes, and nodes with 
common data points are connected by edges. We have previously reported an analysis of 
differentially expressed genes (DEGs) from gene expression profiling of 498 gene expression 
profiles of peripheral blood from participants in the U-BIOPRED (Unbiased Biomarkers in 
Prediction of Respiratory Disease Outcomes) study10. Unbiased hierarchical clustering of 
DEGs identified two sub-groups, one enriched for patients with severe asthma, use of oral 
corticosteroids and blood neutrophilia, and a second cluster composed of mixed-severity 
asthmatics and healthy individuals. We generated a Topological Data Analysis (TDA) 
network model of the same gene expression data using the Ayasdi TDA software platform 
and found these two clusters represented by different regions of the TDA network model. In 
this study, we investigated the continuous variation of clinical and molecular biology in the 
TDA network model representing the shape of asthma disease pathology; shedding light on 
possible routes of disease progression. 

Stratification of disease allows targeted treatment for improved patient outcome, so we 
developed and applied a Morse-clustering algorithm to discretise the continuous TDA 
network model of patients into clusters representing different molecular phenotypes of 
asthma sub-types. Clusters within TDA networks have typically been delineated by eye18,19,20, 
without algorithmic reproducibility and few studies have used the standard network 
clustering algorithm, community clustering, via the Ayasdi Python SDK. The community 
clustering algorithm is limited as it only analyses connectivity between nodes without 
considering the density of data points clustered within nodes, an important dimension in TDA 
network models. This 3rd dimension in the TDA network can be visualised by colouring (Fig. 
3A & B) and the TDA network can, therefore, be considered as a connected 3D map of data 
points clustered around peaks that represent conserved sub-types or phenotypes of major 
features, which in the study of patient gene expression reflect biological pathway 
modulations underlying disease phenotypes. Discrete Morse theory relates the flow 
(gradients) on a discrete object, such as a network, with its topology21. Here we apply Morse 
theory to measure the gradients and connected peaks within a TDA network, thus delineating 
clusters according to key features of the dataset. We have developed a Python script to apply 
Morse-based clustering of TDA networks in the open source Mapper TDA software or 
through the Ayasdi Python software development kit (SDK) which we believe will add value 
to future analyses. This Morse-clustering algorithm identified nine clusters, BC1-9, 
representing discrete molecular phenotypes characterised by differences in circulating 
immune cell populations, activation of T-1, -2 & -17 cytokine inflammatory pathways, and 
the activity of glucocorticoid receptor signalling and novel differences in glucocorticoid 
receptor mRNA isoforms.  
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Results 

The TDA network model of peripheral blood gene expression from 498 participants in the U-
BIOPRED asthma study consisted of a hub with an increased prevalence of healthy 
participants and connected flares with increased prevalence of severe asthma and decreased 
FEV1, reflecting multiple interconnected possible routes of disease progression (Fig. 1). 
Regions of the TDA network with highest eosinophil counts (Fig. 1G) had high prevalence of 
severe asthma (Fig. 1E) and were associated with high COX2, NF-κB, IL5, IL13 (Fig. 1J, N, 
O, P), and low IFN-γ and GR mRNA (Fig. 1T, Q, R). There was a distinct pattern across the 
TDA network model of GR mRNA expression according to probesets targeting the start of 
the 3’ UTR (probesets 201865_x_at and 211671_s_at, illustrated as Δx NR3C1 mRNA in 
Fig. 1R) and a different pattern according to probesets targeting towards the end of the 3’ 
UTR (probesets 201866_s_at and 216321_s_at, illustrated as FL NR3C1 mRNA in Fig. 1Q). 
The binding locations of the Affymetrix NR3C1 probes and corresponding NCBI RefSeq 
sequences are shown mapped onto the Human genome in figure 2. We hypothesized that the 
Δx NR3C1 mRNA has a truncated 3’ UTR compared to the FL NR3C1; meaning Δx NR3C1 
has fewer AU-rich elements (AREs), and is missing a miR 486 target sequence, compared to 
the FL NR3C1 mRNA. The TDA network was polarised by FL NR3C1 (Fig. 1Q) and 
associated GR-responsive genes, COX2, ANXA1 and IFNγ (Fig. 1J, L, T). Probesets 
targeting the start of the 3’ UTR of GR mRNA indicated a different pattern of expression 
across the TDA model (Fig. 1R) and corresponded to OCS dose (Fig. 1I) and GR-responsive 
gene expression, ZPF36, GILZ, FKBP5 (Fig. 1K, M, S).  

To define groups of people with similar gene expression signatures from the TDA network 
model, we developed and applied a Morse-clustering algorithm. The Morse-clustering 
algorithm identified 9 clusters which we termed BC1 to 9. The reporter operating 
characteristic (ROC) area under the curve (AUC) for the 9 clusters ranged from 0.76 to 0.97, 
representing very good to excellent prediction of cluster classification in the test set based on 
a logistic regression model identifying predictors of the cluster in the training set (Fig. 4). 
BC1-9 were found to have activation of cytokine-mediated inflammatory pathways consistent 
with their distribution on the TDA network model with trends identified in pathway and 
upstream regulator activation across the clusters (Table1 & 2). BC1 was predominantly 
severe asthmatics, with reduced lung function, represented by low FEV1. BC1 also had a T-
17 signature of gene expression22, with increased expression of IL17A, IL21 and IL22 
(q = 1.31E-5, 7.99E-4, 1.71E-3). BC1 had decreased expression of β-2 adrenergic receptor 
(ADRB2) mRNA the protein product of which is involved in smooth muscle relaxation and 
bronchodilatation. Cystatin D (CST5) was predicted as the most activated upstream regulator 
of gene expression in BC1 but was also highly activated in BC9 and 8 (Table 2). 

Discussion 

The TDA network model identified familiar phenotypes of asthma and gave insight into 
potential routes of disease progression. For example, the furthest eosinophilic region from the 
‘healthy hub’ was associated with high T-17 markers, TGFβ, IL17A, IL21, IL22 (Fig. 1D, V, 
W, X) and increased neutrophilia (Fig. 1H). The T-17 region was connected to the ‘healthy 
hub’ via the solely T-2 high region, suggesting disease progression from healthy to T-17 high 
via an only T-2-high phenotype. Differential expression of FL NR3C1 and Δx NR3C1 and 
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corresponding expression patterns of GR-responsive genes suggests different functional 
responses to steroids across the TDA network model, associated with differential expression 
of GR mRNA isoforms. 

The Morse-clustering algorithm identified 9 clusters, however, clusters BC4, 6 and 8 were 
small (n=35, 37, 33, respectively), with correspondingly low representation in the training 
and test sets which resulted in ROC curves whose shapes were not smooth and may have 
represented overfitting. The identified clusters represented groups of patients with significant 
differences in the activation of pathways related to inflammation, including pathways 
associated with glucocorticoid receptor (GR) signalling, Type (T)-2, T-1 and T-17 
inflammatory responses. Transglutaminase (TGM2), a marker of T-2 inflammation23, was 
predicted in this study as the most activated upstream regulator of gene expression in BC2, 3, 
7 and 8 (Table 2). It is known to catalyse the serotonin transamidation of glutamines 
(serotonylation), which regulates cell signalling and actin polymerization. BC2 and 3 were 
characterised by high TGM2-mediated gene expression, including Toll-like receptors (TLR) 
and iNOS signalling. TGM2 is also implicated in recruitment of eosinophils into asthmatic 
airways11, which was reflected in the highest sputum eosinophil count in BC2, but high 
sputum eosinophils counts were not seen in BC3 (Table 3). Melatonin, the end product of the 
serotonin pathway is a free radical scavenger, acting to suppress inflammation24. Pathways 
associated with tryptophan metabolism were enriched in cluster BC1; serotonin degradation 
was the most activated pathway identified by IPA (Table 1). Serotonin levels are known to be 
implicated in asthma pathology, and serum serotonin levels tend to be increased in patients 
with active asthma25. The increased activation of melatonin degradation in BC1 may 
contribute to the severe asthma phenotype. 

T-cell acute lymphocytic leukemia protein 1 (TAL1) was identified as the top upstream 
regulator of gene expression in BC9, together with miR-486, which has previously been 
identified as a potential marker of childhood asthma in plasma26 and a promoter of NF-κB 
activity27. Our analysis predicted CD24 as the most activated upstream regulator of gene 
expression in BC6, 4, and5. CD24 can reflect activity of one of its key transcription factors, 
c-myc, whose expression is inhibited by CST5. BC5 had high expression of IFN-γ mRNA 
(Fig. 1T), indicative of a T-1 response; however, IFN-γ-mediated gene expression was not 
upregulated in this group (Table 3).  

The shape of the TDA network and patterns of gene expression representative of 
differentially activated pathways reflected both corticosteroids use and expression of GR 
mRNA. Clusters BC1-3, mostly representing those of the Severe Asthma enriched cluster 
previously reported10 (Fig. 1C), had the highest percentages of patients on OCS (Table 3). 
These clusters were also characterised by enrichment for patients on high doses of OCS, but 
other clusters were also enriched for patients with high OCS dose; particularly cluster BC5 
(Fig. 1I). We observed common patterns of gene expression under the control of 
glucocorticoid response elements (GRE) that were differentially expressed between clusters, 
although the patterns were not necessarily consistent between GRE genes. This suggests 
different types of steroid response between the clusters. We did not find GR-signalling as a 
top upstream regulator of gene expression using IPA, because there are two signatures of GR-
signalling which are alternately up and down regulated in the TDA structure. The expression 
of GRE genes, glucocorticoid-induced leucine zipper (GILZ), FK506-binding protein 5 
(FKBP5) and Tristetraprolin (ZFP36) (Fig. 1M, S and K) were similarly distributed across 
Morse-clusters high in neutrophilic clusters of the top of the TDA network, BC1, 2, 3 & 4 
and higher in the predominantly healthy cluster, BC7. However, the expression of Annexin 
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A1, a classical indicator of steroid response, was very differently distributed between clusters 
(Fig. 1L) and was significantly higher in BC5 when compared to the other patients (q = 2.3E-

10). Serotonin degradation, which is interdependent on GR signalling, was identified as the 
top canonical pathway enriched in BC1 (Table 1). In clusters BC1-3, there was increased 
expression of the RNA-binding protein, tristetraprolin (TTP), a negative regulator of mRNA 
half-life, binding to AREs in the 3’ UTR of target genes (Fig. 1K). Since the expression of 
TTP is regulated by a GRE site, GR-signalling causes increased ARE-mediated mRNA 
decay.  

BC1 had low expression of short (Δx NR3C1) and long (FL NR3C1) GR mRNA and low 
expression of steroid-inducible anti-inflammatory mRNAs ANXA1 (Fig. 1L), SOCS1 and 
high expression of pro-inflammatory COX genes (Fig. 1J). We detected mixed levels of 
GILZ and FKBP5 (Fig. 1M & S). There was moderate expression of DUSP1 mRNA, another 
marker of GR activity. In the clusters on the left side of the TDA network there was high 
expression of NUPR1 which increases expression of p38MAPK, a key regulator of asthma 
pathogenesis28. Additionally, NUPR1 is known to activate 
phosphatidylinositol 3-kinases (PI3K)29 which activate phosphoinositide pathways; inositol-
related metabolism was highly upregulated in BC5 and 6, where the expression of 
phosphoinositol (PI) phosphatases was increased relative to health. Conversely, the 
expression of PI phosphatases was decreased when compared to health in BC8 and 9. 
Clusters BC5 and 6 showed increased expression of the enzyme which catalyses the 
dephosphorylation of 1D-myo-inositol (3)-monophosphate to myo-inositol, inositol-1 (or 4)-
monophosphatase, when compared to health, whereas BC1, 7, 8 and 9 had decreased 
expression relative to health. It has previously been reported that myo-inositol is increased in 
animal asthma models following steroid treatment30, suggesting differential steroid responses 
between these clusters. In contrast to BC1, BC5 and 6 had gene expression profiles 
characteristic of low GR responses, as indicated by activation of CD24-mediated gene 
expression and inactivation of CST5-mediated gene expression. CST5 is activated by vitamin 
D receptor (VDR) expression31, whose expression is regulated by steroid-induced 
GR signalling32 (Fig. 5). The enriched expression of inositol pathways in BC5 and 6 provided 
further support of a low GR response. Contraction of airway smooth muscle is initiated by 
increased cytosolic calcium ions (Ca2+), so this may, in part, explain the reduced FEV1 seen 
in these clusters.  

The TDA network model identified possible routes of asthma disease progression with links 
between previously reported phenotypes of severe asthma, T2, T1 and T17. Two patterns of 
GR expression were identified in the model, supported by associated expression of steroid-
response genes and indicative of two discrete partially-steroid insensitive phenotypes. The 
Morse theory algorithm allowed discretization into nine clusters, BC1-9, associated with 
different profiles of inflammatory gene expression, cell counts, airway restriction and steroid 
sensitivity.  

 

Materials and Methods 

Study population 
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U-BIOPRED is a multi-centre prospective cohort study, involving 16 clinical centres in 11 
European countries. Blood samples were analysed from 498 study participants; 246 non-
smoking severe asthmatics, 88 smoking severe asthmatics, 77 non-smoking mild/moderate 
asthmatics and 87 non-smoking non-asthmatic individuals. 

Ethics Statement 

The study was conducted in accordance with the principles expressed in the Declaration of 
Helsinki. It was approved by the Institutional Review Boards of all the participating 
institutions and adhered to the standards set by the International Conference on 
Harmonization and Good Clinical Practice. All participants provided written informed 
consent. The study is registered under NCT01982162 on clinicaltrials.gov. 

Microarray Analysis 

RNA was isolated using the PAXgene Blood RNA kit (Qiagen, Valencia, CA) with on-
column DNase treatment (Qiagen). RNA integrity was assessed using a Bioanalyzer 2100 
(Agilent Technologies, Santa Clara, CA). Samples with RIN≥6 were processed for 
microarray as described (19) and hybridized onto Affymetrix HT HG-U133PM+ arrays 
(Affymetrix, Santa Clara, CA) using a GeneTitanR according to Affymetrix technical 
protocols. The microarray data are deposited in GEO under GSE69683. 

Training and Test Data Analysis Sets 

The 498 samples available for analysis were randomized into training (n�=�328) and 
validation sets (n�=�170) (Supp Table 1).  

Topological Data Analysis 

Generating TDA graphs in Ayasdi Platform 

The transcriptomics data were clustered by topological data analysis (TDA) as previously 
reported10, using Ayasdi Platform with a norm correlation metric and two Neighbourhood 
lenses. Correlation was measured using normalised values for the expression of each probeset 
(Metric: norm correlation). The space for clustering was generated using 100 bins in each 
dimension according to t-SNE -calculated vectors and 60% overlap between neighbouring 
bins (Fig 3A): two neighbourhood lenses, resolution = 100; gain, ×6). 

Clustering of high patient density regions of TDA graphs 

Using the Ayasdi TDA Platform, the magnitude of nodes was represented by a colour 
heatmap where the colour spectrum from blue to red represent the range from the lowest to 
highest levels. Discrete Morse theory was applied to cluster TDA nodes according to patient 
density. Data from each node’s neighbours were also used in calculating the annotation 
function, giving context to where a node lies within the broader topology, effectively 
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‘smoothing’ the data, decreasing noise and allowing identification of the most prominent 
peaks. To each node we assigned the annotation �: � � ��where for each node ��we have 

����� 	 
�����, 
����� � ∑� ����� � ���������, 

and ��������is the average correlation among all the patient in cluster-node�� . Differently 
from other clustering algorithms, as k-nearest neighbours, we do not assume that cluster-
nodes with similar value with respect to �are similar, neither we expect that �is a kernel-
based function which fits the data. Our approach instead assumes that �gives the cluster-
nodes a hierarchical structure and the nodes’ connectivity is supplied by the Mapper network. 
In this way, with Morse, each cluster of nodes in the network has a structure of rooted tree 
and each leaf connects a cluster-node to a higher one (with respect to�) with the root the 
highest cluster-node.  

The Morse-clustering algorithm is included as supplementary material for use in open-source 
TDA Kepler Mapper and the Ayasdi SDK. 

Robustness of TDA network clusters evaluated by ROC analysis  

We applied logistic regression to test the tightness of the clusters according to key features 
identified by logistic regression. A logistic regression model was trained on a pre-defined 
training set of (n�=�328) and the classification accuracy tested on a test data set 
(n�=�170). Accuracy of the logistic regression reflects reproducibility in the clustering, ie. 
robust classification assigned by clustering results in accurate classification of test data by an 
independently trained logistic regression model.  

Affymetrix probes for NR3C1 were aligned with NCBI RefSeq genes using the Ensembl 
Genome browser 94. 

Pathway analysis identified trends and discrete molecular features of clusters 

The shape of data represented by a TDA network is defined by the lenses (t-SNE in this 
study), which are implicitly used as coordinates for plotting the network. These coordinates 
focus on differentially activated pathways because genes of a common pathway are more 
likely to be co-expressed, and patients are clustered by similarity in key features in a TDA 
network. Ingenuity pathway analysis (IPA) was used to identify pathways with enriched gene 
expression within each of the clusters (Table 1), many of which were activated in clusters 
neighbouring each other in the TDA network, reflecting a trend in the activation of key 
pathways across the TDA network.  
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Figure 1 Selected gene expression distribution across the TDA network  

Figure 1. Selected gene expression distribution across the TDA network. Colours in legends denote 

the concentrations of the gene expression, ranging from blue (low) to red (high). 
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Figure 2: The chromosome binding locations of the Affymetrix NR3C1 probes 

Figure 2. The binding locations of the Affymetrix NR3C1 probes and corresponding NCBI RefSeq sequences aligned to the 
Human genome. NR3C1 probesets 201865_x_at and 211671_s_at target isoforms with truncated 3’ UTR: Δx NR3C1. 
Probesets 201866_s_at and 216321_s_at target NR3C1 mRNAs towards the end of the 3’ UTR annotated in the RefSeq 
genes. Image generated using the Ensembl Genome Browser: https://genome.ucsc.edu 
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Figure 3: Morse-clustering of the TDA network of UBIOPRED gene expression profiling of 
peripheral blood 

 

Figure 3. TDA network landscape of correlated gene expression (54,613 probesets, n�=�498). 
Metric: norm correlation. Lenses: neighbourhood lens 1 (resolution, 100 bins; gain, ×6), 
neighbourhood lens 2 (resolution, 100 bins; gain, ×6) (A). The vector (node value) is a 3rd dimension 
in TDA networks, in a standard heatmap colouring of a TDA network, the colour represents the 3rd 
dimension (B). Arrows indicate the gradients of the 3-dimensional topology measured by Morse-
based clustering identifying the ‘peaks’ as clusters of subjects with similar profiles of analysed 
variables.  
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Figure 4: Clusters identified by Morse-clustering of the TDA network  

 

Figure 4. Centre: TDA network coloured by clusters (BC1-9) identified using the Morse-based 
algorithm. Outside: Colour-coded ROC curves of cluster prediction success representative of cluster 
robustness. 
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Table 1. Molecular pathways enriched in the 9 clusters 

Table 1. IPA identified significantly enriched (p<0.05) canonical pathways of gene expression in 
clusters (the top 5 pathways for clusters BC1-9 are shown). Values are z-scores, reflecting both the 
enrichment of specific transcription factor-regulated genes in the pathways and the degree of 
activation/inhibition. The z-scores are coloured blue (greatest downregulated transcription factor-
regulated gene expression) to red (greatest upregulated transcription factor-regulated gene 
expression). 

  

BC1 BC9 BC8 BC2 BC7 BC3 BC6 BC4 BC5
Serotonin Degradation 3.1
Superpathway of Melatonin Degradation 2.5
Melatonin Degradation I 2.5
Glutamate Receptor Signaling 2.4
Neuropathic Pain Signaling In Dorsal Horn 
Neurons

2.4 -0.9 -1.8 0.0 -0.6

Oxidative Phosphorylation 3.5 3.5 4.0 -4.4 -4.1
Glycolysis I 3.0 2.8 -1.9 -2.5

Role of p14/p19ARF in Tumor Suppression
1.4 0.0 0.3 -0.3 0.5 -0.9

Cyclins and Cell Cycle Regulation 2.1
TNFR1 Signaling 1.9 1.7 0.9 2.1 0.3 -1.6 -2.2 -0.3
tRNA Charging 1.4 2.7 3.1 -2.7 -1.6
Gluconeogenesis I -1.1 -1.7
iNOS Signaling 0.8 2.3 3.3 3.5 3.1 -2.5 -2.2
Toll-like Receptor Signaling 3.2 3.5
Type I Diabetes Mellitus Signaling 1.0 2.1 3.0 3.3 2.4 -2.6 -2.9 -0.4
TREM1 Signaling 2.9 3.7
Neuroinflammation Signaling Pathway 2.7 2.3 -2.2
IL-1 Signaling -1.0 -0.2 2.5 1.5 2.8 -0.8 1.1
Inflammasome pathway 2.4 2.6
D-myo-inositol (1,4,5,6)-Tetrakisphosphate 
Biosynthesis

-3.0 -0.3 0.0 0.9 2.8 0.3 4.4

D-myo-inositol (3,4,5,6)-tetrakisphosphate 
Biosynthesis

-3.0 -0.3 0.0 0.9 2.8 0.3 4.4

3-phosphoinositide Biosynthesis -3.8 -0.7 0.5 0.2 2.7 -0.3 4.5
3-phosphoinositide Degradation -3.0 -0.1 0.6 0.7 2.4 0.1 4.0
Superpathway of Inositol Phosphate 
Compounds

-3.5 -0.5 1.2 0.0 2.1 -0.9 4.2

Cell Cycle: G1/S Checkpoint Regulation -1.7 0.6 2.0 1.4
Antioxidant Action of Vitamin C 0.0 -0.7 -0.9 2.0
HIPPO signaling 0.7 -0.5 -1.5 1.2 0.0
Cardiac β-adrenergic Signaling -1.1 -2.2 -1.0
ERK5 Signaling -3.3 -1.3 0.2 1.1 1.8 1.6 2.0
D-myo-inositol-5-phosphate Metabolism -2.5 -0.2 0.8 0.7 2.1 0.0 4.3

Canonical Pathway
Sub-phenotype
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Table 2. Activated upstream regulators enriched in the clusters 

 

Table 2. Upstream regulators of gene expression (p<0.05) in clusters predicted by IPA (the top 5 
upstream regulators for clusters BC1-9 are shown). Values shown are z-scores, reflecting both the 
enrichment of specific transcription factor-regulated genes in the pathways and the degree of 
activation/inhibition. The z-scores are coloured blue of varying intensity (greatest downregulated 
transcription factor-regulated gene expression) to varying red (greatest upregulated transcription 
factor-regulated gene expression). 

  

BC1 BC9 BC8 BC2 BC7 BC3 BC6 BC4 BC5
CST5 3.45 2.56 2.01 3.24 1.69 2.02 -2.6 -1.5 -3.4
TP63 1.79 0.17
HSF1 1.31 2.13
TGM2 5.91 3.85 -4.4
ERG -1.6 -0.3 -1.4 -0.9
TAL1 3.31 2.42
miR-486-5p (and other miRNAs w/seed 
CCUGUAC) 2.91 0.37 1.33 -1.2 -3.3 -2 -2.6
mir-486 2.89 0.24 -1.2 -3.3 -2.1 -2.6
NUPR1 0.76 2.86 2.98 2.54
RAE1 1.34 2.83 0.45 -1.9
SPP1 2.37 -2.2
TFEB 2.98
IL15 1.15 2.67 1.22 -0.8 -1.3 -1.5
miR-30a-3p (and other miRNAs w/seed 
UUUCAGU) 2.82 2.63 1.63 -1.3 -1.6 -2.2
EIF2AK2 3.05 1.44
CEBPA 2.77 2.8
PCGEM1 2.28 -1.2 -1.4
LINC01139 1 2.24 0.45
PLA2R1 1.25 1.04 -1.6
LDL 1.39 1.93
PPRC1 3.46
PDGF BB 3.31
TNF 3.11
IL5 1.26
CD24 -5.3 -5.2 -3.9 1 4.41 4.67 5.11
MYC -2.9 -2.6 -4.5 -2 3.06 0.74
HELLS -1 2.45 2.24
MAPK1 -2
SAFB -2.1 -1.9 2.35
SLC29A1 -1.2 1.63 2.65 1.41
WT1 -1.6 -1.1 1.61 -0.2
FSH -2.1 -2.3 -0.4 0.43 1.96 2.62 2.72
TCR -0.7 -0.8 -1.8 2.49
THOC5 -2.2 1.63 2.45

Upstream regulator
Sub-phenotype
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Table 3. Clinical characteristics of the clusters  

Cluster BC1 BC2 BC3 BC4 BC5 BC6 BC7 BC8 BC9 

Number of participants 52 (10.44%) 59 (11.84%) 88 (17.67%) 35 (7.02%) 68 (13.65%) 37 (7.42%) 96 (19.27%) 33 (6.62%) 47 (9.43%) 

FEV1 (%) 72.21 ± 24.64 66.04 ± 20.76 67.89 ± 25.16 76.06 ± 23.28 79.63 ± 23.62 87 ± 21.03 83.33 ± 23.83 78.57 ± 22.97 71.69 ± 24 

FVC (%) 88.97 ± 20.9 88.83 ± 19.43 85.52 ± 23.42 95.12 ± 24.11 98.13 ± 21.01 99.77 ± 17.12 98.67 ± 19.96 95.12 ± 22.5 86.68 ± 21.35 

Severe Asthma (non-smoker) (%) 69.2 50.8 38.6 42.8 33.8 43.2 18.7 51.5 51 

Severe Asthma (smoker) (%) 9.6 23.7 21.5 17.1 19.1 10.8 15.6 18.1 17 

Mild-moderate Asthma (%) 9.6 11.8 9 22.8 13.2 8.1 25 18.1 10.6 

Healthy (%) 11.5 1.6 9 17.1 22 37.8 23.9 12.1 21.2 

Severe Asthma cluster (%) 75 81 39 22 25 5 5 3 2 

Age 51.44 ± 14.73 53.03 ± 14.44 51.07 ± 14.45 46.88 ± 16.45 44.07 ± 13.97 44.51 ± 14.87 45.22 ± 14.95 47.57 ± 15.47 50.8 ± 15.58 

Smoking (Pack Years) 3.3 ± 11.44 6.38 ± 16.00 5.05 ± 11.69 3.64 ± 7.11 4.59 ± 10.87 2.66 ± 7.69 3.69 ± 10.56 5.07 ± 10.72 5.87 ± 14.52 

Mean ACQ5 1.69 ± 1.49 1.95 ± 1.23 1.83 ± 1.34 1.46 ± 1.51 1.44 ± 1.39 1.03 ± 1.41 1.18 ± 1.23 1.58 ± 1.36 1.65 ± 1.48 

Mean ACQ7 2 ± 1.65 2.31 ± 1.36 2.17 ± 1.5 1.66 ± 1.65 1.67 ± 1.52 1.15 ± 1.52 1.4 ± 1.37 1.82 ± 1.46 1.98 ± 1.61 

Mean AQLQ 3.68 ± 2.24 4.64 ± 1.57 4.08 ± 2 3.6 ± 2.52 3.98 ± 2.35 3.16 ± 2.81 3.78 ± 2.59 3.74 ± 2.48 3.36 ± 2.24 

Admitted to ICU (%) 0.25 ± 0.4 0.2 ± 0.54 0.17 ± 0.37 0.17 ± 0.17 0.23 ± 0.19 0.05 ± 0.13 0.13 ± 0.13 0.18 ± 0.18 0.17 ± 0.19 

Oral steroids (%) 40.38 ± 46.57 54.24 ± 38.46 37.50 ± 40.45 17.14 ± 41.23 19.12 ± 39.79 13.51 ± 45.32 13.54 ± 44.21 18.18 ± 46.09 19.15 ± 44.31 

Blood periostin (ng/ml) 46.57 ± 24.62 38.46 ± 23.24 40.45 ± 27.57 41.23 ± 27.09 39.79 ± 22.02 45.32 ± 24.13 44.21 ± 21.45 46.09 ± 19.88 44.31 ± 23.59 

Atopy (% positive) 0.65 ± 29.81 0.67 ± 31.71 0.67 ± 32.66 0.68 ± 36.58 0.72 ± 31.78 0.56 ± 30.74 0.67 ± 33.75 0.66 ± 28.72 0.8 ± 26.34 

Exhaled NO (ppb) 29.81 ± 22.04 31.71 ± 30.11 32.66 ± 26.52 36.58 ± 32.73 31.78 ± 30.61 30.74 ± 32.05 33.75 ± 31.02 28.72 ± 26.51 26.34 ± 14.71 

Blood eosinophils (x10^3/µ L) 0.31 ± 0.3 0.18 ± 0.17 0.25 ± 0.28 0.21 ± 0.14 0.25 ± 0.25 0.23 ± 0.21 0.23 ± 0.2 0.29 ± 0.24 0.35 ± 0.33 

Blood neutrophils (x10^3/µL) 5.63 ± 2.3 6.78 ± 2.94 5.41 ± 2.35 4.35 ± 1.52 4.18 ± 1.86 3.32 ± 1.37 3.42 ± 1.09 3.99 ± 1.2 4.06 ± 1.75 

Blood lymphocytes (x10^3/µ L) 2.06 ± 0.7 1.57 ± 0.7 1.83 ± 0.76 2 ± 0.47 1.91 ± 0.82 2.03 ± 0.73 1.87 ± 0.46 2.22 ± 0.66 2.14 ± 0.75 

Sputum Eosinophils (%) 1.67 ± 5.16 6.37 ± 14.89 2.33 ± 9.42 1.77 ± 8.27 3.84 ± 12.49 5.79 ± 16.41 5.28 ± 12.42 4.47 ± 10.25 3.32 ± 12.41 

Sputum Neutrophils (%) 30.18 ± 36.16 29.48 ± 34.25 5.7 ± 17.38 3.45 ± 12.12 17.37 ± 25.54 21.7 ± 28.31 28.65 ± 28.88 28.48 ± 29.83 24.83 ± 31.74 

Sputum Macrophages (%) 13.65 ± 20.15 12.66 ± 17.96 3.16 ± 10.9 2.79 ± 9.48 17.89 ± 27.24 25.88 ± 33.44 30.62 ± 30.57 29.99 ± 30.84 26.38 ± 32.85 

Sputum Lymphocytes (%) 0.62 ± 1.26 0.61 ± 1.06 0.15 ± 0.65 0.53 ± 2.29 0.57 ± 0.99 0.64 ± 0.84 1.04 ± 1.34 0.68 ± 0.95 0.74 ± 1.21 

Table 3. Clinical features associated with the TDA-defined asthma phenotypes. Values are shown as means and are colour coded on a heat scale for each 
variable; highest variable value is in red, lowest value in blue. FEV1: forced expiratory volume in one second (measured by spirometry). FVC: forced vital 
capacity. (%) Severe Asthma cluster (%) is the percentage of study participants previously identified in the severe asthma enriched cluster identified by 
hierarchical clustering10. ACQ5 or 7: asthma quality questionnaire consisting of 5 or 7 questions. AQLQ: asthma quality of life questionnaire. Sputum cells 
are shown as percentages of total inflammatory cells. 
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Figure 5. The regulatory gene pathway of NR3C1 transcript variants, and VDR, CST5, MYC & TGM2; identified as top 
upstream regulators by IPA (Table 2). Colours indicate gene expression relative to healthy participants, where green 
represents lower gene expression and red represents higher gene expression, white indicates no change (negative, positive 
and zero-fold change). Left column shows gene expression in cluster BC1, right column shows gene expression in BC5. 
Image generated using IPA. 
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