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Autism spectrum disorder (ASD) is a genetically heterogeneous condition, caused by a 
combination of rare de novo and inherited variants as well as common variants in at least 
several hundred genes. However, significantly larger sample sizes are needed to identify 
the complete set of genetic risk factors. We conducted a pilot study for SPARK 
(SPARKForAutism.org) of 457 families with ASD, all consented online. Whole exome 
sequencing (WES) and genotyping data were generated for each family using DNA from 
saliva. We identified variants in genes and loci that are clinically recognized causes or 
significant contributors to ASD in 10.4% of families without previous genetic findings. 
Additionally, we identified variants that are possibly associated with autism in an 
additional 3.4% of families. A meta-analysis using the TADA framework at a false 
discovery rate (FDR) of 0.2 provides statistical support for 34 ASD risk genes with at least 
one damaging variant identified in SPARK. Nine of these genes (BRSK2, DPP6, EGR3, 
FEZF2, ITSN1, KDM1B, NR4A2, PAX5 and RALGAPB) are newly emerging genes in 
autism, of which BRSK2 has the strongest statistical support as a risk gene for autism 
(TADA q-value = 0.0015). Future studies leveraging the thousands of individuals with 
ASD that have enrolled in SPARK are likely to further clarify the genetic risk factors 
associated with ASD as well as allow accelerate autism research that incorporates genetic 
etiology.  
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Introduction 
Autism spectrum disorder (ASD) is an extremely variable condition characterized by 

deficits in social interactions and restrictive, repetitive behaviors. Currently, there are no FDA 
approved medications that address these core symptoms, despite the life-long morbidity and 
increased mortality in adults with autism1. 

Despite the significant clinical heterogeneity of this condition, many studies have shown 
that ASD is highly heritable, with genetic risk factors thought to explain the majority of the risk 
for ASD2. Over the past decade, genomic studies focused on recurrent, de novo, likely gene 
disrupting (dnLGD) variants (stopgain, frameshift, and essential splice site) have identified 
~100 high-confidence autism risk genes or loci3-4. Previous studies have identified molecular 
diagnoses in 6-37% of individuals with ASD, with higher yields in individuals with additional 
comorbidities that include intellectual disabilities, seizures, and other medical features5. 

Here we describe the results of a pilot study that genetically characterized 457 families 
with one or more members affected with ASD enrolled online in SPARK6. SPARK’s mission is 
to create the largest recontactable research cohort of at least 50,000 families affected with ASD 
in the United States for longitudinal phenotypic and genomic characterization who are available 
to participate in research studies. Using exome sequencing and genome-wide single nucleotide 
polymorphism (SNP) genotyping arrays, we identified variants that are the likely primary 
genetic cause of autism in 14% of families.  We also demonstrated that the genetic architecture 
in this self-reported cohort is similar to published, clinically-confirmed autism cohorts3,7,4. 
Combining the SPARK data with prior studies, our analyses provide strong evidence that 
BRSK2 is a new high-confidence ASD risk gene (FDR q-value = 0.0015) and provide additional 
evidence for eight newly emerging risk genes (DPP6, EGR3, FEZF2, ITSN1, KDM1B, NR4A2, 
PAX5 and RALGAPB) in ASD. 
 
Results 
Variant discovery 

We report the exome sequencing and genotyping results of 1379 individuals in 457 
families with at least one offspring affected with ASD, including 418 simplex and 39 multiplex 
families (Supplementary Figure 1). Over 80% of participants are predicted to have European 
ancestry based on principal component analysis of common SNP genotypes (Supplementary 
Figure 2). The male to female ratio is 4.4:1 among 418 cases in simplex families, and 2.9:1 
among 47 offspring in multiplex families. Of the 465 offspring affected with ASD, 25.6% also 
reported intellectual disability (Table 1). We identified 647 rare (allele frequency AF<0.001 in 
ExAC v0.3) de novo single nucleotide variants (SNVs) and indels (Supplementary Table 1) in 
coding regions and splice sites (1.4/offspring), including 85 likely gene disrupting (LGD) 
variants and 390 missense variants. Similar to the de novo variants identified from 4,773 
clinically ascertained ASD trios from previous studies3-8, the frequency of dnLGD variants in 
the 465 affected offspring (0.18/offspring) is 1.76-fold higher than the baseline expectation 
calculated by a previously published mutation rate model9 (p = 1.2 × 10-6 by one-sided exact 
Poisson test) (Methods; Supplementary Table 2A).  

To identify de novo missense variants that are likely damaging, we applied two 
deleterious missense (D-mis) prediction algorithms on published ASD and SPARK de novo 
variants. Among the 390 de novo missense variants in affected offspring, 43.6% are predicted 
to be deleterious using CADD ≥ 2510 and show 1.28-fold enrichment compared to baseline 
expectation in the general population. Using a stricter D-mis prediction algorithm with 
MPC≥211, eight percent of de novo missense variants are predicted as deleterious and are 
enriched 1.88-fold in affected offspring which is comparable to the enrichment of dnLGD 
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Role n=465

Average age 
of ASD dx 
(years)

Average age 
at 
registration 
(years)

Has Intellectual 
disability(%) Non-verbal (%) Has Epilepsy (%) Has ADHD (%)

Affected male offspring 376 4.8 12 22% (78/356) 13% (46/356) 7% (25/356) 30%(106/356)
Affected female offspring 89 5.6 12 33% (28/84) 10% (8/84) 13% (11/84) 23% (19/84)

Table 1: Phenotypic description of the 457 families with at least 1 offspring affected with ASD in the SPARK pilot study. 1379 individuals in 
39 multiplex and 418 simplex families were genomically characterized, including 472 individuals (465 offspring and 7 parents affected 
with ASD) were sequenced. Phenotypic variables are not available for each person, so they are reported for whom they are available.

All offspring with ASD 
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variants. The overall burden of de novo D-mis variants is similar to published studies 
(Supplementary Table 2B).   

Variants in constrained genes (pLI ≥ 0.5)12 explain most of the burden of dnLGD 
variants and de novo D-mis variants (defined by a MPC score ≥ 2) in the affected offspring in 
our study (Supplementary Table 2B). Consistent with previous findings supporting the female 
protective model13, we observed a non-significant trend toward a higher frequency of dnLGD 
variants in constrained genes in female cases compared to males (0.135/female vs. 0.096/male), 
as well as higher frequency of de novo D-mis variants in female cases (CADD=25: 
0.416/female vs 0.354/male, MPC ≥ 2: 0.09/female vs 0.066/male).  

We also investigated deleterious inherited SNV/indel variants and found a modest 
excess of transmitted, rare LGD (AF < 0.001 in ExAC v0.3) variants observed only once 
among parents in our cohort (singletons) in constrained genes with pLI ≥  0.5 (464 transmitted 
vs. 402 non-transmitted; RR = 1.15, P = 0.038 by binomial test). Over-transmission of rare 
singleton LGD variants was not observed in genes that are not constrained (RR=1.03, P=0.31 
by binomial test). The excess of transmitted singleton LGD variants in constrained genes 
increased after removing variants observed in the ExAC database (303 transmitted vs. 242 un-
transmitted; RR = 1.25, P = 0.010 by binomial test). These results provide further evidence that 
rare, inherited LGD variants in constrained genes confer increased risk for ASD14,15. We then 
searched for known haploinsufficient ASD or neurodevelopmental disorder (NDD) genes 
(SFARI gene score 1 or 2 or listed in DDG2P16) that are disrupted by the rare singleton LGD 
variants and are transmitted. We found 13 such variants (2 of them on the X chromosome), as 
compared to 10 variants that are not transmitted (including one on the X chromosome) 
(Supplementary Table 3).  Manual review of these variants revealed that most of them are not 
likely pathogenic because they either affect only a subset of transcripts that are not expressed in 
the majority of tissues17, are located close to the 5’ end of the transcript (last 5% of the coding 
sequence) or are indels that overlap but do not change the sequence of essential splice sites. The 
results suggest that the rare LGD variants in known ASD/NDD genes have only limited 
contribution to the overall transmission disequilibrium in this class of variants. 

By integrating exome sequence read depth and SNP microarray signal intensity data, we 
identified 273 rare CNVs (occurring with an allele frequency of ≤1% of the 1379 individuals in 
the analysis) in 206 affected offspring. Of these, 253 CNVs were inherited (0.544/affected 
offspring) and were on average 194 kb. These inherited CNVs contained an average of 4 genes, 
which reduces to an average of 0.4 genes that are highly intolerant to variation (pLI ≥  0.9) 
(Supplementary Table 4). Similar to the frequency observed in previous studies8,18 
(0.052/proband), we identified 20 de novo CNVs (0.043 /affected offspring) (Supplementary 
Table 5). On average, de novo CNVs were larger (1.6 Mb) and contained more total and 
constrained genes (28 genes total, 3 genes with a pLI ≥  0.9).  

Despite the fact we were underpowered to detect statistically significant burden 
differences between sexes, we observed a trend toward a 1.8-fold higher burden of dnCNVs in 
ASD females (0.067/female vs. 0.037/male, respectively).  In contrast, the frequency of rare, 
inherited CNVs in ASD females and males were similar (0.551/female vs. 0.543/male, 
respectively). Similar to Sanders et al. 20158, dnCNVs in female cases also affect more genes 
than dnCNVs in males (0.669 vs. 0.039 genes in dnCNVs per female proband vs per male 
proband, respectively; p = 0.013, Kruskal-Wallis test). 

Of the CNVs detected, there were six mapping within the chromosome 16p11.2 region 
(3 de novo and 3 inherited in five families). Four of the six 16p11.2 CNVs occurred at the most 
common breakpoints (BP4-BP5), occurring in 0.9% of affected offspring, consistent with the 
expected autism prevalence19. Together, the results suggest that the saliva-derived DNA 
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collected in SPARK should provide comparable CNV data to previous studies using DNA 
derived from whole blood. We also used read-depth and SNP genotypes to identify several 
chromosomal aneuploidies (Supplementary Figure 1B, including one case of trisomy 21 (47, 
XY +21), one case of Klinefelter syndrome (47, XXY), one case of Turner syndrome (45, X), 
and one case of uniparental iso-disomy of chromosome 6 (UPiD6). 

Given their emerging role in genetic risk for ASD and other NDDs, we also assessed 
postzygotic mosaic mutations20-21 in the SPARK cohort. In parallel, we utilized a previously 
established method22 and a novel approach to identify likely mosaic SNVs (Methods, 
Supplementary Figures 3-8). We identified 65 likely mosaic mutations (0.142/offspring) 
(Supplementary Table 6). The majority of these mutations were unique to the mosaic call set; 
however, 18 were also identified in the main de novo SNV call set with an average alternative 
allele fraction of 25.4% (Supplementary Table 6), suggesting that these mutations are likely to 
have occurred post-fertilization. These results indicate that ~10% (65/652) of the total de novo 
SNVs in the SPARK pilot are of postzygotic origin. Comparing these data to a similar mosaic 
set from the SSC22, we found similar mosaic mutation characteristics, despite the fact that 
different DNA sources, capture reagents, and sequencing instruments were used 
(Supplementary Figure 7).  Due to the limited number of mosaic calls, we did not attempt to 
evaluate mosaic mutation burden. However, we observed that a number of potentially mosaic 
mutations were in known or candidate risk genes ASD/NDD or genes that are highly 
constrained (Supplementary Table 6). For example, we identified a mosaic LGD variant in 
MACF1, which is highly constrained (pLI =1), plays essential roles in neurodevelopment, 
functions through the previously implicated Wnt signaling pathway23, and has been recently 
suggested as a candidate gene based on a de novo LGD variant in a Japanese ASD cohort24. In 
CREBBP, which reached genome-wide significance in a recent NDD meta-analysis16, we 
identified a mosaic missense variant, in addition to two other germline de novo missense 
variants in SPARK, adding to the evidence that it is an ASD/NDD risk factor.  

 
Genes with a higher mutational burden  

We assessed genes with recurrent de novo LGD variants in the SPARK cohort and 
identified four genes with more than one de novo LGD variant (CHD8, FOXP1, SHANK3, 
BRSK2).  BRSK2 is the only gene with multiple de novo LGD variants in SPARK and not 
previously implicated in autism and/or NDDs (p=2.3 ×10-6 by one-sided exact Poisson test). 

To increase the statistical power to identify new autism genes, we performed a meta-
analysis of de novo variants in 4,773 published ASD trios3,4,7,8 and 470 SPARK trios using 
TADA25 (Methods). In this analysis, we included  de novo LGD variants and de novo D-mis 
variants, which we defined as those that have a CADD score ≥ 25 10. The TADA analysis 
presumes a model of genetic architecture compatible with the observed burden and recurrence 
of de novo damaging variants and assigns an FDR q-value for each gene based on the number 
of damaging variants and baseline mutation rates. We identified 34 genes with at least one 
damaging variant identified in SPARK, which also met our FDR threshold (< 0.2) (Figure 1). In 
our TADA results, we only present genes with damaging variants in the SPARK data 
(Supplementary Table 7). Our simulations (Supplementary Table 8) show that by limiting 
results to variants observed in the SPARK cohort, the FDR threshold will be conservative 
among those reported genes (Supplementary Note). Restricting the TADA analysis to only the 
published de novo variants from 4,773 trios, 16 known ASD/NDD genes were significant at 
FDR<0.2 while the other 18 genes were non-significant (FDR > 0.4). For the latter 18 genes, 
previous studies identified a small number of de novo damaging variants. The additional 
damaging variants identified in the 457 families from the SPARK cohort were sufficient to 
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Figure 1: Meta-analysis using the TADA framework provides statistical support for 34 genes at a false discovery rate 
(FDR) of 0.2. Known ASD genes are defined as those with SFARIgene score ≤ 2 or implicated in a previous TADA meta-
analysis (FDR<0.1)8; known NDD genes are those listed in the DDG2P database16. D-mis variants are defined by CADD 
score ≥ 25. A total of 34 genes with at least one de novo damaging variant observed in SPARK pilot trios achieve an 
FDR<0.2 after meta-analysis with published trios (total n=5,230). Fourteen genes have not been previously classified as 
known ASD or NDD genes. Nine of these genes are supported by additional evidence (Supplementary Table 10) and are 
considered newly emerging ASD risk genes.
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significantly strengthen the statistical evidence in the combined cohort. We also performed 
TADA analyses including inherited variants and CNVs from the SPARK families, but we 
found that these variant classes do not contribute to the statistical evidence for the variants 
identified above.  

Of the newly identified genes, BRSK2 has the strongest statistical evidence as a new 
autism gene, with a q-value = 0.0015. All four individuals in SPARK, ASC and the SSC with 
de novo functional variants in BRSK2 are males with cognitive impairment and severe speech 
delay (Table 2). Among these 18 genes, 16 are constrained genes (pLI ≥ 0.5). Since the 
association signal for the two non-constrained genes was driven by LGD variants, we excluded 
these from further analysis as likely false-positives. MBD5 and IRF2BPL achieved a FDR value 
of < 0.1 in a previous meta-analysis8, which also included evidence from de novo CNVs and 
deleterious variants of unknown inheritance from a case-control sample in that analysis. Four 
genes (QRICH1, MBD5, SLC6A8, and RERE) are known NDD risk genes in the latest DDG2P 
database16.  

We then searched for additional supporting evidence for a role of these genes in autism 
and NDDs, including other deleterious variants in previous studies and case reports not 
included in the meta-analysis, membership in gene sets previously associated with ASD3,4,7,8, 
and published functional studies (Supplementary Table 9). Previous studies have reported 
additional individuals with NDDs and/or autism with de novo damaging variants in four genes 
(PAX54,26, NR4A227,28, RALGAPB7,29,30, and DPP65,31,32). 

In addition to recurrent deleterious variants in these newly emerging ASD risk genes, 
we also found evidence that they function in biological pathways previously linked to autism. 
For example, mRNA translation of BRSK2, ITSN1, and RALGAPB in neurons is predicted to be 
regulated by FMR1 protein33. In addition, ITSN1 and DPP6 are part of the post-synaptic density 
components in human neocortex34. PAX5 and FEZF2 are involved in transcription regulation 
during central nervous system development4,24,35. KDM1B is a known chromatin modifier, and 
EGR3 has been implicated in neurodevelopment36,37. Combining statistical and functional 
evidence, our analysis provides additional support for nine genes (BRSK2, DPP6, EGR3, 
FEZF2, ITSN1, KDM1B, NR4A2, PAX5 and RALGAPB) as newly emerging genes in ASD and 
NDDs.  

We also searched rare singleton inherited LGD variants in these nine genes in SPARK 
and published Simons Simplex Collection (SSC) data, and identified five additional cases (3 in 
SSC, 2 in SPARK) carrying inherited LGD variants of ITSN1 that likely cause loss of gene 
function. Interestingly, of the six ASD cases with LGD variants in ITSN1, five do not have 
intellectual disability (Table 2). The less severe phenotype and inheritance from unaffected 
parents are consistent with the modest effect size.  Furthermore, in ASC case-control samples7, 
LGD variants in ITSN1 were also identified in the controls, although they were still over-
represented in cases (2 in 1601 cases vs 3 in 5397 controls and comparable to the cumulative 
AF of 2.5e-4 in gnomAD v2.1). We did not find any rare, inherited variants causing loss of 
function in other newly emerging genes from affected offspring.   

 
Functional network analysis and gene expression patterns in newly emerging genes 
To relate the newly emerging ASD risk genes from our genetic analysis to previous knowledge 
of integrated gene networks in ASD, we scored the newly emerging genes using forecASD, a 
new ensemble classifier that integrates spatiotemporal gene expression, heterogeneous network 
data, and previous gene-level predictors of autism association38. Using forecASD, we derived a 
single score that ranks the evidence for each gene to be involved in autism risk. Using this 
approach, we found that the nine newly emerging ASD risk genes are all in the top decile of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/516625doi: bioRxiv preprint 

https://doi.org/10.1101/516625
http://creativecommons.org/licenses/by-nc-nd/4.0/


Subject ID SP0037695 SP0042217 08C79336 SP0007556 SP0025011 SP0016887 13400.p1 13704.p1 14637.p1 SP0037344
Cohort SPARK SPARK ASC SPARK SPARK SPARK SSC SSC SSC SPARK
Gene BRSK2 BRSK2 BRSK2 ITSN1 ITSN1 ITSN1 ITSN1 ITSN1 ITSN1 FEZF2
Transcript ID ENST00000382179.1 ENST00000382179.1 ENST00000382179.1 ENST00000381285.4 ENST00000381285.4 ENST00000381285.4 ENST00000381285.4 ENST00000381285.4 ENST00000381285.4 ENST00000475839.1

Variant p.T547fs c.951-1G>A c.1365-1G>C p.P1619L (MPC 
= 2.03)

p.P156fs p.Q711X c.1952+1del p.E576* p.P164Rfs*22 p.A397fs

Nucleotide 11:1472606AC
>A

11:1466523G>
A

11:1471005G
>C

21:35258603C>
T

21:35122566G
C>G

21:35169861C
>T

21:35166771A
G>A

21:35154339G
>T

21:35122591C
CT>C

3:62355946A
G>A

Inheritance de novo de novo de novo de novo Inherited Inherited Inherited 
(maternal)

Inherited 
(paternal)

Inherited 
(paternal)

de novo

Sex Male Male Male Male Male Female Female Male Male Male
DSM Diagnosis ASD ASD ASD Asperger's 

Disorder
Asperger's 
Disorder

ASD Autism PDD-NOS Autism ASD

Age at evaluation 
(years)

8 19 5.3 30 34 2 4.2 4.3 5.4 23

Medical concerns None Premature birth 
(24 weeks),
vision/hearing 
problems (not 
specified)

Unknown Obesity,
vision/hearing 
problems (not 
specified)

None None Migraines None None None

Seizures (TRUE/FALSE) FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Intellectual Disability 
(TRUE/FALSE),
IQ (if known)

TRUE TRUE, ≤25 Unknown FALSE,
≥129

FALSE FALSE FALSE,
FSIQ = 116

FALSE
FSIQ = 91

TRUE - mild,
FSIQ = 63

FALSE

Language Level (at age 
of evaluation)

Single words No words Unknown Fluent speech  
(sentences)

Fluent speech 
(sentences)

Single words ADOS module 
2 (phrase 
speech)

ADOS module 
2 (phrase 
speech)

ADOS module 
2 (phrase 
speech)

Unknown

Language Delayed at 
Evaluation 
(TRUE/FALSE)

TRUE TRUE TRUE FALSE FALSE FALSE TRUE TRUE TRUE Unknown

Language Regression 
(TRUE/FALSE)

FALSE FALSE Unknown FALSE Unknown TRUE FALSE TRUE FALSE Unknown

Developmental 
concerns and 
psychiatric co-
morbidities 

Learning disorder,
motor skills delay,
speech 
articulation 
problems,
feeding disorder

Motor skills 
delay,
social pragmatic 
communication 
disorder,
speech 
articulation 
problems,
feeding disorder,
encopresis

None Attention or 
behavior problems 
- not specified,
mood or anxiety 
problems - not 
specified
feeding disorder

Attention or 
behavior 
problems - not 
specified,
OCD

Feeding disorder Anxiety None None None

Early Motor delay
(True/False)

FALSE TRUE FALSE FALSE Unknown FALSE FALSE FALSE FALSE Unknown

Table 2: Phenotypic information on individuals with deleterious variants in the nine newly emerging ASD risk genes. MPC11

 scores are listed for missense mutations. All phenotypic information for SPARK participants was collected
online. Because phenotypic data collection procedures are not consistent between different research cohorts, we implemented a
systematic, quantitative phenotypic severity rating scale based on consistent variables between cohorts. This rating scale
incorporated indicators of intellectual disability, birth defects and presence of seizures and allows for easier comparison of
phenotypes between individuals in different cohorts (Methods). Severity is scored on a scale of 0 to 8, with 8 indicating most
severe and 0 indicating unremarkable.
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Subject ID 11074.p1 SP0008074 SP0002235 SP0001207 SP0041645 11172.p1 SP0043850 14523.p1 SP0016232 12858.p1
Cohort SSC SPARK SPARK SPARK SPARK SSC SPARK SSC SPARK SSC
Gene FEZF2 RALGAPB EGR3 KDM1B NR4A2 NR4A2 DPP6 DPP6 PAX5 PAX5
Transcript ID ENST00000475839.1 ENST00000397040.1 ENST00000522910.1 ENST00000388870.2 ENST00000409572.1 ENST00000409572.1 ENST00000404039.1 ENST00000404039.1 ENST00000377847.2 ENST00000377847.2

Variant p.R344C (MPC 
= 3.37)

p.I523fs p.E253G 
(CADD = 26.5)

p.A794T 
(CADD = 25.6)

p.G231fs p.Y275H (MPC 
= 3.84)

p.Q339X p.A250T 
(CADD = 28.8)

p.E113V (MPC 
= 2.78)

p.A111fs

Nucleotide 3:62356982G>
A

20:37150289A
>AT

8:22548278T>
C

6:18218108G>
A

2:157186006
GC>G

2:157185876A
>G

7:154585859C
>T

7:154561183
G>A

9:37015066T>
A

9:37015070A
G>A

Inheritance de novo de novo de novo de novo de novo de novo de novo de novo de novo de novo
Sex Male Female Male Male Male Male Male Female Male Female
DSM Diagnosis Autism ASD ASD Autism ASD Autism ASD Autism ASD Autism
Age at evaluation 
(years)

9 8 8 6 20 15 9 17 14 4

Medical concerns None Premature birth 
(36 weeks),
macrocephaly

None None Neurological 
problems (not 
specified)

None Sleep problems None Neurological 
problems (not 
specified),
sleep disorder

None

Seizures (TRUE/FALSE) Febrile seizures 
only

FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Intellectual Disability 
(TRUE/FALSE),
IQ (if known)

TRUE,
FSIQ = 68

FALSE TRUE, 
40-54

FALSE, 
110-119

TRUE, 
55-69

TRUE,
FSIQ = 63

FALSE, 
110-119

FALSE,
FSIQ = 111

TRUE, 
55-69

FALSE,
FSIQ = 91

Language Level (at age 
of evaluation)

ADOS module 
3 (sentences)

Fluent speech 
(sentences)

Single words Fluent speech 
(sentences)

Fluent speech 
(sentences)

ADOS module 
4 (sentences)

Fluent speech 
(sentences)

ADOS module 
3 (sentences)

No words ADOS module 
2 (phrase 
speech) 

Language Delayed at 
Evaluation 
(TRUE/FALSE)

FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE

Language Regression 
(TRUE/FALSE)

TRUE Unknown Unknown FALSE FALSE TRUE FALSE FALSE TRUE TRUE

Developmental 
concerns and 
psychiatric co-
morbidities 

None Anxiety, social 
pragmatic 
communiation 
disorder

None None Motor skills 
delay, anxiety

None ADHD None Learning disorder,
mutism,
social pragmatic 
communication 
disorder,
feeding disorder

Early Motor delay
(True/False)

FALSE Unknown FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

Table 2 (cont.): Phenotypic information on individuals with deleterious variants in the nine newly emerging ASD risk genes. MPC11

 scores are listed for missense mutations. All phenotypic information for SPARK participants was collected
online. Because phenotypic data collection procedures are not consistent between different research cohorts, we implemented a
systematic, quantitative phenotypic severity rating scale based on consistent variables between cohorts. This rating scale
incorporated indicators of intellectual disability, birth defects and presence of seizures and allows for easier comparison of
phenotypes between individuals in different cohorts (Methods). Severity is scored on a scale of 0 to 8, with 8 indicating most
severe and 0 indicating unremarkable.
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forecASD scores (the top decile being a recommended cutoff used to define probable ASD risk 
genes), and correspondingly have significantly elevated forecASD scores over the remainder of 
the genome (P=8.8x10-7, Supplementary Figure 9), supporting these genes as having similar 
properties overall compared to known ASD risk genes. Furthermore, two predictive features in 
forecASD that summarize brain expression support and network support are also found to be 
significantly elevated over the genome background in the new genes (P=0.017 and P=0.004, 
respectively; see Supplementary Figure 9). Importantly, neither of these metrics uses genetic 
data directly, so the nine newly emerging genes collectively have support across the three 
independent and distinct domains of genetic, network, and brain expression evidence.  
 To illustrate the network context of the newly emerging ASD risk genes, we clustered 
the new genes along with known ASD risk genes (SFARI score 1 or 2) and genes scoring 
within the top decile of forecASD (Figure 2A). Network analysis yielded 11 tightly connected 
clusters with distinct biological functions (Supplementary Table 10). Several genes were 
assigned to clusters that showed enrichment for gene sets consistent with their known functions, 
including DPP639, KDMB140, NR4A241, and FEZF242, consistent with their functional evidence 
(Supplementary Table 10). In a subsequent analysis, the interactions between known ASD risk 
genes and the nine newly implicated ASD risk genes were visualized (Figure 2B). This 
subnetwork was significantly interconnected (P<1 x 10-16), with novel genes showing 
significantly more functional associations with known ASD risk genes than expected by chance 
(P<0.001). 

Using coexpression networks seeded by high-confidence ASD risk genes, a previous 
study found that cortical projection neurons in layers 5 and 6 of human midfetal prefrontal and 
primary motor-somatosensory cortex (PFC-MSC) are a key point of convergence for ASD risk 
genes43. Another study also showed that unbiased gene co-expression networks overrepresented 
with candidate ASD risk genes are more highly expressed in the cortical plate and subplate 
laminae of the developing human cortex, which will go on to form mature layers II-VI of the 
cerebral cortex44. One of the newly emerging genes we identified, FEZF2, is a powerful master 
regulator gene critical for establishing corticospinal neurons45, which connect layer Vb of the 
cortex to the spinal cord, and is known to be expressed in the putative layer V in the late mid-
fetal human cortex46.  

We first evaluated gene expression of the newly emerging genes with regard to cortical 
layer specificity in the human developing brain47. Among the nine newly emerging genes, 
seven (BRSK2, ITSN1, FEZF2, RALGAPB, NR4A2, EGR3 and DPP6) have expression data in 
developing fetal human cortex, and similar to Parikshak et al.44, they show a trend of increased 
expression at post-conceptual week (PCW) 15-16 (Figure 2c) and PCW 21 (Supplementary 
Figure 10) in the cortical plate and subplate laminae, which will form layers II-VI of the mature 
cerebral cortex. The mean of t-statistics of these seven genes in the inner cortical plate (CPi) 
and subplate (SP) are greater than two standard deviations (SD) from the mean of randomly 
selected genes matched for gene length and GC content (P < 0.01 by simulation).  

We further evaluated cell type specificity using recently published single-cell RNA-seq 
data from fetal and adult mouse and human brains48 (Supplementary Figures 11-12), and found 
the expression specificity of newly implicated genes is highest in pyramidal neurons in the 
mouse hippocampus CA1 region with an enrichment of 4.3 SD from the bootstrapped mean 
(p=5.6e-3 by simulations controlling gene length and GC content, Supplementary Figure 11). 
The specificity is also enriched (2.1 SD above the bootstrapped mean, p=0.03 by simulation) in 
somatosensory pyramidal neurons using a recently published human single nucleus RNA-seq 
data49. These results are consistent with a previous study showing that autism protein-protein 
interaction networks related to the 16p11.2 CNV display significantly enriched expression 
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Figure 2: Network analysis & 
gene expression of newly 
emerging ASD genes using A) GO 
term clustering, B) PPI networks 
and C) gene expression of 
human fetal cortex at PCW (post-
coital weeks) 15-16. Known ASD 
genes are defined as those with 
a SFARIgene score ≤2 (84 genes, 
indicated as SFARI) or implicated 
in a previous TADA meta-analysis 
at FDR<0.1 (65 genes, indicated 
as TADA). The enrichment for 
each gene was measured by the 
t-statistics comparing the 
expression level in each layer 
against all other layers. The 
enrichment of a gene set is the 
mean of t-statistics of its genes. 
Two newly emerging ASD risk 
genes (PAX5 and KDM1B) are not 
shown due to the low expression 
levels in human developing 
cortex (RPKM<1 for at least 20% 
available neocortical samples in 
BrainSpan). Data were extracted 
from Supplementary Table of 44. 
Laminae abbreviations: marginal 
zone (MZ), outer/inner cortical 
plate (CPo/CPi), subplate (SP), 
intermediate zone (IZ), 
outer/inner subventricular zone 
(SZo/SZi), ventricular zone (VZ).
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during mid-fetal development as well as early childhood in cerebral cortex50. Taken together, 
we find that the newly emerging genes identified in this study demonstrate differential 
expression patterns similar to that of known ASD genes, providing further support that the 
newly emerging genes function in similar biological pathways and mechanisms as known ASD 
genes. 
 
Diagnostic yield in SPARK 

For all cases, we defined deleterious autism-associated variants as those meeting likely 
pathogenic or pathogenic criteria according to ACMG standards51 (Methods). We did not 
search for or discover any incidental findings unrelated to autism in these families. We defined 
possible autism-associated variants as either: SNVs that are de novo missense variants that 
affect known NDD or ASD genes and have an MPC score11 ≥ 2, loss-of-function variants that 
disrupt possible NDD or ASD genes, or CNVs that delete one or more possible NDD or ASD 
genes or duplicate known ASD or NDD loci. Families in the pilot study were selected without 
regard to genetic diagnosis.  13 of the 457 families self-reported a genetic diagnosis, and all 
were confirmed by our analyses and serve as positive controls to validate our genomic analyses 
(Supplementary Table 11). For the remaining 444 families, we identified 50 (10.8%) 
deleterious genetic variants (8 de novo CNVs, 14 inherited CNVs, 23 de novo SNVs or indels, 3 
inherited LGD variants and 2 chromosomal aneuploidies) in known autism-associated genes or 
loci in 49 affected individuals (Supplementary Table 11). We also identified 19 more likely 
deleterious genetic variants (one de novo CNV, one inherited CNV, 14 de novo SNVs and three 
inherited SNVs) in possibly autism-associated genes or loci in an additional 14 individuals 
(3.1%). When DNA was available, autism-associated genetic findings were confirmed by 
Sanger sequencing or chromosome microarray, and genetic results were returned to the families 
(n=28).  

We identified 8 families in which one of the affected children had >1 pathogenic or 
possibly autism-associated variants of different types (Supplementary Figure 13). Six of the 
eight affected children (75%) also have intellectual disability, which may provide support for 
the oligogenic model proposed to explain some of the phenotypic heterogeneity of NDD52. In 
39 multiplex families, pathogenic variants were identified in 6 affected offspring in 5 families 
(Supplementary Figure 14). The genetic variants contributing to autism in multiplex families 
are likely complex4, with ≥ 1 contributing genetic risk factor of varying penetrance, especially 
those without additional medical conditions or congenital anomalies.  
 
Discussion 

Overall, the genomic characterization of 457 autism families (418 simplex and 39 
multiplex) in SPARK implicates nine emerging genes in ASD that converge on similar 
biological networks as known ASD risk genes. We identified a returnable genetic result related 
to autism in 10.8% of affected offspring and have begun returning individual genetic results to 
the families after confirming results in a clinical laboratory. Not surprisingly, our diagnostic 
yield was highest in affected individuals who also report presence of seizures (27%). The yield 
in individuals who also report intellectual disability was also higher (20%) than the overall 
cohort.  

In our analysis, our diagnostic yield in affected offspring in multiplex families (15.2%) 
was slightly higher than affected offspring in simplex families (10.1%). Interestingly, the 
genetic findings in multiplex families rarely explained autism in all affected family members. 
For example, in a family with an affected father and 3 affected children, the most severely 
affected child harbored a de novo LGD in ADNP. No other family member carried this variant 
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or any other identifiable contributing variant. In another pedigree, an affected male child with 
an affected male father inherited a 15q11.2 BP1-BP2 deletion from a mother who does not 
report an ASD diagnosis, but we found no contributing variant in the affected father. We also 
identified eight families in which there was >1 contributing variant, even in families in which 
we were unable to identify contributing variants in all affected offspring. In one family with 
two affected children, the female child inherited a 1q21.1 CNV from an unaffected mother and 
also harbored a de novo LGD in RALGAPB. However, the affected male child did not harbor 
either of these variants. Future studies with larger sample sizes will allow for a more robust 
comparison of the genetic architecture of ASD in simplex vs. multiplex families. 

Over time, we expect the diagnostic yield in SPARK to increase as more individuals 
with ASD are studied and as additional genetic risk factors are identified. For example, we 
identified LGD variants in CHD3, MEIS2, and AKAP10 and deletions of NFIB, DLL1, and 
HNRNPD genes. Although these genes did not reach statistical significance in our TADA meta-
analysis, their role in ASD is supported by recurrent mutations in the literature, and they likely 
represent other newly emerging ASD genes (Supplementary Table 9). We interpreted those 
variants as possible contributors to autism in those individuals. The genetic findings in those 
cases will be confirmed and returned in the future if and when these genes are established as 
ASD associated genes. 

Using a systems biology approach, we demonstrated that the newly emerging ASD 
genes identified in this analysis are well-supported beyond genetic association and are predicted 
to be ASD risk genes based on a variety of functional properties, including patterns of 
spatiotemporal gene expression in the brain and protein network connectivity. All nine newly 
emerging genes scored in the top decile of forecASD, an integrator of functional evidence for 
ASD risk genes (Supplementary Figure 9). The genes localized to network clusters representing 
processes critical for neurodevelopment (Figure 2), including chromatin modification 
(KDM1B), establishing specific neuronal cell fates45 (FEZF2), neuronal polarity53 (BRSK2) and 
neuronal migration of pyramidal neurons54 (ITSN1). The newly emerging genes also showed 
significant over-connectivity to known ASD risk genes (P<1 x 10-16, Figure 2B). Together, the 
TADA genetic association analysis coupled with the supporting functional and network-level 
data triangulate these genes as being robust and biologically plausible contributors to ASD risk.  

Despite the limited sample size in this pilot study, we were able to identify nine newly 
emerging ASD genes. Power analysis using a simulation-based approach confirmed that the 
observed yield is expected given the presumed genetic architecture in the TADA analysis 
(Supplementary Table 12). We expect to identify ~70-75% of all ASD risk genes in the future 
that meet a similar FDR threshold (0.1- 0.2) when we reach SPARK’s goal of sequencing 
50,000 complete trios (Supplementary Table 12). Other analyses of large cohorts in ASD are 
underway, including a recent analysis of ~12,000 individuals with ASD55. This study, which 
used a mixture of family-based and case-control data, found statistical support for 99 autism 
risk genes, increasing the number of autism risk genes from 658. Future meta-analyses of both 
SPARK data and other autism cohort data are planned to maximize autism risk gene discovery. 

For most genes identified with de novo damaging variants, inherited LGD variants in 
affected individuals were not found (Kosmicki et al. 201715 and this study), suggesting our 
current knowledge about ASD risk genes is biased toward those with high penetrance. Future 
studies with larger sample sizes will be needed to identify and validate additional risk genes of 
lower penetrance that confer inherited autism risk. 

Altogether, these data suggest that the methods used to ascertain individuals with ASD, 
saliva collection, and genomic data are of high quality, and future analysis of the tens of 
thousands of families enrolling in SPARK will significantly contribute to our understanding of 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 9, 2019. ; https://doi.org/10.1101/516625doi: bioRxiv preprint 

https://doi.org/10.1101/516625
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

the genetic basis of ASD. By returning genetic results to participants, we expect to increase 
engagement and increase the number of recontactable participants for genetically targeted 
clinical research and trials. 
 
List of all Display Items (in order of appearance) 
Supplementary Figure 1: Sample quality controls. a) Relatedness was verified based on the 
scatterplot of the estimated kinship coefficient and number of SNPs with zero shared alleles 
(IBS0). Parent-offspring, sibling pairs, and unrelated pairs can be distinguished as separate 
clusters on the scatterplot. One outlier parent-offspring pair (SP0002452 and mother) showed 
higher than expected IBS0 and was caused by parental chr6 iso-UPD. b) Sample sex was 
verified based on the ratio of heterozygous to homozygous genotypes on the X-chromosome, 
using normalized sequencing depth of X and Y chromosomes. Individuals with chromosomal 
abnormalities are highlighted. 
Supplementary Figure 2: Principal component (PC) analysis of sample ethnicity. Samples 
were projected onto the PC axes defined by the samples from 1000 Genomes Project (shown in 
light colors). a) The first two PCs can distinguish samples from three major continents. b) PC3 
further distinguishes South Asians from Admixed Americans. Sample ethnicities were inferred 
based on the first four PCs using a machine learning approach implemented in peddy56. 
Table 1: Phenotypic description of the SPARK pilot cohort. 
Supplementary Table 1: All de novo SNV/indels in the affected offspring.  
Supplementary Table 2:  A) Burden of de novo variants in SPARK ASD trios and B) in 
published ASD trios. Likely gene disruptive (LGD) variants include frameshift indels, stop gain 
SNVs, and variants affecting canonical splice sites. Deleterious missense variants are defined 
by CADD score10 ≥ 25 or by MPC score57 ≥ 2. Genes are classified as constrained genes based 
on pLI≥0.5. The enrichment of observed de novo variants were compared to the baseline 
expectations9 by one-sided Poisson test. Baseline mutation rates were recalibrated so that the 
observed number of de novo silent mutations matches the expectation. 
Supplementary Table 3: All singleton LGD variants (transmitted or un-transmitted) in known 
ASD/NDD genes. Singleton variants are defined as appearing only once in the SPARK pilot 
cohort. Rare singletons variants are singletons with ExAC allele frequency (all populations) < 
0.001. Private singleton variants are singletons that are also absent from 1000 genomes, ESP, 
and ExAC databases. 
Supplementary Table 4:  All rare, inherited CNVs in the affected offspring.  
Supplementary Table 5:  All rare, de novo CNVs in the affected offspring. 
Supplementary Figure 3: Parallel calling approach for mosaic SNVs. 
Supplementary Figure 4: CUMC Method development: FDR-based minimum Nalt threshold. 
Variants called by samtools are shown here. a) Theoretical FDR-based minimum alternate allele 
read depth (Nalt) thresholds as a function of total read depth (N). Assuming that sequencing errors 
are independent and that errors occur with probability 0.005, with the probability of an allele-
specific error being 0.005/3=0.00167, and given the total number of reads (N) supporting a variant 
site, we iterated over a range of possible Nalt values between 1 and 0.5*N and estimated the 
expected number of false positives due to sequencing error, exome-wide [(1-Poisson(Nalt, 
λ=N*(0.00167))* 3x107]. Assuming one coding de novo SNV per individual58 and that roughly 
10% of de novo SNVs arise post-zygotically20-22, we estimate there to be 0.1 mosaic mutations 
per exome. Under this assumption, to constrain theoretical FDR (in terms of distinguishing low 
allele fraction sites from technical artifacts) to 10%, we allowed a maximum of 0.01 false 
positives per exome. We used this cutoff to identify an FDR-based minimum Nalt threshold for 
each site as a function of total site depth. The dashed line denotes the threshold at which the 
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expected number of false positives exome-wide is 0.01. b) FDR-based minimum Nalt threshold 
applied to samtools calls. Variant calls are plotted using total read depth (DP) and alternate allele 
read depth (Nalt). The red line marks the Nalt cutoff as a function of DP.  
Supplementary Figure 5: CUMC Method development: mosaic candidate identification. Data 
shown are the consensus variant calls. a) Total read depth (DP) in relation to variant allele fraction 
(VAF). The blue line denotes the Beta-Binomial mean VAF and the red lines denote the 95% 
confidence interval. To calculate the posterior odds that a given variant arose post-zygotically, 
we first calculated a likelihood ratio (LR) using two models: M0: germline heterozygous variant, 
and M1: mosaic variant. Under our null model M0, we calculated the probability of observing Nalt 
from a beta-binomial distribution with site depth N, observed mean germline VAF p, and 
overdispersion parameter θ. Under our alternate model M1, we calculated the probability of 
observing Nalt from a beta-binomial distribution with site depth N, observed site VAF p=Nalt/N, 
and overdispersion parameter θ. Finally, for each variant, we calculated LR by using the ratio of 
probabilities under each model and posterior odds by multiplying LR by our EM estimated prior 
mosaic fraction estimate. Sites with posterior odds greater than 10 were predicted mosaic 
(corresponding to 9.1% FDR). b) Expectation-Maximization (EM) decomposition of variant 
allele fraction (VAF) into germline and mosaic distributions. Blue and red lines denote smoothed 
density curves for each distribution. We used an expectation-maximization (EM) algorithm to 
jointly estimate the fraction of mosaics among apparent de novo mutations and the false discovery 
rate of candidate mosaics. This initial mosaic fraction estimate gives a prior probability of 
mosaicism independent of sequencing depth or variant caller and allows us to calculate, for each 
variant in our input set, the posterior odds that a given site is mosaic rather than germline. 
Supplementary Figure 6: Characterization of high confidence union mosaic calls. A) 
Alternative allele depth in relation to FDR based threshold. All calls are above the FDR 
threshold for both a 0.1 or 0.2 events per exome expectation. a) Variant allele fraction 
distribution. The grey and red bars denote germline and mosaic variants, respectively. The red 
line denotes the estimated true number of mosaics at each VAF window adjusted for mosaic 
detection power. Detection power is estimated as a function of variant allele fraction and 
sample average sequencing depth. The dashed vertical line denotes 5% VAF, below which 
estimated detection power is extremely limited and likely to artificially inflate adjusted counts. 
c) Percentile ranked distribution of Krupp et al.22 logistic mosaic score, 0.518 was the applied 
threshold for OHSU pipeline. Scores are overall well distributed between overlapping and 
group specific calls. Three of the CUMC only calls were not scored as they were filtered out by 
the OHSU pipeline before scoring due to differences in segmental duplication annotation.  
Supplementary Figure 7: Comparison of Mosaic Mutations Spectra and Signatures in SPARK 
and SSC. Mutational contexts and frequency were extracted and plotted using the R package 
MuationalPatterns59. a) Mutational spectrum of the six different possible substitutions for SSC 
and SPARK mosaic mutations. b) Mutational signature of the relative frequency of mutations 
(Y-axis) within trinucleotides (context) for SSC and SPARK mosaic mutations. Though there 
are fewer calls in SPARK due to the smaller cohort size, both SSC and SPARK show a strong 
correlation to the same Cancer Signatures which are indicative of endogenous and DNA 
mismatch repair mutational processes.  
Supplementary Figure 8: IGV plots used in mosaic mutation visualization and review. A) 
Example mosaic candidate passing IGV review – SP0026933:chr16:3777957:G>A B) Example 
mosaic candidate failing IGV review – SP0010023:chr19:48305658:G>A 
Supplementary Table 6: List of likely mosaic variants. 
Figure 1: Meta-analysis using the TADA framework provides statistical support for 34 genes at 
a false discovery rate (FDR) of 0.2. Known ASD genes are defined as those with SFARIgene60 
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score ≤ 2 or implicated in a previous TADA meta-analysis (FDR<0.1)8; known NDD genes are 
those listed in the DDG2P database16. D-mis variants are defined by CADD score ≥ 25. A total 
of 34 genes with at least one de novo damaging variant observed in SPARK pilot trios achieve 
an FDR<0.2 after meta-analysis with published trios (total n=5,230). Fourteen genes have not 
been previously classified as known ASD or NDD genes. Nine of these genes are supported by 
additional evidence (Supplementary Table 10) and are considered newly emerging ASD risk 
genes. 
Supplementary Table 7:  Results from the TADA meta-analysis of de novo variants from 
published simplex ASD trios (n=4,773) and SPARK pilot trios (n=457). Only genes with de 
novo LGD or D-mis (defined by CADD>25) variants observed in SPARK pilot trios are shown. 
Supplementary Note: Further details on the justification of using an FDR of 0.2 in the TADA 
meta-analysis. 
Supplementary Table 8: TADA analysis on simulated data of 5,238 trios. The number of 
positive findings, true positives, and fraction of false positives (FR) at different FDR thresholds 
are averaged over 200 repeats. 
Table 2: Variants in newly emerging ASD risk genes in published and SPARK trios and 
associated phenotypic information. 
Supplementary Table 9: Independent support for the nine newly emerging ASD risk genes and 
potential ASD risk genes identified by our TADA meta-analysis. Known ASD genes are 
defined as SFARIgene60 score ≤ 2 or identified in a previous TADA meta-analysis 
(FDR<0.1)8). Known NDD genes were defined as those listed in the DDG2P database16. We 
also systematically evaluated constrained genes (pLI>0.5) in which we identified de novo LGD 
variants in the SPARK cohort for which there are previously identified LGD variants or CNVs 
in individuals with developmental disorders. We also evaluated constrained genes (pLI>0.5) 
disrupted by deletions that we identified in SPARK, which affect less than five constrained 
genes and overlap with previously published copy-number deletions. For each gene, we 
checked membership in the following gene sets that were previously associated with ASD: 
FMRP targets: genes whose mRNA translation in neurons is likely regulated by the FMR1 
protein, based on bioinformatics prediction and regulatory sequence motifs33; PSD: post-
synaptic density components based on human neocortex proteomics34; Embryonic: genes 
whose expression levels are high in post-mortem embryonic brains and then decrease after 
birth, based on BrainSpan expression data and computationally derived by Iossifov et al. 20143; 
M2,M3,M16,M13: Gene co-expression modules that are enriched for known ASD genes from 
a previous analysis of Parikshak et al 201344; Brain specific expression: genes specifically 
expressed in fetal or adult brain, defined as expression index for the fetal or adult brain greater 
than the median expression for the entire data-set and greater than twice the median expression 
of non-brain tissue; based on the Novartis Tissue Expression Atlas and previously compiled by 
Yuen et al. 20155; Brain high expression: genes that have log2 (RPKM) >= 4.86 and at least 5 
BrainSpan data points, compiled by Yuen et al. 20155; Transcript regulation: GO:0006355; 
Chromatin modifier: GO:0016569; Nervous system development: GO:0007399; Nerve 
Impulse: GO:0019227 (neuronal action potential propagation), GO:0019226 (transmission of 
nerve impulse), and GO:0050890 (cognition) and Neuron projection: GO:0043005. In 
addition, we also searched the literature for studies implicating the gene in central nervous 
system development. Genes were excluded from consideration if they were not supported by 
any line of evidence listed above. 
Supplementary Figure 9: Support for newly emerging ASD genes from forecASD. The 
emerging genes highlighted in this work have significantly elevated forecASD scores 
(P=8.8x10-7 ,Wilcoxon test), with all genes in the top decile. Two constituent features in the 
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forecASD ensemble (brain spatiotemporal expression and network topology) also show 
significantly elevated scores (P=0.017 and P=0.004, respectively), suggesting that these genes 
show similar properties to known ASD genes beyond genetic association and across a diverse 
feature space, thereby supporting the robust biological plausibility of these genes. 
Figure 2: Network analysis and gene expression of newly emerging ASD genes using A) GO 
term clustering, B) PPI networks and C) gene expression of human fetal cortex at PCW (post-
coital weeks) 15-16. Known ASD genes are defined as those with a SFARIgene score60 ≤2 (84 
genes, indicated as SFARI) or implicated in a previous TADA meta-analysis8 at FDR<0.1 (65 
genes, indicated as TADA). The enrichment for each gene was measured by the t-statistics 
comparing the expression level in each layer against all other layers. The enrichment of a gene 
set is the mean of t-statistics of its genes. Two newly emerging ASD risk genes (PAX5 and 
KDM1B) are not shown due to the low expression levels in human developing cortex 
(RPKM<1 for at least 20% available neocortical samples in BrainSpan47). Data were extracted 
from Supplementary Table of 44. Laminae abbreviations: marginal zone (MZ), outer/inner 
cortical plate (CPo/CPi), subplate (SP), intermediate zone (IZ), outer/inner subventricular zone 
(SZo/SZi), ventricular zone (VZ). 
Supplementary Table 10: Summary of functional enrichment of network clusters depicted in 
Figure 2A.  
Supplementary Figure 10: Gene expression of newly emerging ASD genes in human fetal 
brain PCW21. 
Supplementary Figure 11: Expression specificity of newly emerging ASD genes in single-cell 
RNA-seq data from fetal and adult mouse brains. The specificity of expression in a cell type is 
measured by a specificity index which is the mean expression level in one cell type over the 
summation of mean expression level across all cell types61. For a gene set, the mean expression 
specificity of its genes was compared with 10,000 sets of randomly drawn genes matched for 
the transcript length and GC content and the enrichment is measured by the standard deviation 
from the mean specificity of random gene sets61. The mouse neuronal cell types are defined by 
the analysis of single cell RNA-seq data of fetal and adult mouse brains generated by 
Karolinska Institutet (KI) and used in the previous study48. The mouse orthologs of human 
genes were retrieved from MGI database62. The known ASD genes show highest enrichment in 
pyramidal neurons (in hippocampus CA1 and somatosensory cortex), cortical interneurons, and 
medium spiny neurons. The first three enriched cell types were previously reported for the 65 
autism genes identified from TADA meta-analysis61. The newly implicated genes also show 
highest specificity in pyramidal neurons, suggesting functional convergence in these cell types. 
Supplementary Figure 12 Expression specificity of newly emerging ASD genes in single-cell 
RNA-seq data from human brains. Human neuronal cell types are defined by the single-nucleus 
RNA-seq data of archived human brains49. Known and new ASD genes were mostly enriched 
in neurons (exCA, exDG, exPFC) and interneurons (GABA). Highest enrichment was also 
observed in pyramidal neurons (exXCA). New ASD genes were also enriched in neuronal stem 
cells that are not implicated by known ASD genes, but the enrichment is not significant. 
Significance code: *= p<0.01, **= p<0.001. exPFC=glutamatergic neurons from the PFC, 
exCA=pyramidal neurons from the hippocampus CA region, GABA=GABAergic interneurons, 
exDG=granule neurons from the Hip dentate gyrus region, ASC=astrocytes, NSC=neuronal 
stem cells, MG=microglia, ODC=oligodendrocytes, OPC=oligodendrocyte precursor cells, 
NSC=neuronal stem cells, SMC=smooth muscle cells, END=endothelial cells. 

Supplementary Table 11: All pathogenic (returnable) and possibly ASD-associated genetic 
variants. 
Supplementary Figure 13: Eight pedigrees with multiple contributing variants. 
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Supplementary Figure 14: Genetic causes of ASD were identified in 6 offspring in 5 
multiplex families, 3 of which are shown in this figure. SF0003496 and SF0008074 are shown 
in Supplementary Figure 13. SF0003496 has another affected offspring, who was not 
sequenced in this study.  
Supplementary Table 12: Statistical power of TADA analysis. To simulate mutation data 
across all protein coding genes, we first randomly assigned each gene as ASD gene with 
probability of 0.05. Then for each ASD gene, we sampled relative risk (RRi) for LGD and D-
mis variants from prior distributions Gamma(18,1) and Gamma(6,1) which were the same as 
used in TADA analysis; for non-ASD gene, relative risk will be 1 for both types of variants. 
Then the number of observed de novo variants of class c for gene i will be sampled from 
Poission(2*N*ui,c*RRi), where ui,c is the baseline mutation rate and RRi is the relative risk. 
After generating the full data from all genes, we applied TADA to the dataset, and the 
procedure was repeated 100 times for each sample size. The table shows the average number of 
total positive findings and true positives at different FDR thresholds. 

Supplementary Figure 15: Recalibrating VQS LOD threshold for analyzing inherited 
singleton variants. The transmission to un-transmission ratio of singleton synonymous SNVs 
(A) and non-frameshift indels (B) are shown as a function of the VQS LOD score. The dashed 
lines mark the GATK defined cutoffs based on different tranche sensitivity thresholds. The red 
line shows the cutoffs that balance the transmission to non-transmission ratio and were used in 
filtering singleton variants for transmission disequilibrium analysis.  

Data and code availability: 

The genomic and phenotypic data for the 1379 individuals analyzed in this study is available by 
request from SFARIBase (https://www.sfari.org/resource/sfari-base/) with accession ID: 
SFARI_SPARK_WES_p. Methods for SNV, Indels, CNV analysis are available at 
https://genomicpipelines.sparkforautism.org/ 

 
Methods 
Participant recruitment, phenotyping and DNA sequencing 

All participants were recruited to SPARK under a centralized IRB protocol (Western 
IRB Protocol #20151664). Participants are asked to fill out questionnaires online as described 
here: https://www.sfari.org/spark-phenotypic-measures/. Families are classified as multiplex if 
the initial individual with ASD registered in the study has a first-degree family member with 
ASD, as indicated either by enrollment or survey report. When possible, phenotypic severity 
was systematically assessed in all individuals in SPARK with a genetic finding related to ASD 
and all individuals in SPARK and SSC with a likely deleterious genetic variant in any of the 
nine newly implicated ASD risk genes.  

In SSC and SPARK participants, severity ratings were assigned as follows. Individuals 
were given 0 to 3 points based on the level of intellectual disability (ID) as indicated by IQ 
scores (SSC) or parent report (rated 0=no ID, 1=mild ID, 2=moderate ID, 3=severe ID). ID was 
rated based upon all available information related to degree of impairment or disability in 
functioning (such as encopresis or nonverbal status in an older child or adult). Individuals were 
given additional severity points if there was a history of seizures (1 point) or if birth defects 
were present (1 point).  Macrocephaly was not included as a birth defect due to its prevalence in 
ASD. ID is weighted by a factor of two, for its impact on functioning. In the absence of clear 
ID, a developmental delay was rated as 1, unweighted. 
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 Essential phenotypic information was curated across language and motor development, 
co-morbidities, and Repetitive Behavior Scale-Revised63, Social Communication 
Questionnaire-Lifetime64 and Developmental Coordination Disorder Questionnaire score65 
(Table 2).  In SSC, all phenotype details were determined through clinic evaluation and 
interview; specifically, language delay was defined by Autism Diagnostic Observation 
Schedule module (1 through 4) per age66, and regression was determined from the Autism 
Diagnostic Interview-Revised67. For SPARK, all variables were taken from parent report. It was 
noted that rates of language disorder and psychiatric co-morbidities are lower in SSC likely due 
to DSM-IV diagnostic practice at the time. 

Saliva was collected using the OGD-500 kit (DNA Genotek). Exome capture was 
performed using VCRome and the spike-in probe set PKv2. Captured exome libraries were 
sequenced using the Illumina HiSeq platform in 100 bp paired end reads. The Illumina 
HumanCoreExome (550K SNP sites) array was used for genotyping.  
 
Read alignment and QC 
Post-sequencing reads were aligned to build 37 of the human genome using bwa version 0.6.2-
r12668, duplicates were marked using Picard version 1.93 MarkDuplicates, and indels were 
realigned using GATK69 version 2.5-2-gf57256b IndelRealigner. Quality checks were 
performed on the BAM files using SAMTools70 version 1.3.1 flagstat and Picard version 2.5.0 
CalculateHsMetrics. Overall, 98 ± 1.8% of the reads mapped to the genome, 96 ± 2.3% of the 
reads were properly paired reads, and 87 ± 15% of targeted regions had >=10X coverage. 
 
KING71 was used for relatedness inference based on the genotype of exome SNPs (MAF>0.01). 
Estimated kinship coefficient and number of SNPs with zero shared alleles (IBS0) between a 
pair of individuals were plotted. Parent-offspring, sibling pairs, and unrelated pairs can be 
distinguished as separate clusters on the scatterplot (Supplementary Fig 1). One outlier parent-
offspring pair (SP0002452 and mother) showed higher than expected IBS0 and was caused by 
parental chr6 iso-UPD. Pairwise scatterplots of heterozygotes to homozygotes (het/hom) ratio 
of chromosome X, sequencing depth of chromosome X and Y normalized by the mean depth of 
autosomes were used for sex check. Two samples with sex chromosome aneuploidy were 
identified as outliers in the scatterplot (Supplementary Fig. 2).  
 
Variant calling 
De novo SNV/indel detection: De novo sequence variants were called by three groups - 
University of Washington (UW), Simons Foundation (SF), Columbia University Medical 
Center (CUMC) - according to the methods below. 
 
UW: Variants were called from whole exome sequence (WES) using FreeBayes72 and GATK69. 
FreeBayes version v1.1.0-3-g961e5f3 was used with the following parameters: --use-best-n-
alleles 4 -C 2 -m 20 -q 20; and GATK version 3.7 HaplotypeCaller was used with the following 
parameters: -A AlleleBalanceBySample -A DepthPerAlleleBySample -A 
MappingQualityZeroBySample -A StrandBiasBySample -A Coverage -A FisherStrand -A 
HaplotypeScore -A MappingQualityRankSumTest -A MappingQualityZero -A QualByDepth -
A RMSMappingQuality -A ReadPosRankSumTest -A VariantType. Post-calling bcftools 73 
version 1.3.1 norm was used with the following parameters -c e -O z -s -m –both. We identified 
candidate de novo calls based on the intersection of FreeBayes and GATK VCF files and 
identifying variants present in offspring but not in parents. We required a minimum of 10 
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sequence reads in all members of the parent-offspring trio; an allele balance > 0.25 and a 
PHRED quality >20 for both FreeBayes and GATK variants.  
 
SF: Sequence data were preprocessed using GATK best practices and variant calls were 
predicted using three variant callers: GATK v3.674, FreeBayes v1.1.0-441 and Platypus v0.8.1-
075. GATK: gVCF files were generated for each sample with GATK HaplotypeCaller 
(minimum confidence thresholds for calling and emitting was set to 30 and 10, respectively); 
joint variant calls were performed using GATK GenotypeGVCFs with the recommended 
default hard filters. For SNPs, we filtered out: QD < 2.0 || FS > 60.0 || MQ < 40.0 || 
MQRankSum < -12.5 || ReadPosRankSum < -8.0. For indels, we filtered out: QD < 2.0 || FS > 
200.0 || ReadPosRankSum < -20.0. FreeBayes: variants were called with default settings for 
optimal genotyping of indels in lower-complexity sequence.  The final data set included 
candidate calls with a quality of 5 or greater. Platypus variant calling was performed with local 
assembly analysis when at most ten haplotypes were allowed. Variants were filtered out for 
allele bias (p-value < 0.0001), bad reads (>0.9), sequence complexity (>0.99) and RMSMQ 
(<20); other filters were applied on estimated haplotype population frequency (FR), total 
coverage at the locus (TC) and phred-scaled quality of reference allele (QUAL): (FR[0] <= 0.5 
and TC < 4 and QUAL < 20),or (TC < 13 and QUAL < 10),or (FR[0] > 0.5 and TC < 4 and 
QUAL < 50). For each variant caller, a variant was identified as a candidate de novo variant if 
the variant was called in the proband and it occurred only once in the cohort, with an alternative 
allele fraction between 0.2 and 0.8. Both parents were required to have the homozygous 
reference genotype at the de novo locus. Read coverage of the variant locus had to be at least 
ten reads in each sample in the trio. De novo candidate variants were classified by DNMFilter 
algorithm76 that was re-trained with the SSC data set3,14: 1800 de novo mutations identified by 
both Iossifov et al, 20143 and Krumm et al, 201514, 1104 validated SNVs and indels from both 
studies and 400 variants that failed validation. We also randomly selected ~ 3000 negative 
examples from the pool of all SSC variants that were not confirmed to be de novo. After 
merging de novo candidate variants from three variant callers, candidate de novos were 
considered if they occurred only once in the cohort, passed hard filters, and had assigned de 
novo probability greater than 0.88 for SNVs and greater than 0.0045 for small indels. In the 
latter case, the total parental alternative allele count < 3 reads.   
 
CUMC: Variants were called from aligned sequence data using GATK HaplotyperCaller to 
generate individual level gVCF files. All samples in the cohort were then jointly genotyped and 
have variant quality recalibrated by GATK v3.869. A variant present in the offspring with 
homozygous reference genotypes in both parents was considered to be a potential de novo 
variant. We used a series of filters to identify de novo variants. Briefly, we included variants 
that passed VQSR filter (tranche≤99.7 for SNVs and ≤99.0 for indels) and had GATK’s Fisher 
Strand≤25, quality by depth≥2. We required the candidate de novo variants in probands to have 
≥5 reads supporting alternative allele, ≥20% alternative allele fraction, Phred-scaled genotype 
likelihood ≥60 (GQ), and population allele frequency ≤0.1% in ExAC; and required both 
parents to have >=10 reference reads, <5% alternative allele fraction, and GQ≥30. 
 
De novo SNV/indel consensus call set and annotation: De novo variants were independently 
called by three centers – UW, SF, CUMC. De novo variants called by all three groups were 
included in the final list by default. Those called by one or two groups were manually evaluated 
and included in the final list if consensus is reached among all groups after discussion and 
manual inspection with IGV plots. Variants were annotated by ANNOVAR77 based on 
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GENCODE Basic v1978. Candidate mutations in the ACMG secondary findings v2 59 gene 
list79 (except PTEN, TSC1, TSC2 and NF2, which are genes included in the SPARK ASD genes 
list) were excluded. Coding de novo variants - nonsense, missense, or synonymous single 
nucleotide variants (SNVs), frameshift or non-frameshift indels, and splicing site variants - 
were annotated. De novo variants were also annotated with snpEff version 4.1g80 (reference 
GRCh37.75), SFARIgene scores (version q1, 2018, https://gene.sfari.org/database/gene-
scoring/), CADD10, MPC11 and findings from Deciphering Developmental Disorders project 
(gene2phenotype). 
 
Inherited singleton variants: We first performed following filtering on individual genotypes. 
We required minimal read-depth >=10 and GQ>=30, required allelic balance <0.1 for 
homozygotes reference, >0.9 for homozygotes alternative, and 0.3~0.7 for heterozygotes SNVs 
(0.25~0.75 for heterozygotes indels). Genotype calls not passing those criteria were set to 
missing. Then we removed variants having missing genotypes in >25% of founders. We 
focused analysis on singleton variants in which the alternative allele was only seen in one 
parent in the data. We calibrated GATK’s VQS LOD score for SNV and indels separately such 
that synonymous singleton SNVs and non-frameshift singleton indels were transmitted 50% of 
the time (Supplementary Figure 14) The resulting VQS LOD score cutoffs are -1.85 for SNVs 
and -1.51 for indels. As mentioned in the Result section, inherited LGD variants are less likely 
cause complete loss of function to the gene. To prioritize inherited LGD variants, we require 
the variant to be annotated as HC (high confidence) by LOFTEE v0.312 using default 
parameters in >60% of the GENCODE transcripts.  
 
Identification of Mosaic Mutations: Mosaic SNVs were independently called by two centers –
Oregon Health & Science University (OHSU) and CUMC. The OHSU approach was previously 
published22 and utilized a binomial deviation and logistic regression model to score candidate 
mosaic variants. The CUMC approach used a novel approach that was based on a beta-binomial 
deviation and an FDR based approach to determine per site thresholds.  
 
OHSU: SNVs were called as previously described22. In brief, pileups were generated using 
SAMtools (v 1.1) with BAQ disabled and mapQ 29 (samtools mpileup –B –q 29 –d 1500) on 
processed BAMs. Variants were called on individual samples using VarScan 2.3.2, LoFreq 2.1.1 
and an in-house mpileup parsing script (mPUP). Additional parameters for Varscan included: --
min-var-freq 1x10-15 –p-value 0.1. Per sample caller outputs were combined and annotated using 
ANNOVAR (03/22/15 release) with databases: Refseq genes (obtained 03/2017), segmental 
duplications (UCSC track genomicSuperDups, obtained 03/25/2015), repetitive regions (UCSC 
track simpleRepeat and hg19_rmsk, obtained 03/25/2015), Exome Aggregation Consortium 
(ExAC) release 0.3 (obtained 11/29/2015), Exome Sequencing Project (ESP) 6500 (obtained 
12/22/2014), and 1000 Genomes Phase 3 version 5 (obtained 12-16-2014).  
 Variants were filtered based on the best practices established in Krupp et al. 201722: 1) 
variant must be exonic or disrupt a canonical splice site, 2) have a population frequency of <= 
0.5%, 3) have at least five alternative reads, 4) not be in a known segmental duplication or 
repetitive regions (SDTRF), 5) called by at least two variant callers, 6) SPARK cohort count <= 
1 and SSC cohort count <= 2, 7) variant read mismatch <= 3, and 8) allele fraction upper 90% 
confidence interval >= 0.05. For a variant to be considered de novo, parental alternative allele 
count must be <= 4 reads. De novo variants were considered to be candidate mosaic variants if: 
1) the probability the allele fraction significantly deviated from heterozygous (PHET) was <= 
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0.001, 2) the allele fraction upper 90% confidence interval was < 0.4, and 3) a logistic regression 
model score was >= 0.518.  
 
CUMC: SNVs were called on a per-trio basis using SAMtools (v1.3.1-42) and BCFtools (v1.3.1-
174). We generated trio VCF files using samtools ‘mpileup’ command with options ‘–q 20 –Q 
13’ corresponding to mapQ and baseQ thresholds of 20 and 13 respectively, followed by bcftools 
‘call’ with option ‘–p 1.1’ to expand the set of variant positions to be evaluated for mosaicism. 
In contrast to the OHSU pipeline, BAQ was used to potentially reduce false positive SNV calls 
caused by misalignments81. To identify de novo variants from trio VCF files, we selected for sites 
with (i) a minimum of six reads supporting the alternate allele in the proband and (ii) for parents, 
a minimum depth of ten reads and 0 alternate allele read support.  Variants were then annotated 
using ANNOVAR (v2017-07-17) to include information from refGene, gnomAD (March 2017), 
1000 Genomes (August 2015), ExAC, genomicSuperDups, COSMIC (v70), and dbSNP (v147) 
databases. CADD10, MPC11 were used to annotate variant functional consequence. 
 
Pre-processing and QC: To reduce the noise introduced by our variant calling approach, we 
preprocessed our variants using a set of filters.  Since our method is allelic depth-dependent, we 
took a conservative filtering approach to reduce the impact of false positives on model parameter 
estimation. We first filtered our variant call set for rare heterozygous coding variants 
(MAF<=1x10-4 across all populations represented in gnomAD and ExAC databases). To account 
for regions in the reference genome that are more challenging to resolve, we removed variant 
sites found in regions of non-unique mappability (score<1; 300bp), likely segmental duplication 
(score>0.95), and known low-complexity82. We then excluded sites located in MUC and HLA 
genes and imposed a maximum variant read depth threshold of 500. To account for common 
technical artifacts, we used SAMtools PV4 p-values with a threshold of 1x10-3 to exclude sites 
with evidence of baseQ bias, mapQ bias, and tail distance bias.  To account for potential strand 
bias, we used an in-house script to flag sites that have either (1) 0 alternate allele read support on 
either the forward or reverse strand or (2) p<1x10-3 and OR<0.33 or OR>3 when applying 
Fisher’s method to compare strand based reference or alternative allele counts.  Finally, we 
excluded sites with frequency >1% in the SPARK pilot, as well as sites belonging to outlier 
samples (with abnormally high de novo SNV counts, cutoff = 7) and complex variants (defined 
as sites with neighboring de novo SNVs within 10bp).     
 
IGV Visualization of Low Allele Fraction de novo SNVs: To identify likely false positives among 
our low allele fraction (VAF<0.3) de novo SNVs, we used Integrative Genomics Viewer (IGV 
v2.3.97) to visualize the local read pileup at each variant across all members of a given trio.  We 
focused on the allele fraction range 0.0-0.3 since this range captures the majority of the technical 
artifacts that will negatively impact downstream parameter estimation. Sites were filtered out if 
(1) there were inconsistent mismatches in the reads supporting the mosaic allele, (2) the site 
overlapped or was adjacent to an indel, (3) the site had low MAPQ or was not primary alignment, 
(4) there was evidence of technical bias (strand, read position, tail distance), or (5) the site was 
mainly supported by soft-clipped reads.   
 
Empirical Bayes Post-zygotic Mutation Detection Model: To distinguish variant sites that show 
evidence of mosaicism from germline heterozygous sites, we modeled the number of reads 
supporting the variant allele (Nalt) as a function of the total site depth (N).  In the typical case, Nalt 
follows a binomial model with parameters N = site depth and p = mean VAF.  However, we 
observed notable overdispersion83,84 in the distribution of variant allele fraction compared to the 
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expectations under this binomial model.  To account for this overdispersion, we instead modeled 
Nalt using a beta-binomial distribution.  We estimated an overdispersion parameter θ for our 
model whereby for site depth values N in the range 1 to 500, we (1) bin variants by identifying 
all sites with depth N, (2) calculate a maximum-likelihood estimate θ value using N and all Nalt 
values for variants in a given bin, and (3) estimate a global θ value by taking the average of θ 
values across all bins, weighted by the number of variants in each bin.  
We used an expectation-maximization (EM) algorithm to jointly estimate the fraction of mosaics 
among apparent de novo mutations and the false discovery rate of candidate mosaics. This initial 
mosaic fraction estimate gives a prior probability of mosaicism independent of sequencing depth 
or variant caller and allows us to calculate, for each variant in our input set, the posterior odds 
that a given site is mosaic rather than germline.  
 
Finalized Union Mosaic Call Set and Validation Selection: The high confidence call sets from 
the two parallel mosaic determination approaches were combined, and all candidate mosaic 
variants were then inspected manually in IGV. Variants in regions with multiple mismatches or 
poor mapping quality were removed, and the remaining mosaics comprised the high confidence 
mosaic call set. For calls that were unique to one approach, the variant was annotated with which 
quality filter it initially failed. Variants that were flagged as low confidence germline by CUMC 
approach but mosaic by OHSU approach had posterior odds > 1 and were thus retained in the 
union call set.  
 
CNV detection: De novo and rare inherited CNVs were independently called by two centers - 
UW and SF. The final CNV list included all autosomal CNVs that were called by both SF and 
UW pipelines either with reciprocal overlap of at least 50% or when the CNV from one pipeline 
was completely within the CNV from the other pipeline. In both cases, the overlapping region 
was reported as the final region and annotated as described below. CNVs called only by one 
pipeline were considered as high confidence CNVs if they were called by at least 2 tools or if 
they were de novo CNVs confirmed by manual inspection of plots on exome data. High 
confidence CNVs were also included in the final list after discussion and manual inspection of 
plots on exome data. De novo CNVs were additionally inspected on BAF and LRR plots on 
genotyping data. CNVs that had at least 75% overlap with known segmental duplications 
(segDups track for hg19 from UCSC browser) were excluded. All CNVs were annotated with 
the list of RefSeq HG19 genes, OMIM genes, brain embryonically expressed genes3, brain 
critical genes18, ASD significant85 and ASD related genes8,14 that have their coding regions 
overlapping with the CNV. In addition,  each found gene was annotated with pLI (ExAC 
release 0.3, http://exac.broadinstitute.org/downloads), ASD86, RVIS87,  LGD87, and SFARIgene 
scores (version q1, 2018, https://gene.sfari.org/database/gene-scoring/). De novo CNVs that 
affect DUSP22 and olfactory genes were excluded due to high variability in copy-number of 
those regions among individuals88. 
 
UW, detection using XHMM and CoNIFER: CNVs from WES were called using CoNIFER 
and89 XHMM90. CoNIFER version v0.2.2 was used with the S value, --svd 7, set as a threshold 
as suggested by the scree plot. XHMM version statgen-xhmm-3c57d886bc96 was used with the 
following parameters --minTargetSize 10 --maxTargetSize 10000 --minMeanTargetRD 10 --
maxMeanTargetRD 500 --minMeanSampleRD 25 --maxMeanSampleRD 200 --
maxSdSampleRD 150 to filter samples and targets, and then to mean-center the targets; 
PVE_mean --PVE_mean_factor 0.7 was used to normalize mean-centered data using PCA 
information; --maxSdTargetRD 30 was used to filter and z-score centers (by sample) the PCA 
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normalized data; and then to discover CNVs in all samples. Calls from CoNIFER and XHMM 
were merged in a VCF file using https://github.com/zeeev/mergeSVcallers with the following 
parameters -t xhmm,conifer -r 0.5 -s 50000, then merged VCF was sorted by Picard version 
v2.5.0, and zipped and indexed with Tabix version v0.2.6. We re-genotyped each XHMM and 
CoNIFER CNV event by assessing the RPKM values from the CoNIFER workflow on an 
individual. Probands were considered to have a deletion if their average RPKM value was less 
than -1.5 s.d and have a duplication if their average RPKM value was greater than 1.5 s.d. For an 
event to be considered as variant in a parent, we required an average ZRPKM less than -1.3 or 
greater than 1.3 for deletions and duplications, respectively.  
 
UW, CNV validation using SNP microarray: We generated an independent CNV callset for 
validation purpose using SNP microarray genotyping data generated from Illumina 
InfiniumCoreExome-24_v1.1, where IDATs (n=1,421) were processed using Illumina Genome 
Studio Software. CNV analysis was performed using the Illumina CNVpartition algorithm 
version v3.2.0. Log R Ratio data for all samples and probes was exported. PennCNV91 version 
v1.0.4 was used to detect CNVs with the following parameters -test –hmm -pfb all.pfb --
gcmodelfile –confidence. We determined the maximum and minimum overlap of SNP 
microarray CNVs based on the presence of WES probes to make the array calls more similar to 
the exome calls and considered an event to have support by PennCNV or CNVpartition if there 
was at least 50% reciprocal overlap. We also generated per probe copy number estimates using 
CRLMM92,93 version 1.38.0 as previously described14 and genotyped each candidate WES 
CNV. Deletions were considered variant if they had a p-value less than 0.05 and a mean 
percentile rank less than 30. Duplications were considered variant if they had a p-value less 
than 0.05 and a percentile rank of mean greater than 70. CNVs passing the RPKM genotyping 
were combined with the CNV data from CRLMM, PennCNV, and CNVPartition. We 
considered WES CNVs as valid if there was support for gain or loss from the PennCNV, 
CNVpartition, or CRLMM approaches described above. We assessed inheritance using both 
SNP and WES data and preferentially scored inherited events over de novo CNVs. 
 
SF: CNVs were called with two tools - xHMM v 1.094 and CLAMMS v 1.195. xHMM: CNVs 
were called with default settings (except not filtering on the maximum target size), including 
filtering low complexity and GC extreme targets. CLAMMS: CNVs were called with 
INSERT_SIZE=390 bp and training per-sample-models on sample specific reference panels 
due to the observed batch effect in the data; CLAMMS calls were filtered for all CNVs with 
Q_EXACT less than 0, or Q_SOME less than 100, or  CNVs that were in samples with more 
than 70 predicted CNVs of the size at least 10 Kb and of quality score Q_SCORE at least 300.  
The inheritance status of the autosomal CNVs was determined by default xHMM protocol for 
de novo CNVs identification with plink 1.0796 and Plink/Seq 0.10 
[https://atgu.mgh.harvard.edu/plinkseq/]. Similar protocol was implemented in java for 
CLAMMS analysis. For each tool, two tiers of CNV calls– the most confident calls (tier 1) and 
less confident calls (tier 2) - were defined, based on de novo and transmission rates for different 
cuts on quality scores: SQ (phred-scaled quality of some CNV event in the interval) and NQ 
(phred-scaled quality of not being diploid, i.e., DEL or DUP event in the interval) in xHMM 
and Q_SOME (phred-scaled quality of any CNV being in this interval) in CLAMMS. xHMM 
tier1 included all autosomal CNVs with both SQ and NQ quality scores of at least 60, and tier2  
- all autosomal CNV calls with quality scores between 30 and 60. Samples with more than 10 
de novo CNVs in xHMM tier1 of size at least 10 kb were excluded. CLAMMS tier1 included 
all predictions with quality score 999, except predictions for 25 probands that have CNVs of 
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size greater than 500 kb with quality score 999 or predictions, which region was partially 
inherited and partially de novo; tier 2 included those excluded from tier 1 predictions as well as 
all CNVs with quality score Q_SOME at least 400 and less than 999. Predictions by both 
methods that had less than 3 exons or at least 75% overlap with known segmental duplications 
(segDups track for hg19 from UCSC browser) were removed from the list. The final list of 
CNV predictions included all CNVs from tier 1 predicted by either xHMM or CLAMMS and 
“intersection” of tier 2 sets from both tools, that is, CNVs that were confirmed by two tools 
with reciprocal or cumulative reciprocal overlap of at least 50%. In the latter case, CNV 
predicted by one tool is covered by a set of CNVs predicted by the other tool. If a CNV from 
xHMM or CLAMMS was confirmed by the other tool, the overlapping region was reported as 
the final region. CNVs were removed from the analysis if it had more than half of its length 
overlapping with the ACMG secondary findings v2 gene79 (except PTEN, TSC1, TSC2 and NF1 
genes in the ASD genes list). If such gene covers less than 50% of CNV, the part of CNV 
without the gene was kept if it has at least 25% of its length not covered by segmental 
duplications. To identify higher confidence CNV predictions, xHMM and CLAMMS plots 
were manually investigated for each CNV in the final SF list. In addition, SF predictions were 
compared with PennCNV91,97,98 calls from array data, which have confidence score of at least 
100. All reciprocal overlaps of at least 50% were treated as additional evidence for CNV 
support.  
 
UW, chromosome aneuploidy assessment:  We also assessed evidence of chromosomal 
aneuploidy by calculating sequence read depth using SAMTools10 version 1.4 on a per 
chromosome basis normalizing by the relative density of WES probes and comparing the 
normalized value for each chromosome to the normalized value on chromosome 1 (assumed to 
be diploid). For autosomes, we multiplied this number by two to get the estimate of 
chromosomal copy number. We did not multiply by two for the X or Y chromosomes. To 
further assess the chromosomal copy number, the heterozygosity was calculated for all SNPs 
and indels. For heterozygous sites, the absolute mean deviation from 0.5 was also calculated. 
We assessed both metrics to identify outliers. Aneuploidies were required to have support from 
both the read depth and SNP/indel metrics. 
 
Burden of de novo variants 
Baseline mutation rates for different classes of de novo variants in each GENCODE coding 
gene were calculated using a previously described mutation model9. Briefly, the trinucleotide 
sequencec context was used to determine the probability of each base mutating to each other 
possible base. Then, the mutation rate of each functional class of point mutations in a gene was 
calculated by adding up the mutation rate of each nucleotide in the longest transcript. The rate 
of frameshift indels was presumed to be 1.1 times the rate of nonsense point mutations. The 
expected number of variants in different gene sets were calculated by summing up the class-
specific variant rate in each gene in the gene set multiplied by twice the number of patients (and 
if on chromosome X, further adjusted for female-to-male ratio99).  
The observed number of variants in each gene set and case group was then compared with the 
baseline expectation using a Poisson test. In all analyses, constrained genes were defined by a 
pLI score of ≥0.5. To compare with previously published ASD studies, we collected published 
de novo variants identified in 4773 simplex trios from three largest autism studies to date3,4,7. 
To account for platform differences, the baseline mutation rate of each gene was scaled so that 
the exome-wide expected number of silent variants matches the observed count. 
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TADA analysis  
To perform TADA analysis of de novo variants, we assumed the fraction of disease genes is 5% 
as estimated by previous studies25,100. The prior relative risk for LGD variants and D-mis 
(defined by CADD>=25) were specified as Gamma (18,1) and Gamma (6,1). The prior mean 
relative risks were determined using the relationship between burden and relative risk as 
described previously25. The baseline mutation rate of each gene was the same as used in burden 
analysis. The analysis was performed on de novo variants of 4773 published trios and after 
combing de novo variants identified from SPARK pilot trios.  
 
 
 
 
Laminal layer and cell type enrichment 
To evaluate the expression specificity of laminal layer of human developing cortex, we 
analyzed RNA-seq data of neocortical samples of BrainSpan47 following the method of 
Parikshak et al 201344. The expression specificity was measured by t-statistic comparing the 
expression level in each layer against all other layers. Two newly emerging genes (PAX5, 
KDM1B) were not included in the analysis due to the low expression levels (RPKM<1 for at 
least 20% available neocortical samples). To evaluate cell-type specificity, we used a published 
data of mouse neuronal cell types inferred from analyzing single cell RNA-seq data of fetal and 
adult mouse brains generated by Karolinska Institutet (KI)101, and human CNS cell types 
inferred from a single nucleus RNA-seq data49. The mouse orthologs of human genes were 
retrieved from MGI database62. The cell-type specificity was measured by a specificity index 
which is the mean expression level in one cell type over the summation of mean expression 
level across all cell types61. To analyze the overall trend of specificity of a gene set, the mean 
specificity measure of its genes was compared with 10,000 sets of randomly drawn genes 
matched for the transcript length and GC content and the enrichment is measured by the 
standard deviation from the mean specificity of random gene sets61.  
 
Network and functional analysis  
The network depicted in Figure 2A was constructed using the top decile of forecASD genes, 
SFARI genes scoring 1 or 2, and SPARK newly implicated genes (9 total). These genes were 
projected onto the STRING network102 (v10) using the igraph R package (1708 genes). Edges 
within the STRING network were thresholded at 0.4, according to the authors' 
recommendation. The largest connected subcomponent (1664 genes) was then extracted as the 
basis for further network analysis. Clustering was performed on the fully connected network 
using the fastgreedy.community function available within the igraph package. Clusters with 
fewer than 30 genes were not considered for further analysis (none of these clusters contained 
the nine genes highlighted here). Following the first round of clustering, clusters with >150 
genes were subject to an additional round of clustering, with the goal of separating broad 
functions of genes into more specific subcomponents. This process resulted in 11 clusters. Each 
cluster was assessed for functional enrichment using the Gene Ontology103 as accessed through 
the clusterProfiler package within R. During the functional analysis the background gene 
universe was always set to the full set of genes represented among the 11 clusters. Visualization 
of this network analysis was performed in Cytoscape104. The top 5 most significant GO terms 
associated with each cluster are available in the Supplementary Table 10. Cluster labels in 
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Figure 2 were chosen as the most representative among the top terms for each cluster. Figure 
2B was constructed using the subset of the larger network (Figure 2A), corresponding to 
SPARK newly implicated genes and SFARI genes scoring 1 or 2 (88 genes). These genes were 
projected onto the STRING network within Cytoscape using the STRINGapp. All nonzero-
weighted edges were considered. The fully connected component was visualized, which 
resulted in two genes being dropped (DEAF1 and RANBP17). Edges adjacent to newly-
implicated genes with a STRING interaction score of ≥ 0.4 are highlighted.  

ForecASD Analysis: We used a recently developed method, forecASD38 that indexes support 
for a gene being related to autism by integrating genetic, expression, and network evidence 
through machine learning. We examined the forecASD scores of the nine newly emerging ASD 
genes from the TADA analysis and compared them to the remainder of the genome using a 
Wilcoxon rank-sum test. We similarly used the Wilcoxon test and employed two predictive 
features used by forecASD (BrainSpan_score and STRING_score) to assess whether the new 
genes showed similarity to known ASD risk genes in terms of brain expression patterns and 
network connectivity.  Importantly, because forecASD uses previously published TADA scores 
among its predictive features, which are strongly correlated with updated TADA scores, we 
investigated whether the elevated forecASD scores in our candidate genes could be explained 
solely by the previous TADA scores. Specifically, we fit a logistic regression model with the 
nine newly emerging genes labeled as '1' and 500 size-matched background genes (not listed in 
the SFARI gene database) labeled as '0' in the dependent variable (Y). Separate models were fit 
using either forecASD or TADA8 scores as predictors, or both together in a full model. Both 
TADA and forecASD were significantly associated with the "new gene" indicator when 
considered in isolation (P<0.001 for both). However, when included together in a model of Y, 
forecASD remained significantly associated (P=0.00012) while TADA lost significance 
(P=0.41). The Akaike information criterion (AIC) indicated that the forecASD-only model was 
a more optimal fit compared to either the TADA-only or TADA+forecASD fit. This analysis 
suggests that the elevated forecASD scores observed in the nine new genes cannot be fully 
explained by the use of TADA as a predictor in forecASD. 
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Supplementary Note 1: FDR control in TADA analysis 

In our TADA analysis, we combined de novo variants of published trios with SPARK 
and only presented the results for genes with damaging de novo variants in SPARK and whose 
q-values fall below some false discovery rate (FDR) threshold. It is important to note that q-
value and FDR threshold are defined with respect to genome-wide genes without conditioning 
on observing variants in SPARK, because the TADA framework estimates FDR by modeling 
the genome-wide “alternative hypothesis” (i.e., number of risk genes and relative risks for 
different types of variants). By thresholding on genome-wide FDR, the procedure may not 
control the FDR among genes with variants in SPARK at the same cutoff.  

To understand the effect of conditioning on variants in a subset of samples on the FDR 
among selected genes, we carried out the following simulation using the parameters of genetic 
architecture as we used as priors in TADA analysis. First, across all protein coding genes, we 
randomly assigned each gene as an ASD gene with a probability of 0.05. Second, for each ASD 
gene, we sampled relative risk (RRi) for LGD and D-mis variants from prior distributions of 
Gamma(18,1) and Gamma(6,1), respectively; for non-ASD genes, relative risk will be 1 for 
both types of variants. Then the number of observed de novo variants of class c for each ASD 
gene will be sampled from Poission(2*N*ui,c*RRi,c) distribution, where ui,c is the baseline 
mutation rate and RRi,c is the relative risk. After generating de novo variants for all genes in a 
cohort of 5,238 (4,773+465) trios which is the same as combined published and SPARK trios, 
we applied TADA to the simulated data first on the subset of 4,773 trios and then on all the full 
cohort. The overall procedure was repeated 200 times. We found that by conditioning on 
observing variants in the subset of trios, the average FDR among selected genes are consistently 
lower than the specified threshold (Supplementary Note 1, Supplementary Table 8 left). For 
example, at the genome-wide FDR cutoff of 0.2, we observe on average 45 genes with variants 
in the 465 trios with the proportion of false positives of 15.9%. Intuitively, this is because true 
disease genes are more likely to have recurrent de novo variants in the new data. 

We also considered a second scheme of selecting genes: by focusing on those that are 
initially not significant but fall below desired FDR threshold after the inclusion of new data 
(newly significant). We found that the average FDR among newly significant genes is typically 
higher than the specified threshold (Table 1, right). For example, by the same simulation and 
focus on genes with q-value>0.2 in analyzing 4773 trios but <=0.2 after inclusion of additional 
465 trios, we observe on average 25 newly significant genes with the proportion of false 
positives of 26.8%. 

The influence of subsetting after TADA analysis on the FDR among selected genes has 
implications on interpreting the results presented in Figure 1 and Supp. Table 8. At an FDR 
threshold of 0.2, we identified 34 genes with SPARK damaging variants, including 18 newly 
significant genes after inclusion of SPARK data. Based on the simulation results, we estimate 
the expected false positives among 34 genes is about 5 (34*0.159) and among 18 newly 
emerging genes is about 4 (18*0.27), which closely match the number of genes (4) left after 
excluding known ASD/NDD genes and newly emerging genes prioritized based on literature 
evidence. 

The results are also relevant in selecting appropriate FDR threshold for declaring 
significance. Previous studies either used FDR=0.1 as the stringent threshold7,8 or used 0.3 as a 
lenient threshold to implicate more gene in combination of functional data7,105. In the current 
study, using a more stringent FDR threshold has limited power in identifying new disease 
genes, because most known ASD/NDD were identified from previous studies of de novo 
variants, so they tend to have very small q-values in the meta-analysis and are concentrated 
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among most significant genes (Figure 1). Only BRSK2 and ITSN1 have FDR<0.1 after the 
meta-analysis.  

We chose not to use a more lenient threshold of 0.3. Although we showed that 
conditioning on observing variants in SPARK makes the FDR among selected genes slightly 
conservative, we also noted about half those genes have already been established as ASD/NDD 
genes. Taking them as true positives, the FDR among new genes will be much higher than 0.3, 
weakening their statistical evidence. For example, by lowering the FDR threshold to 0.3, we 
found an additional 9 genes, including one known ASD gene CACNA1H (Supp Table 8). Based 
on the simulation results and accounting for the analysis already done for the 34 genes at FDR 
threshold of 0.2, we estimated more than half (5.6=43*0.224-4) are likely false positives. 
Nonetheless, we present some functional evidence supporting CUL1, SRRM2, and EPN2 for 
genes at this FDR threshold in Supp Table 10. We also noted that at the FDR threshold of 0.3, 
genes affected by only one de novo damaging variants will start to pop up (Supp Table 8). 
Together it suggests that genes identified with an FDR threshold between 0.2 and 0.3 should 
best be left for further replication in future studies. 

Based on the justifications above, an FDR threshold of 0.2 is a reasonable tradeoff to 
maximize the discovery power in this study without incurring high false positive findings. 
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