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Abstract 
Background 
The use of array-based SNP genotyping in the beef and dairy industries has produced 
an astounding amount of medium-to-low density genomic data in the last decade. 
While low-density assays work exceptionally well in the context of genomic prediction, 
they are less useful in mapping and causal variant discovery. This project focuses on 
maximizing imputation accuracies to the marker set of two high-density research 
assays, the Illumina Bovine HD, and the GGP-F250 which contains a large proportion 
of rare and potentially functional variants (~850,000 total SNPs). This 850K SNP set is 
well-suited for both imputation to sequence-level genotypes and direct downstream 
analysis.  
 
Results 
We find that a large multi-breed composite imputation reference comprised of 36,131 
samples with either HD and/or F250 genotypes significantly increases imputation 
accuracy compared to a standard within-breed reference panel, particularly at low 
minor allele frequencies. Imputation accuracies were maximized when an individual’s 
ancestry was adequately represented in the composite reference, particularly with 
complete 850K genotypes. The addition of rare content from the F250 to our 
composite reference panel significantly increased the imputation accuracy of rare 
variants found exclusively on the HD. Additionally, we identify 50,000 variants as an 
ideal starting density for 850K imputation. 
 
Conclusion 
Using high-density genotypes on all available individuals in a multi-breed reference 
panel maximizes imputation accuracy for all cattle populations. Admixed breeds or 
those sparsely represented in the composite reference are still imputed at high 
accuracy which will increase further as the reference panel grows. We expect that the 
addition of rare variation from the F250 will increase the accuracy of imputation at the 
sequence level. 
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Background 
High-density single nucleotide polymorphism (SNP) genotyping has driven incredible 
genetic progress in livestock populations [1–3]. To further increase the predictive 
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abilities of these tests, functional variant discovery has become increasingly important. 
While many large-effect or Mendelian loci controlling important phenotypes in cattle 
have been discovered [4–8], moderate and small effect quantitative trait nucleotides 
(QTN) and other causal variants have proven more challenging to pinpoint. Early 
genome-wide association studies (GWAS) aimed at identifying these loci were often 
forced to choose between resolution (number of SNPs) and statistical power (number 
of individuals). Imputation, the use of statistical models and a reference set of 
haplotypes to infer the state of missing genotypes, allows studies to genotype large 
numbers of individuals at low-density and impute to high-density or even full-sequence 
genotypes [9–11] .  
 
Low-to-medium density SNP assays are widely used in genetic evaluations for both 
beef and dairy cattle. Since the debut of the BovineSNP50 BeadChip (Illumina, San 
Diego, CA) [12] in 2008 and the BovineHD (Illumina, San Diego, CA) in 2009, more than 
3 million dairy cattle have been genotyped in the United States alone on assays 
derived from these two initial assays [13]. Decker (2015) underlined the value of these 
commercially-generated datasets for uses outside of genetic prediction [14]. While 
lower-density assays work exceptionally well in a genomic prediction context, they 
have a lower resolution for QTL or causal variant detection. Imputation allows these 
datasets of unprecedented size to be utilized to their full potential. Seabury et al. (2017) 
found that 50K genotypes provided insufficient resolution for QTL detection, but an 
analysis using 777K imputed genotypes yielded 14 clear QTL signals [15]. Using these 
large commercial datasets imputed to high-resolution marker densities will unlock a 
new level of biological discovery and potentially increase prediction accuracies in cattle 
[16–19] .  
 
To utilize these large datasets to their full potential, maximizing the accuracy of 
imputation is critical. The most effective imputation software packages for cattle [20] 
are typically developed for use in human studies aimed at imputing from a high-density 
genotype panel to full-sequence. As a result, using these programs for imputing 
directly from low-density to full-sequence, even in cattle breeds with high levels of LD, 
is ineffective. A “two-step” imputation strategy, first from a low-density assay to a 
high-density assay and then from imputed high-density to sequence was more 
effective than a “one-round” imputation from low-density to full-sequence in both 
cattle and humans [21,22] . Here, we concern ourselves with the first half of the 
“two-step” imputation process as it can be used for further imputation to sequence, or 
as an endpoint for downstream analysis. Regardless of its use, maximizing the 
accuracy of high-density genotype imputation is central to the success of either 
application.  
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Initially, SNP assays for cattle were designed with common, evenly-spaced markers 
that would presumably be in linkage disequilibrium with causal variants [12]. While 
these assays have performed exceptionally well in genomic prediction schemes, 
interest in including rare variation into predictions has become increasingly common 
[9,17,19,23] . Imputation accuracy has been shown to decline rapidly at low minor allele 
frequencies (MAF), so increasing confidence in the imputation of rare variants has 
become a priority. Additionally, the majority of imputation optimization studies have 
focused on the imputation of purebred animals using closely related individuals of the 
same breed. As large numbers of genotypes for unpedigreed crossbred animals 
become available, we have to re-evaluate our strategies for imputation in these 
datasets. 
 
This work focuses on maximizing imputation from various low-density assays to a 
common set of high-density variants (850K), many of which are rare and potentially 
functional. We test the effectiveness of a large, multi-breed composite reference for 
imputation in multiple different beef and dairy cattle populations. We use both 
well-established and novel measures of imputation accuracy to categorize precisely 
where, why, and how imputation errors are made. These metrics provide insights for 
interpretation and situations in which to exercise caution when using imputed variants. 
Additionally, we explore how starting chip density impacts the accuracy of 850K 
imputation. Finally, we introduce the GGP-F250 functional genotyping assay as a tool 
not only for genotyping numerous functional variants but also for increasing the 
imputation accuracy of rare variants. 
 

Materials & Methods 
 
To identify the best practices for high-density, chip-level imputation accuracy, we 
compare the impact of a number of parameters on imputing to the union of two 
popular research assays; the Illumina BovineHD (Illumina, San Diego, CA), and the 
GeneSeek Genomic Profiler F250 (GeneSeek. Lincoln, NE) referred to as the HD and 
F250 respectively. The HD assay contains 777,962 evenly spaced variants at relatively 
high minor allele frequencies. The F250 assay contains 227,234 variants; 31,392 of 
which are common variants used for imputation, and another 195,842 potentially 
functional variants, many of which are rare. These rare alleles make the minor allele 
frequency distribution of the F250 appear more similar to that of the site frequency 
spectrum of the bovine genome (Figure 1). We used 2,719 animals genotyped on both 
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the F250 and the HD assays, 25,772 animals genotyped on the F250, and 7,218 
genotyped on the HD assay. 
 
Quality Control and Filtering 
PLINK1.9 [24] was used to filter problem variants and individuals. The SNP positions 
were based on the ARS-UCD1.2 Bovine reference genome assembly [25]. 
Non-autosomal variants were removed from the data. Variants and individuals with call 
rates < 0.90 were removed from testing and reference datasets. Because of the rare 
nature of many F250 variants, no MAF filter was applied to this data. Due to the 
divergent nature of this multi-breed dataset, no Hardy-Weinberg Equilibrium filter was 
applied. PLINK was used to calculate minor allele frequencies at this point for all 
downstream analyses. Two animals were dropped due to low call rates. The number of 
variants remaining after filtering for each of the assays tested is shown in Table 2. 
 
Downsampling 
To test imputation accuracy, PLINK1.9 [24] was used to downsample 308 animals with 
observed HD and F250 genotypes to the density of multiple common commercial 
genotyping arrays; the BovineSNP50 (Illumina, San Diego, CA) [12], GGP-LD, 
GGP-90KT, GGP-HDv3, and GGP-ULD (all from GeneSeek, Lincoln, NE) and then 
impute to the union of two high-density research chips (~850K SNPs). All commercial 
assays tested are almost complete subsets of markers genotyped on the HD 
(Supplementary Table 1 ). 
 
A maximum of 50 individuals per breed, with complete genotypes on both HD and 
F250, were chosen to be downsampled to commercial chip densities for imputation 
testing ( Table 1). All test set individuals had breed-composition estimates based on the 
CRUMBLER pipeline [26]. To avoid depleting the reference panel of underrepresented 
breeds, no more than 50% of a breed’s F250 or HD animals were removed for testing. 
The remainder of HD and F250 genotypes were used in the composite reference panel 
(Table 2 ). Due to the uneven representation of certain breeds in the testing dataset, we 
created three separate datasets for testing different aspects of our imputation pipeline. 
The first, ALL, uses all 308 downsampled individuals that passed genotype filtering. 
Because some of the indicine breeds used in our testing dataset are not adequately 
represented in the imputation reference, or their testing numbers are not large enough 
to draw conclusions from, we created a dataset of only Bos taurus animals, referred to 
as TAUR, that contained 281 individuals from Angus, Gelbvieh, Hereford, Holstein, 
Limousin, and Simmental. Finally, we use a dataset of 49 Gelbvieh individuals, referred 
to as GEL, to compare the accuracy of a breed-specific imputation reference to our 
composite reference.  

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2019. ; https://doi.org/10.1101/517144doi: bioRxiv preprint 

https://paperpile.com/c/Kd7Xc9/LGmSv
https://paperpile.com/c/Kd7Xc9/cwOCS
https://paperpile.com/c/Kd7Xc9/LGmSv
https://paperpile.com/c/Kd7Xc9/98aMW
https://paperpile.com/c/Kd7Xc9/9A5ra
https://doi.org/10.1101/517144
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Phasing and Imputation 
Building imputation reference panels 
After removing 308 individuals for testing, the remaining 28,183 F250 and 9,629 HD 
reference individuals (Table 3) were merged in PLINK, then phased with Eagle 2.4 
using [27]. Missing genotypes inferred by Eagle were removed with bcftools [28] such 
that only phased, directly genotyped markers remained. The resulting phased F250 
and HD genotypes were used as the imputation reference for “two-round” imputation, 
described below. The reference panel for “one-round” imputation was created in a 
recursive process by imputing missing HD markers for F250 assays, and missing F250 
markers for HD assays with Minimac3, using all available observed HD and F250 
assays as references respectively (Supplementary Figure 1). 
 
No phasing reference was used for within-breed phasing and imputation. The 
within-breed imputation reference consisted of 265 and 514 Gelbvieh individuals 
genotyped on the HD and F250 respectively. These reference assays, like above were 
merged, phased, and inferred genotypes were removed. A reciprocal F250/HD 
imputation with Minimac3 filled in missing genotypes in the reference.  
 
Phasing and imputation 
Reference-based phasing was performed for 308 downsampled individuals in Eagle 
using 9,629 pre-phased HD assays as reference haplotypes. To perform one-round 
imputation, phased assays were imputed against the complete, partially imputed 850K 
SNP composite reference using Minimac3 [29]. This imputation resulted in a total of 
835,947 biallelic variants.  
 
For two-round imputation, two separate rounds of imputation were performed to arrive 
at the 850K SNP density. First, downsampled and phased assays were imputed to HD 
density (759,329 SNPs), followed by a second round of imputation that inferred 
markers present on the F250, but not on the HD (122,181). The final imputed data 
(referred to hereafter as 850K) contained a total of 835,947 biallelic variants.  
 
For within-breed imputation, 50 Gelbvieh animals with both F250 and HD genotypes, 
all of which were present in the multi-breed testing set, were downsampled to SNP50 
density. They were phased with 1,113 additional Gelbvieh genotyped on the SNP50 
using Eagle. This is representative of typical phasing strategies where a large number 
of individuals are genotyped at lower density. Phased genotypes were imputed against 
the breed-specific Gelbvieh reference (BR).  
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Imputation Accuracy Calculations 
 
Accuracy was measured in multiple ways for both individuals and variants for each 
imputation scenario. By coding alternate allele counts as 0, 1, and 2 (for AA, AB, and 
BB genotypes respectively), both correlations (R2) and count-based metrics could be 
used to evaluate the imputation accuracy of each variant and individual tested.  
 
While simple concordance (ie. “correct/incorrect”) measures of accuracy are valuable, 
they overestimate the quality of imputation at low MAF and are ambiguous as to the 
nature of the error that creates an incorrectly imputed genotype. Instead of 
concordance, an imputation quality score (IQS) was calculated for each variant [30]. 
The IQS calculates concordances that are adjusted for the chance in guessing an 
imputed genotype correctly. This statistic provides similar conclusions to correlation 
for the majority of markers, but more robustly estimates imputation quality at low 
MAFs.  
 
In addition to IQS, the exact nature of each error was cataloged and tallied for each 
individual and each variant. This allowed the errors to be categorized as either false 
heterozygotes (AA or BB imputed as AB), false homozygotes (AB imputed as AA or BB) 
or completely discordant (BB imputed as AA or vice versa). These more detailed error 
descriptions, in conjunction with minor allele frequency, position, and chip-of-origin 
information, allow for detailed analysis of how certain factors improve or reduce 
imputation accuracy to 850K in the context of each scenario.  
 
To approximate how well represented an individual was in the composite reference, we 
created a centered genomic relationship matrix (GRM) as described in [31] using 
GEMMA [32]. We extracted diagonal elements of this matrix for each testing individual. 
The resulting values were quantitative measures of how diverged an individual was 
from the composite reference. Smaller values indicate individuals that are more closely 
related to the reference.  
 

Results 

The minor allele frequency (MAF) spectrum of the HD and F250 assays that compose 
our reference panel is shown in Figure 1 with the SNP50 assay for comparison. The 
SNP50 and HD have similar MAF spectra with mostly common variants. The HD assay 
also has an increased density of variants in the 0.025-0.075 MAF range. However, the 
F250 has a significantly higher proportion of its content with a MAF < 0.1, more similar 
to the site frequency spectrum of variants identified from genome resequencing. 
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Imputation Accuracy Metrics 
Numerous statistics are used to evaluate imputation quality. We compared two 
widely-used statistics (concordance rate and Pearson R2) with imputation quality score 
(IQS), a metric that has been used in multiple human studies, but not in livestock 
[30,33] . We tested each of these metrics on the TAUR dataset at the level of both 
variants and individuals. For variants, IQS was much more conservative than 
concordance, particularly at lower MAF (Figure 2A). The IQS was also more 
conservative than R2 across the MAF spectrum ( Figure 2B ). In the TAUR dataset, IQS 
scores were lower than their corresponding R2 values 81% of the time. At moderate to 
high MAF, these metrics mostly agree with one another, however when MAF < 0.1, 
both correlation and IQS penalize more heavily for imputation errors of rare variants, 
resulting in lower averages and higher variances in these two metrics compared with 
those observed for concordance. In addition to capturing these metrics, we also 
identify the type of error (complete discordance, false heterozygote, or false 
homozygote) that occurred.  
 
Since IQS calculations do not work for assessing accuracy on the level of an individual, 
we used error type/count and Pearson R 2 between observed and imputed genotypes 
to determine the impacts of different intrinsic and extrinsic factors on how well an 
individual is imputed. For our 308 testing animals, individual correlations ranged from 
0.7466 to 0.9993. However, the majority of individuals had correlations of > 0.990. 
Individuals with the lowest R 2 values (< 0.80) tended to have significantly more false 
heterozygote errors than false homozygote errors. 
 
Comparing Multi-Breed and Within-Breed Imputation Reference Panels 
We used 49 Gelbvieh animals with observed HD and F250 genotypes that were 
downsampled to SNP50 genotypes to compare the accuracy of imputation between a 
multi-breed composite reference (CR) and a single-breed reference (BR) panel when 
imputing to 850K SNPs. SNP imputation accuracies were significantly higher for the 
CR compared to the BR panel. The breed-specific imputation panel performed quite 
well overall, with mean IQS score of 0.982. As a result, overall mean accuracy gains 
were modest but significant when using the CR (IQS=0.990) ( Figure 3A). Of the 
107,110 SNPs whose IQS changed when imputed against the different reference 
panels, 89,930 saw an increase with the CR, while only 15,349 were decreased. The 
average magnitude of these accuracy increases was significantly larger for the CR than 
for the BR (0.0797 vs. 0.0603).  
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The most substantial accuracy gains from the CR were observed for low MAF variants 
(Figure 3B ). While accuracy gains were modest for variants with MAF > 0.1 (0.007 IQS 
increase), rare variants saw a 0.0182 increase in IQS when imputing with a CR. This 
increase in the quality of low MAF imputation was not observed when using 
concordance or R2 statistics ( Table 4 ). Of the 122,288 markers that were not perfectly 
imputed using the BR, there was an increase in IQS of 0.059 (R 2 increase 0.032) when 
imputed with the CR. 
 
One concern with using a large multi-breed reference panel for imputation is that it may 
introduce variation that does not actually exist in the population being imputed. To test 
this, we identify errors at the variant and individual levels as being either false 
heterozygotes or false homozygotes. Individuals had significantly fewer false 
heterozygote errors when using the CR compared to the BR (paired t-test p = 0.0039). 
There were on average 733 less false heterozygote calls per individual when using the 
CR. 
 
While the per-variant imputation accuracy increases were significant, the most 
substantial improvements to imputation due to the CR were at the level of particular 
individuals. The mean individual correlations significantly increased from 0.9962 with 
the BR to 0.9979 using the CR (p = 0.0012). Animals that were already well-imputed 
using the BR did not show significant increases in accuracy with the CR. However, 
animals with the most BR imputation errors had much greater increases in accuracy 
with the CR (Figure 4 ). Of the 14 individuals who had > 5,000 total errors when using 
the BR, they had on average 5,522 fewer imputation errors with the CR indicating that 
these 14 individuals were significantly better imputed using the CR. Conversely, the 35 
individuals with < 5,000 errors using the BR had only 209 fewer imputation errors on 
average when using the CR, indicating that the CR still performed better but to a lesser 
extent. 
 
One- vs. two-round imputation 
To test the impact of utilizing partially imputed reference panels, we performed 
imputation on the TAUR testset of animals that were downsampled to SNP50 density 
using two different strategies for reference-creation (Supplementary Figure 1). Both 
strategies utilized the same set of HD and F250 reference genotypes. In our 
“one-round” imputation, the reference genotypes contain not only observed genotypes 
but also imputed genotypes. In our “two-round” imputation, samples are first imputed 
against a reference panel composed of 8,136 individuals with only observed HD 
genotypes, followed by a second round of imputation using 27,895 individuals with 
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only observed F250 genotypes as a second reference. Both methods of imputation 
resulted in 835,947 total markers, 791,581 of which were imputed.  
 
While the two-round imputation performed quite well, the one-round imputation 
outperformed the two-round imputation. Across the MAF spectrum, accuracies for the 
one-round imputation were consistently higher than those for the two-round method. 
However, the magnitude of these differences was modest. The one-round imputation 
increased the overall accuracy of imputation by 0.000762 IQS units, and the IQS at low 
MAF variants by 0.00256 units. The addition of rare variation from the F250 also 
increased the imputation accuracy in rare variants appearing exclusively on the HD. 
The HD markers with MAF < 0.05 that were imperfectly imputed using the two-round 
method saw an average increase in IQS of 0.04248 (Table 5). For HD variants with 
moderate to high MAF, imputation accuracy is slightly increased using one-round 
compared to two-round. 
 
Impact of breed representation in reference panel on imputation accuracy 
Using individual imputation accuracy measures for 308 test animals, we identify the 
effects of an individual’s breed composition and those breeds’ representations in the 
CR on how well an individual is imputed. Using the CR, individual R2 ranged from 0.747 
to 0.999 while total imputation errors ranged from 932 to 219,737. The accuracy of 
imputation appeared to be strongly related to an animal’s labeled breed ( Table 6). 
Individuals from breeds adequately represented in the CR (Angus, Gelbvieh, Hereford, 
Holstein, Jersey, Limousin, Nelore, and Simmental, Table 3) are generally well imputed 
(median R 2 = 0.997, range = [0.930, 0.999]) (Figure 5 ). Gelbvieh individuals had the 
highest mean imputation accuracy of any breed (R2 = 0.998). This is likely a function of 
the high proportion of Gelbvieh animals genotyped on both the F250 and HD in our 
reference panel. Gelbvieh made up 10.66% of our reference animals with complete 
850K genotypes, second only to Holstein (80.13% of total). Since HD markers make up 
the largest proportion of the 850K SNP set, individuals from breeds with many HD 
genotypes, but few F250 genotypes, like Nelore, were still imputed at high accuracy (R2 
= 0.981). Individuals from breeds that are sparsely represented in the CR (Brahman, 
Gir, N’Dama, and Romagnola) show decreases in means and increases in the variance 
of per-animal imputation accuracies (mean R2 = 0.890, range = [0.747, 0.961]). 
We used a genomic relationship matrix (GRM) created with observed genotypes from 
all reference and testing individuals to test if an individual’s increased relatedness to 
the CR would translate to increased imputation accuracies (Figure 6). There was no 
clear relationship between an individual’s overall relatedness to the CR and imputation 
accuracy. Instead, imputation accuracy was better predicted by the breed 
representation of the individual in the CR. For example, individuals assigned as 
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Romagnola had relatively low imputation accuracies (mean individual R2 = 0.874), even 
though they were highly related to the CR. Their low imputation accuracy likely stems 
from a low representation of Romagnola haplotypes in the CR (15 HD and 8 F250 
genotypes). The converse was seen in animals labeled Nelore. Although they were 
distantly related to the CR as a whole, the higher number of samples in the reference 
panel (858 HD and 7 F250 genotypes) resulted in accurate imputation overall (mean 
individual R2 = 0.981). This is further illustrated by Gir, which are similarly diverged as 
Nelore but have lower accuracy due to only 13 HD and 9 F250 individuals in the CR. 
Further, even low levels of admixture with breeds not adequately represented in the CR 
can lead to decreased imputation accuracies. Breed composition information was 
valuable for identifying outlying individuals or breeds that, in theory, should have been 
imputed accurately. For example, the five individuals labeled as Angus with outlying 
imputation accuracies can be explained by admixture with breeds not well represented 
in the CR (Supplementary Table 2). Each of the observed outliers labeled as Angus had 
relatively low proportions of Angus ancestry (0.0763 to 0.3169), and moderately high 
proportions of breeds sparsely represented in the CR. 
 
Impact of starting assay density on 850K imputation   
The starting density of an assay affects the accuracy of imputation to HD density as 
well as sequence-level. To test the impact of starting chip density on 850K imputation 
accuracy, we used the TAUR dataset downsampled to 5 common commercial assay 
densities. Each successive increase in chip density yielded increases in imputation 
accuracy both overall and for low-MAF variants (Table 7 and Figure 7 ). The largest 
increase in accuracy came between the ULD and GGPLD densities. Variant accuracies 
when imputing from the ULD were exceptionally poor at low minor allele frequencies. 
While the decline in IQS at low MAF was seen with other starting densities, it was 
much stronger with the ULD (0.1385 IQS decrease). The overall gains in imputation 
accuracy when moving to higher density assays (SNP50, GGP90KT, GGPHD) are 
minimal, but increases to low MAF marker imputation are more substantial. 
 
Individual accuracies also increased with assay starting density. A one-way ANOVA 
using Tukey’s method for multiple comparisons showed that there was a significant 
difference in 850K imputation accuracy between the ULD and GGPLD (p = 9.05e-5), 
but not between GGPLD and SNP50 (p = 0.1486). (Figure 8). No significant difference 
existed between the SNP50 and GGP90KT or GGPHD. The GGPLD starting density 
was, however, significantly different from the GGP90KT (p = 0.0049). This suggests, 
like above, that accuracy gains are minimal when the starting density is greater than 
50,000 variants. Median individual R2 values are given in Table 8. 
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Error profiles and regions of low imputation accuracy 
Using the imputation accuracy information for the TAUR dataset, we identify a number 
of regions of low imputation accuracy and diagnose why they occur. While most 
markers are imputed correctly, most chromosomes have at least one small region of 
poorly imputed markers (Figure 9 ). The overall number of poorly imputed markers was 
quite low. Only 21,848 markers had IQS < 0.8 (1.95% of imputed makers), and only 
8,963 had more than 10 total imputation errors (1.07% of imputed markers). When 
using the IQS metric, we see that low-accuracy markers exist across each 
chromosome, particularly low MAF variants with relatively few errors (making IQS = 0) 
(Figure 9A ). However, both IQS and total errors (Figure 9B) show peaks of low 
imputation accuracy. Investigation of these regions indicated that the probe sequences 
for these variants had multiple equally likely matches to the genome, which is indicative 
of either genome mis-assembly or the wrong location was chosen to represent the 
placement of the marker. The latter can be easily rectified based on changing the map 
files for these variants to reflect the alternate placement. 
 

Discussion 
 
Imputation Accuracy Metrics 
Most studies involving imputation accuracy in livestock populations use two methods 
for assessing the correctness of imputation: concordance, the proportion of correctly 
imputed genotypes, and Pearson correlation between observed and imputed 
genotypes. While both of these statistics make sense at the level of individuals, their 
ability to identify poorly imputed markers is suboptimal, particularly at low minor allele 
frequencies. Because of the nature of our data, which contains a large proportion of 
rare variants, a statistic that more robustly represents the actual quality of imputation is 
essential. Using the imputation quality statistic (IQS) [30], we show that Pearson R2 and 
especially concordance rate, overestimate the accuracy of imputation at low MAF 
variants. Unlike R2, which requires variation, IQS can be calculated for variants where 
no variation exists in either the observed or imputed dataset but does in the other. Of 
these, 2,070 variants existed in the GEL testing data. Their average MAF was 0.040, 
meaning that they had high concordances (0.97 average), but very low IQS scores 
(0.0). This information would be lost when using R2, and grossly inflated if using a 
concordance value. It is worth noting that for this work, we treat HD and F250 
genotype calls as being correct, even though there is approximately a 0.5% error rate 
associated with these genotyping methods [12]. 
 
F250 impact on rare variant imputation 
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The F250 was designed to assay a large number of rare, potentially functional variants 
and therefore is very gene-centric. Common variants were included on the F250 assay 
to allow for imputation and genomic prediction applications. The rare variants present 
on the F250 are important in the context of this work for two main reasons. First, 
imputing an additional ~170,000 variants on a population level will increase researchers 
ability to refine GWAS signals and identify putative QTN due to increased marker 
density. Second, because the variants are very gene-centric, it is anticipated that 
imputation to whole genome sequence level will be improved within genic regions. 
Inclusion of rare variants may increase the imputation accuracy of other rare variants 
that are not directly assayed as linkage disequilibrium (r2) is maximized when allele 
frequencies between markers are similar. Rare alleles in the absence of selection are 
assumed to be more recent, and thus likely to be in linkage disequilibrium with other 
recently acquired rare alleles [34]. By adding rare variation to our reference panel with 
the F250 assay and genotyping a large number of individuals, we improve the 
imputation of rare variants that aren’t directly assayed by the F250. Even though many 
individuals in our reference panel only have imputed F250 genotypes, their presence 
has a significant impact on rare variant imputation accuracies. We expect to see this 
boost in rare variant imputation accuracy from the F250 carry over to subsequent 
imputation to sequence-level. The impact of F250 on rare variant imputation underlines 
the need for more complete 850K data in our reference (individuals genotyped on both 
the HD and F250). Imputation accuracies are the highest in breeds with the largest 
numbers of complete genotypes because more of the haplotypic diversity in those 
breeds is captured. 
 
Multi-breed vs. within-breed imputation reference panels 
Early studies involving imputation concentrated mostly on homogenous populations. 
When using closely related animals from a population like Holstein [35,36] , high-quality 
imputation can be achieved from a relatively small reference set of genotypes, 
provided those animals are closely related to the animals being imputed. In recent 
years, large numbers of low-density genotypes from many cattle populations, including 
outbred animals, as well as admixed individuals, both registered and commercial have 
been generated. Along with these data, many animals, from a wide range of breeds 
have been genotyped on high-density assays like the HD and F250. By combining all 
available high-density genotypes into a single multi-breed composite reference panel, 
we see increases in imputation accuracy across the MAF spectrum. The most 
substantial increases when using the CR compared to a breed-specific reference came 
on the level of specific individuals. Samples that were imputed well against the breed 
reference did not see substantial increases in accuracy when imputed against the CR. 
However, individuals poorly imputed using the BR saw a substantial reduction in the 
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number of imputation errors when using the CR. The increased haplotypic diversity of 
the composite reference acts precisely as would be expected, by improving the 
imputation of haplotypes that would not have been found in a breed-specific reference. 
It is important to note that in the context of routine genotyping and imputation, one will 
not know a priori which individuals may have poorly imputed genotypes. Gains in 
accuracy when using the CR will likely be small, but never worse than a breed-specific 
reference, in purebred, closed herdbook populations like Holstein or Angus, but for 
open herdbook or composite breeds, we expect to see substantial increases. Further, 
we did not see an increase in false heterozygous or false homozygous genotypes when 
including multiple breeds in the reference panel, indicating that the CR is not 
introducing variation not present within the imputed individuals. For breeds adequately 
represented in the CR, we see imputation accuracies (median R2 = 0.997) approaching 
the error rate for genotyping assays (0.5%).  
 
The success of our composite reference panel for 850K imputation also points toward 
strategies for sequence-level imputation. Previous work has advised the use of 
multi-breed reference panels for sequence imputation [37,38] . Our work at the 
high-density genotype level confirms this and suggests that improvements in 
imputation for outbred and admixed populations will benefit from the sequencing and 
inclusion of “non-core” animals that represent a greater amount of haplotypic diversity. 
 
Breed representation in reference 
An individual’s relatedness to the entire CR was not a good predictor of imputation 
accuracy. Our multi-breed reference is heavily biased towards the most common and 
economically relevant American beef breeds but has a diverse array of other breeds in 
varying numbers. There appears to be a point at which an individual’s genomic 
representation in the reference reaches a threshold and meaningful gains in accuracy 
cease. At this point, the most significant gains in accuracy will likely come through the 
addition of high-density genotypes for breeds sparsely represented in our reference, or 
through the addition of more completely genotyped individuals, i.e. those with both HD 
and F250 genotypes. It is worth noting that the by-breed accuracies reported here for 
populations with limited representation in our composite reference (Brahman, Gir, 
N’Dama, Romagnola) would have likely performed better had we not removed large 
proportions to be a part of our testing set. Therefore, we expect these accuracies to be 
underestimates should individuals from these breeds be imputed using the full CR. 
 
Starting Assay Density 
The starting density of an assay has a significant impact on the accuracy of imputation 
to 850K. In agreement with the Bovine HapMap project, we see that approximately 
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50,000 SNPs are needed to impute to higher densities with high accuracy [39]. This 
observation likely has a larger impact on research applications seeking to identify QTN, 
compared with applications for genetic prediction. There are a large number of 
individuals that have been genotyped at extremely low densities (< 10,000 markers) 
and it has been demonstrated that these individuals can be accurately imputed to 
~50,000 markers [35,36] . For 850K and sequence imputation, we recommend that 
these individuals are first imputed to the level of ~50,000 variants within-breed to 
leverage the linkage information present within these large pedigrees, such as the 
Holstein breed and the resulting genotypes can be accurately imputed using the CR to 
the 850K level. However, groups wishing to perform both genomic predictions and 
downstream causal variant discovery, via imputation, would be best served genotyping 
new individuals with an assay density of ~50,000 SNPs.  
 

Conclusions 
We conclude that in diverse samples, as seen in typical beef cattle populations, a 
multi-breed phasing and imputation panel will provide the highest accuracies. 
Individuals whose ancestry is moderately represented in the reference are imputed 
exceptionally well. By-variant imputation accuracies were highest for rare variants 
when using the composite reference. The addition of rare variation from the F250 assay 
further increased the accuracy of rare variant imputation from the HD assay. The 
addition of a large number of individuals genotyped for rare variants will likely have 
similar effects on rare variant imputation at the sequence level as well. We confirm that 
for 850K imputation, significant gains in accuracy plateau when increasing the 
starting-assay density past 50,000 SNPs. We have identified a small subset of SNPs 
that have poor imputation accuracies, most of which are caused by probe sequence 
location errors that will be fixed. Further improvement in accuracy can be obtained by 
removing Mendelian inconsistencies from the raw data used to create the CR, which 
was not done for this work. Furthermore, the largest gains in accuracy are expected to 
come from the addition of individuals with complete genotypes (HD and F250), with the 
largest realized gains from even a modest increase in the less well-represented breeds. 
Imputation accuracies for breeds adequately represented in the multi-breed 
composite-reference panel with a starting assay density of at least 50,000 SNPs 
should experience accuracies approaching the error rate of genotyping arrays. We 
anticipate the CR presented here can serve as a foundation reference panel with which 
the global cattle community can build upon to impute lower density genotypes in a 
consistent and accurate manner. 
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CR = composite reference, BR = breed reference, MAF = minor allele frequency, GEL = 
Gelbvieh testset, TAUR = taurine testset, SNP = single nucleotide polymorphism, IQS = 
imputation quality statistic 
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Table 1. Breed representation of testing set and the proportion of the breed’s total 
F250 and HD content that they represent.  
 
Breed  No. for testing  %Both  %HD  %F250 
Angus  50  27.47%  2.36%  0.34% 
Holstein  50  2.52%  1.55%  2.51% 
Hereford  44  100.00%  7.18%  2.34% 
Simmental  50  42.74%  10.48%  2.76% 
Nelore  4  57.14%  0.47%  50.00% 
Brahman  5  41.67%  16.67%  0.78% 
Gelbvieh  50  16.29%  15.87%  8.87% 
Limousin  38  100.00%  15.02%  21.11% 
Jersey  4  57.14%  16.00%  44.44% 
Gir  5  62.50%  33.33%  45.45% 
Romagnola  4  50.00%  26.67%  50.00% 
Ndama  4  57.14%  36.36%  50.00% 
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Table 2. Variant density for assays used in this analysis before and after filtering. 
 

Assay  Starting Assay Density  Filtered Density 
GGP-ULD  8,672  6,394 
GGP-LDv3  26,504  16,854 
SNP50  58,336  44,366 
GGP-90KT  76,999  70,581 
GGP-HD  139,977  125,446 
GGP-F250  227,234  201,236 
HD  777,962  753,715 
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Table 3. Breed representation of composite reference panel after removing 308 
individuals for testing. 
 

Breed 
Complete 

in CR 
HD in 

CR 
F250 in 

CR 
% CR’s 

Complete 
% CR's 

HD 
% CR's 

F250 

Holstein  1932  3170  1944  80.13%  32.92%  6.90% 
Gelbvieh  257  265  514  10.66%  2.75%  1.82% 
Angus  132  2067  14454  5.47%  21.47%  51.29% 
Simmental  67  427  1759  2.78%  4.43%  6.24% 
Brahman  7  25  632  0.29%  0.26%  2.24% 
Romagnola  4  11  4  0.17%  0.11%  0.01% 
Nelore  3  855  4  0.12%  8.88%  0.01% 
Jersey  3  21  5  0.12%  0.22%  0.02% 
Gir  3  10  6  0.12%  0.10%  0.02% 
Ndama  3  7  4  0.12%  0.07%  0.01% 
Brangus  0  990  1603  0.00%  10.28%  5.69% 
Hereford  0  569  1834  0.00%  5.91%  6.51% 
Mixed/crossbred  0  419  2830  0.00%  4.35%  10.04% 
Red Angus  0  253  1905  0.00%  2.63%  6.76% 
Limousin  0  215  142  0.00%  2.23%  0.50% 
Shorthorn  0  136  218  0.00%  1.41%  0.77% 
Charolais  0  125  284  0.00%  1.30%  1.01% 
Santa Gertrudis  0  23  11  0.00%  0.24%  0.04% 
Japanese Black  0  19  0  0.00%  0.20%  0.00% 
Brown Swiss  0  15  0  0.00%  0.16%  0.00% 
Norwegian Red  0  5  0  0.00%  0.05%  0.00% 
Chianina  0  2  1  0.00%  0.02%  0.00% 
Piedmontese  0  0  9  0.00%  0.00%  0.03% 
Braunvieh  0  0  7  0.00%  0.00%  0.02% 
Guernsey  0  0  7  0.00%  0.00%  0.02% 
Beefmaster  0  0  3  0.00%  0.00%  0.01% 
Sheko  0  0  2  0.00%  0.00%  0.01% 
Maine Anjou  0  0  1  0.00%  0.00%  0.00% 
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Table 4. Per-variant imputation accuracy measures by MAF bin for GEL individuals 
imputed against BR and CR. 
 

MAF bin 
BR 

Concord. 
CR 

Concord.  BR R2  CR R2  BR IQS  CR IQS 

0.00 - 0.05  0.999  0.999  0.984  0.982  0.910  0.926 

0.05 - 0.10  0.997  0.998  0.985  0.99  0.959  0.979 

0.10 - 0.15  0.996  0.998  0.986  0.992  0.974  0.989 

0.15 - 0.20  0.995  0.997  0.988  0.993  0.982  0.991 

0.20 - 0.25  0.994  0.997  0.990  0.995  0.986  0.993 

0.25 - 0.30  0.994  0.997  0.990  0.995  0.987  0.993 

0.30 - 0.35  0.994  0.997  0.991  0.996  0.988  0.994 

0.35 - 0.40  0.993  0.997  0.992  0.996  0.988  0.994 

0.40 - 0.45  0.993  0.996  0.992  0.996  0.988  0.994 

0.45 - 0.50  0.993  0.996  0.992  0.996  0.988  0.994 
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Table 5. The IQS by MAF bin for HD-specific markers that are imperfectly imputed 
using two-round method.  
 

MAF Bin 
Number of 

SNPs 
Two-round 

IQS 
One-round 

IQS 
IQS 

Change 

0.00 - 0.05  11,788  0.5453  0.6299  0.0425 

0.05 - 0.10  18,095  0.9221  0.9330  0.0067 

0.10 - 0.15  23,311  0.9724  0.9742  0.0017 

0.15 - 0.20  29,222  0.9772  0.9784  0.0012 

0.20 - 0.25  34,062  0.9803  0.9812  0.0009 

0.25 - 0.30  39,948  0.9807  0.9815  0.0009 

0.30 - 0.35  44,309  0.9815  0.9824  0.0009 

0.35 - 0.40  47,657  0.9814  0.9822  0.0008 

0.40 - 0.45  49,233  0.9815  0.9823  0.0008 

0.45 - 0.50  50,908  0.9816  0.9823  0.0007 
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Table 6. Composite reference 850K imputation, individual accuracies (R2) by breed. 
 

Breed 
Mean 

Correlation 
Min 

Correlation 
Max 

Correlation 

Gelbvieh 0.9979 0.9935 0.9989 

Hereford 0.9971 0.9912 0.9988 

Holstein 0.9969 0.9947 0.9984 

Simmental 0.9963 0.9841 0.999 

Angus 0.9953 0.959 0.9993 

Jersey 0.995 0.9905 0.9966 

Limousin 0.9892 0.93 0.996 

Nelore 0.981 0.9774 0.9844 

Brahman 0.9412 0.932 0.9611 

Gir 0.9027 0.8689 0.9482 

Romagnola 0.8742 0.8549 0.8958 

N'Dama 0.7632 0.7466 0.8033 
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Table 7. Per-variant mean and standard deviations for imputation quality statistics for 
850K imputation in TAUR dataset based on starting assay density.  
 

Starting 
Assay 

Starting 
Density  Mean IQS  SD IQS 

Mean IQS 
(Low MAF) 

SD IQS 
(Low MAF) 

ULD  6,394  0.9095  0.1766  0.7720  0.3503 

GGPLD  16,854  0.9612  0.1225  0.8969  0.2604 

SNP50  44,366  0.9745  0.1154  0.9121  0.2468 

GGP90KT  70,581  0.9796  0.1104  0.9220  0.2402 

GGPHD  125,446  0.9832  0.1032  0.9319  0.2264 
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Table 8. Per-individual R2 mean and standard deviation values for 850K imputation 
based on starting assay density. 
 

Starting 
Assay 

Starting 
Density  Median R2  SD R2 

ULD  6,394  0.989  0.6070 

GGPLD  16,854  0.995  0.0486 

SNP50  44,366  0.997  0.0314 

GGP90KT  70,581  0.998  0.0205 

GGPHD  125,446  0.999  0.0129 
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Figure 1. Site frequency spectra for various assay densities. Density plot of minor 
allele frequencies of SNP50 (yellow), F250 (purple), and HD (blue). 
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Figure 2. The IQS compared to concordance and correlation as measures of 
imputation accuracy. Three imputation accuracy measures calculated for the TAUR 
dataset. ( A) Concordance and (B) Pearson correlation over-estimate imputation 
accuracies relative to the imputation quality statistic (IQS) resulting in bias and thus a 
false sense of high imputation accuracy.    
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Figure 3. The composite reference improves per-variant imputation accuracies, 
particularly for rare variants.  Imputation quality statistics when using breed-specific 
(green) and composite (purple) references for 850K imputation in the GEL dataset 
across the entire MAF spectrum (A), and at low MAF (B). 
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Figure 4. Improvements from the composite reference are largest for poorly 
imputed individuals. Comparing the total number of errors when imputing from 
SNP50 to 850K in GEL dataset when using breed-specific vs. composite references. 
Points are individuals, colored by the change in count of errors from breed to 
composite reference. 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 10, 2019. ; https://doi.org/10.1101/517144doi: bioRxiv preprint 

https://doi.org/10.1101/517144
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Figure 5. Per-individual accuracy by reported breed. Individual Pearson R2 by 
breed. Each point is an individual, colored by breed. 
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Figure 6. Relatedness to whole composite reference is not best predictor of 
individual imputation accuracy.  By-individual R2 as a function of individual’s 
divergence from GRM calculated from composite reference.   
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Figure 7. Effects of starting assay density on imputation accuracy across MAF 
spectrum.  Variant accuracy measures for 850K imputation in TAUR dataset based on 
five assay starting densities. Binned mean IQS lines (per-variant accuracy) across MAF 
spectrum.   
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Figure 8. Impact of starting density on per-individual imputation accuracy. 
Per-individual accuracy measures for 850K imputation in TAUR dataset based on five 
starting assay densities. Boxplots for total imputation errors based on each starting  
assay density. 
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A 

 

B 

 
Figure 9. Regions of low imputation accuracy exist across the genome but are a 
small subset of markers. Regions of low imputation accuracy identified for the TAUR 
dataset using total imputation errors (A), and IQS (B).    
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Supplementary Table 1. Shared markers between analyzed assays. Counts of 
shared, unfiltered markers between assays used in this analysis.   
 

  HD  F250  GGPHD  GGP90KT  SNP50  GGPLD  ULD 

HD  777,962  37,841  134,599  74,524  50,665  25,693  8,280 

F250    227,234  31,156  19,176  22,199  18,774  8,070 

GGPHD      139,977  73,341  42,975  25,121  8,151 

GGP90KT        76,999  28,952  14,240  7,948 

SNP50          58,336  8,607  8,034 

GGPLD            26,504  8,320 

ULD              8,762 
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Supplementary Table 2. Outlier samples labelled Angus and their corresponding 
breed composition. Bolded values represent the largest values that sum to 75% of an 
individual’s total breed composition. The percentage of individuals from each breed 
with HD genotypes in the CR is indicated. 

       

    Outlier #1  Outlier #2  Outlier #3  Outlier #4  Outlier #5 

Total Imputation 
Errors 

  43536  31412  19588  14718  14506 

Correlation    0.959  0.969  0.981  0.986  0.987 

 
CR 
HD%           

Angus  21.47%  0.317  0.076  0.174  0.309  0.18 

Brahman/Nelore  9.14%  0.059  0  0  0.062  0.029 

Braunvieh  0.00%  0.033  0.283  0.069  0  0.003 

Brown Swiss  0.16%  0  0  0.003  0  0.049 

Charolais  1.30%  0.047  0.056  0.091  0.074  0.002 

Gelbvieh  2.75%  0  0.265  0.109  0.099  0 

Guernsey  0.00%  0.024  0.016  0.035  0.065  0.041 

Hereford  5.91%  0.026  0  0.055  0.001  0.022 

Holstein  32.92%  0.089  0  0.03  0.028  0.004 

Jersey  0.22%  0.065  0.015  0.007  0.003  0 

Limousin  2.23%  0.038  0.148  0.207  0.03  0.038 

N'Dama  0.07%  0.063  0.008  0  0  0.011 

Red Angus  2.63%  0.089  0.031  0.053  0.223  0.034 

Romagnola  0.11%  0.031  0.025  0  0.027  0.019 

Shorthorn  1.41%  0.088  0.039  0.064  0.077  0.042 

Simmental  4.43%  0.032  0.037  0.086  0  0.526 

Wagyu  0.20%  0  0  0.017  0.003  0 
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Supplementary Figure 1. Schematic representation of one vs. two-round 
imputation. Dotted lines represent imputation. In one-round imputation (A), HD and 
F250 reference samples are cross-imputed to create a partially imputed composite 
reference (1). This is followed by a single round of imputation of low-density genotypes 
using the CR (2). For two-round imputation (B), two rounds of imputation occur: first 
from low-density to HD (1) and then from HD to 850K (2).    
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Supplementary Figure 2.  Imputation quality statistics when using breed-specific 
(green) and composite (purple) references for 850K imputation in the GEL dataset 
across the entire MAF spectrum (A), and at low MAF (B). Points are individual variants. 
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