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Abstract 10 

Understanding the plasticity, robustness, and modularity of transcriptome expression to genetic 11 

and environmental conditions is crucial to deciphering how organisms adapt in nature. To test 12 

how genome architecture influences transcriptome profiles, we quantified expression responses 13 

for distinct temperature-adapted genotypes of the nematode Caenorhabditis briggsae when 14 

exposed to chronic temperature stresses throughout development. We found that 56% of the 15 

8795 differentially-expressed genes show genotype-specific changes in expression in response 16 

to temperature (genotype-by-environment interactions, GxE). Most genotype-specific responses 17 

occur under heat stress, indicating that cold versus heat stress responses involve distinct 18 

genomic architectures. The 22 co-expression modules that we identified differ in their 19 

enrichment of genes with genetic versus environmental versus interaction effects, as well as 20 

their genomic spatial distributions, functional attributes, and rates of molecular evolution at the 21 

sequence level. Genes in modules enriched for simple effects of either genotype or temperature 22 

alone tend to evolve especially rapidly, consistent with disproportionate influence of adaptation 23 

or weaker constraint on these subsets of loci. Chromosome scale heterogeneity in nucleotide 24 

polymorphism, however, rather than the scale of individual genes, predominate as the source of 25 

genetic differences among expression profiles, and natural selection regimes are largely 26 

decoupled between coding sequences and non-coding flanking sequences that contain cis-27 

regulatory elements. These results illustrate how the form of transcriptome modularity and 28 

genome structure contribute to predictable profiles of evolutionary change.  29 
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Introduction 33 

Evolutionary adaptation to varying environmental conditions starts with genetic variability, often 34 

with alternate alleles affecting gene regulation and expression. Consequently, understanding 35 

the plasticity, robustness, and modularity of transcriptome responses to genetic and 36 

environmental conditions is crucial to deciphering how organisms adapt in nature (Ungerer et al. 37 

2007). Gene expression represents the most basic level at which phenotypic plasticity to a 38 

perturbation can manifest, and therefore underpins the degree of robustness of higher level 39 

phenotypes in response to the same perturbation (de Visser et al. 2003; Flatt 2005). Because 40 

the transcriptome changes in response both to extrinsic factors (e.g. environmental inputs) and 41 

to factors that are intrinsic to the organism itself (e.g. genetic background) (Gagneur et al. 2013; 42 

Grishkevich & Yanai 2013), we must consider both extrinsic and intrinsic contributions in the 43 

dynamism of genetic network composition and its genomic architecture. Consequently, it is 44 

crucial to determine how much of the genome is expressed differentially in a plastic manner with 45 

sensitivity to environmental conditions versus a genetically deterministic manner independently 46 

of environmental conditions versus a non-additive combination of both (Grishkevich & Yanai 47 

2013; Knowles et al. 2017). Moreover, it remains generally unclear how modular are distinct 48 

gene expression responses and what characteristics of the genome predict their composition 49 

and molecular evolution. These questions frame some of the key outstanding issues in 50 

connecting transcriptome activity to environmental heterogeneity and the molecular evolution of 51 

genomes. 52 

Temperature conditions represent a pervasive extrinsic, environmental factor that influences 53 

gene expression and can help reveal the relative roles of plasticity versus robustness of 54 

transcriptome profiles (Causton et al. 2001; Smith et al. 2013). If expression plasticity is 55 

adaptive, then we expect organisms to modulate their transcriptomes under chronic 56 

developmental exposure to heat or cold stress in a coordinated way to maintain fitness. 57 

However, homeostasis may break down at environmental extremes and lead to non-adaptive 58 

changes in gene expression that simply reflect a ‘broken’ biological system. Pathways 59 

associated with the heat shock response are implicated in physiological buffering to acute heat 60 

stress (Lindquist & Craig 1988), but chronic sublethal heat stress may not activate this same 61 

stress response. By characterizing profiles of transcriptome change to temperature conditions, 62 

we can test the robustness of plastic responses to genetic divergence that reflects genomic 63 

evolution in the control over gene expression. 64 
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Allelic differences can be thought of as a kind of perturbation, a genetic perturbation, that can 65 

expose the sensitivity of gene networks in terms of expression changes (Hecker et al. 2009). 66 

Expression modulated by cis-regulatory alleles may minimize adverse pleiotropic effects and, 67 

consequently, modest effects of cis-regulatory SNPs might only be pronounced when they 68 

accrue over long periods of time to give rise to the kinds of expression differences that 69 

accumulate between species (Carroll 2008; Stern & Orgogozo 2008; Wittkopp & Kalay 2012). 70 

By contrast, changes to trans-acting regulators like transcription factors may lead to many 71 

downstream pleiotropic consequences. Consequently, large trans-acting effects might make up 72 

a substantial fraction of the genetic variability for gene expression differences among individuals 73 

within a species and yet rarely contribute to expression differences between species (Wittkopp 74 

et al. 2004; Smith & Kruglyak 2008; Stern & Orgogozo 2008; Wittkopp et al. 2008; Tirosh et al. 75 

2009), because most changes that affect fitness are deleterious and eventually get eliminated 76 

by natural selection (Keightley & Lynch 2003). The intermediate timescale of adaptive 77 

divergence between populations of the same species thus has the potential to expose whether 78 

distinct regulatory architecture must be invoked to describe transcriptome changes across the 79 

extremes of timescales from polymorphism within a single population to divergence between 80 

species. 81 

In this context, extensive transcriptome analysis of the nematode C. elegans in response to heat 82 

shock and knock-out mutation began with microarrays (Kim et al. 2001), with more recent 83 

studies using recombinant inbred lines of wild strains to map polymorphic loci that contribute 84 

genotype-dependent responses to temperature (Li et al. 2006; Grishkevich et al. 2012; Snoek et 85 

al. 2017; Snoek et al. 2019). For example, Li et al. (2006) found that among 496 detectable 86 

expression quantitative trait loci (eQTL), trans-eQTL were nearly 8-times as likely as cis-eQTL 87 

to show genotype-by-temperature responses, with subsequent study reinforcing this pattern 88 

(Snoek et al. 2017). Moreover, eQTL are found disproportionately on SNP-dense chromosome 89 

arms in C. elegans (Rockman et al. 2010). Grishkevich et al. (2012) reported that constitutively-90 

expressed genes in C. elegans tend to have short intergenic regions, consistent with simple cis-91 

regulatory controls, and that genes with genotype-dependent expression or genotype-by-92 

environment interactions have longer intergenic regions, consistent with complex cis-regulation 93 

and a larger mutational target. It remains unknown whether natural selection might be important 94 

in shaping genetic variation in these features of C. elegans, and whether these properties are 95 

general across species. 96 
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Here we quantified transcriptome expression for C. briggsae nematodes from populations with 97 

distinct genetic backgrounds adapted to temperature differences associated with their origins in 98 

Tropical versus Temperate latitudes (Prasad et al. 2011; Stegeman et al. 2013; Poullet et al. 99 

2015). Global collections and population genomic analyses of C. briggsae wild isolates from 100 

Tropical and Temperate regions show that they form distinct phylogeographic groups (Cutter et 101 

al. 2006; Jovelin & Cutter 2011; Felix et al. 2013; Thomas et al. 2015). Given this ecological 102 

context, along with resources like recombinant inbred line (RIL) libraries and chromosome-scale 103 

genome assembly (Ross et al. 2011; Stegeman et al. 2019), C. briggsae represents a valuable 104 

system to understand the links between temperature and genetic background in differential 105 

gene expression. The exemplar Tropical and Temperate genotypes used as RIL parents, the 106 

focus of the present study, exhibit diverse temperature-dependent phenotypic differences 107 

consistent with adaptive differentiation of the phylogeographic groups overall, including for 108 

fecundity (~2-fold difference at 14°C, ~4-fold difference at 30°C), motility, and gamete 109 

development traits (Prasad et al. 2011; Stegeman et al. 2013; Poullet et al. 2015; Stegeman et 110 

al. 2019). By rearing these animals at hot and cold sublethal temperatures near their fertile 111 

limits, as well as under benign thermal conditions, we characterize genotypic and 112 

environmentally-induced differential gene expression across the genome. We then describe 113 

transcriptome complexity in terms of co-expression modularity to reflect transcriptome plasticity 114 

and robustness to environmental and genetic context, demonstrating distinctive genomic spatial 115 

distributions, functional attributes, and rates of molecular evolution at the sequence level.  116 

Materials and Methods 117 

Experimental design and sequencing 118 

To quantify the genome-wide effects of rearing temperature and genetic background on gene 119 

expression, we isolated and sequenced mRNA transcriptomes from C. briggsae young adult 120 

hermaphrodites of two isogenic strains (AF16 = “Tropical” strain, HK104 = “Temperate” strain) 121 

that were reared under “chronic” exposure to 14°C (~150h), 20°C (~65h), and 30°C (~48h) 122 

throughout their development from egg to adult. Previous generations of both genotypes had 123 

been raised at benign 20°C prior to establishment of eggs for rearing at the treatment 124 

temperatures following stage synchronization via standard Caenorhabditis sodium hypochlorite 125 

(“bleaching”) protocol (Stiernagle 1999), avoiding potential transgenerational effects of stressful 126 

temperature on gene expression. After reaching adulthood (checked for young gravid adult 127 
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hermaphrodites), total RNA was isolated with Trizol extraction and isopropanol precipitation (Tu 128 

et al. 2015) from mass isogenic cultures of each strain at each rearing temperature with three 129 

biological replicates (2 genotypes x 3 rearing temperatures x 3 replications = 18 samples). The 130 

mRNA was then separated from small RNA fractions of less than approximately 200 nucleotides 131 

using the mirVana kit from Ambion as per the manufacturer’s instructions, and prepared for 132 

single-end 100bp sequencing of TruSeq libraries via Illumina HiSeq 2000 (Genome Quebec, 133 

Canada) with each of the 18 barcoded samples sequenced across 2 lanes to control for lane 134 

effects (Fang & Cui 2011). 135 

We obtained an average of 51.4 million reads per sample (range: 34.5 - 73.4 million) for 925.3 136 

million total reads. Sequences are available in NCBI in project accession PRJNA509247. Over 137 

96% of reads were retained after cleaning and trimming of raw FASTQ files with Trimmomatic 138 

0.36 (894.4 million reads retained), using a seed-mismatch rate of 2, a simple clip threshold of 139 

10, discarding reads <60bp long, and trimming bases from 5’ and 3’ ends if they had phred33 140 

scores lower than 3 (Bolger et al. 2014). 141 

Read mapping and expression counts 142 

For each sample, we mapped reads to the C. briggsae genome (WS253) using STAR (Dobin et 143 

al. 2013), setting the maximum intron size to 5000 bp which includes 99.6% of all intron 144 

annotations in the C. briggsae reference genome. We applied a liberal mismatch rate of 10 to 145 

accommodate potential mapping efficacy differences between the AF16 and HK104 strains due 146 

to their genetic differences; the reference genome is based on the AF16 strain, so this liberal 147 

parameter choice minimizes the potential for mapping to bias towards the Tropical genotype 148 

that could inflate inference of differential expression due to genotype. Over 90% of the 894.4 149 

million total reads mapped to unique locations, in all samples (except one replicate of HK104 at 150 

30°C with 73.86% of 48.4 million reads mapping uniquely), with an average of 45.9 million reads 151 

mapping per sample to unique locations (Supplementary Table S1).  152 

We then counted the number of reads that mapped to each exon annotated in the WS253 153 

reference genome with htseq-count (Anders et al. 2013) and summed over all exons in a gene 154 

to give a raw measure of expression for each gene in each sample. For our analysis, we 155 

neglected alternative splicing isoforms, treating them as contributing to expression levels for the 156 

same gene, and set the “mode” parameter in htseq-count to “intersection-nonempty” to resolve 157 

ambiguity for overlapping genes (Anders et al. 2013). Among mapped reads, 82-85% were 158 
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assigned successfully to a particular gene among the 23,267 genes annotated in the WS253 C. 159 

briggsae genome in all samples (again excepting one replicate of HK104 at 30°C, with 24.0 160 

million = 58% of reads assigned to genes). Among the reads that were not assigned to genes, 161 

most (9% on average) could not be associated with any exon or were counted in multiple 162 

locations (8% on average) and less than 0.1% were ambiguous.  163 

Differential expression analysis 164 

We first visualized gene expression counts in a Multi-Dimensional Scaling (MDS) plot 165 

(Nikolayeva & Robinson 2014), which showed strong clustering of most biological replicates 166 

within a treatment and differentiation among treatments (Supplementary Figure S1). We then 167 

retained only the subset of genes with at least 1 cpm (gene read count per million; using the 168 

“cpm” function in edgeR (Robinson et al. 2010)) in 3 or more libraries (i.e. in one biological 169 

replicate) to exclude 7068 genes with extremely low expression that could bias downstream 170 

analysis. It is possible that the genes filtered out at this step might exhibit higher expression at 171 

different developmental stages, males, or alternative environmental conditions than those 172 

assessed here. To test for statistical evidence of differential expression, we next transformed 173 

the expression counts using limma and voom, which performs well in controlling Type I error 174 

and in detecting true positives (Smyth 2005; Law et al. 2014; Ritchie et al. 2015). Preliminary 175 

analysis (not shown) found limma to be more conservative than edgeR for our dataset, so we 176 

elected to use limma for downstream analysis. Upon applying the voom transformation from the 177 

limma package to the remaining set of 16,199 genes, a Q-Q plot showed that the data closely 178 

approximated a normal distribution (Supplementary Figure S1). 179 

We then tested these 16,199 genes for differential expression using limma by fitting a linear 180 

model to the expression profile for each gene as: expression ~ strain + temperature + 181 

strain*temperature interaction. We first tested for significance of the interaction term, and then 182 

tested for significance of the main effect terms only if the interaction was non-significant. The 183 

model intercept was set as expression for the Tropical strain at 20°C and P-values were 184 

adjusted for multiple testing using the Benjamini-Hochberg correction with significance inferred 185 

for a false discovery rate (FDR) of 0.05 (Benjamini & Hochberg 1995). To distinguish which 186 

genes responded to hot versus cold rearing conditions for genes with a significant effect of 187 

temperature (either main effect or interaction effect), we performed post-hoc tests on the 188 

individual temperature coefficients (FDR = 0.05). We then classified genes into five mutually 189 

exclusive categories based on whether they showed significant differential expression due to 190 
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genotype (strain) only (“G only” genes), temperature only (“T only” genes), both genotype and 191 

temperature as independent main effects (i.e. additive effects; “G&T” genes), a non-additive 192 

interaction between genotype and temperature (“GxT” genes), or no differential expression (“no 193 

DE” genes). 194 

Co-expression clustering of gene expression profiles 195 

To capture distinct stereotypical profiles of gene expression differences in response to our 196 

temperature and genotype treatments, we performed a co-expression clustering analysis using 197 

the Weighted Gene Correlation Network Analysis (WGCNA) package (Langfelder & Horvath 198 

2008). Because WGCNA works best with normally distributed expression values, we again used 199 

the voom-transformed expression values for the 16,199 filtered genes. A preliminary 200 

hierarchical clustering analysis of the samples rejected batch effects as a source of 201 

heterogeneity among samples, instead identifying both genotype and temperature as likely and 202 

biologically interesting sources of variation in the data (Supplementary Figure S1). We 203 

determined the best soft-thresholding power parameter for our data to be 30 (R2 correlation with 204 

a scale-free network topology = 0.75) based on fits across a range of values from 1 to 42 205 

(Supplementary Figure S2), which also yielded an acceptable level of mean connectivity (k = 206 

115), which is central to the assumptions of the WGCNA model (Zhang & Horvath 2005).  207 

Running WGCNA yielded 124 initial clusters of genes with similar patterns of expression, which 208 

we consolidated further by merging similar modules, defined as those with a correlation of 0.75 209 

or higher with each other (Supplementary Figure S2). This procedure produced 22 co-210 

expression modules plus one pseudo-module (M0) containing the 37 genes that could not be 211 

grouped based on expression pattern. The characteristic expression profile of genes in a 212 

module is represented by WGCNA as the first principal component in expression space, termed 213 

the “module eigengene” (Langfelder & Horvath 2007), which we plotted for each genotype 214 

separately as the module eigengene expression values averaged across the three biological 215 

replicates as a function of rearing temperature. 216 

We performed statistical overrepresentation tests of Gene Ontology (GO) terms associated with 217 

gene lists of each co-expression module using PANTHER (Mi et al. 2010), using all four 218 

PANTHER lists available for C. briggsae: Pathways, GO-slim Molecular Function, GO-slim 219 

Biological Process, and GO-slim Cellular Components. P-values were adjusted for multiple 220 

testing with the Bonferroni correction.  221 
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Genomic enrichment analysis 222 

C. briggsae chromosomes are defined by distinct recombination domains (high recombination 223 

arms, low recombination centres, and small tip regions with little detectable recombination), 224 

which also correlate with the density of coding genes, repetitive elements and single nucleotide 225 

polymorphism (SNPs) (Hillier et al. 2007; Ross et al. 2011; Thomas et al. 2015). We therefore 226 

tested whether gene profiles of differential expression or module affiliation were enriched in 227 

particular chromosomal regions using Bonferroni-adjusted G-tests, defining arm-center 228 

boundaries as in Ross et al. (2011). Analyses of upstream intergenic lengths were log-229 

transformed prior to analysis with ANOVA, excluding genes with overlapping positions in the 230 

genome annotation. We used the transcription factor gene designations from (Haerty et al. 231 

2008). We also cross-referenced differential expression categories and co-expression module 232 

membership with Wormbase-defined C. elegans orthologs found have sex-biased differential 233 

expression by Ortiz et al. (2014), which we used to test for enrichment with G-tests. 234 

SNP and molecular evolution analysis 235 

Genotype-dependent differences in expression could result from allelic differences in the local 236 

vicinity of genes (cis-acting effects; e.g. variants in promoter or nearby enhancer elements) or in 237 

distant regulators (trans-acting effects; e.g. variants in the regulation or functional sequence of 238 

transcription factors or miRNAs) (Rockman & Kruglyak 2006). The allelic differences 239 

contributing to local cis-acting regulation are likely to occur in the upstream promoter regions for 240 

those genes showing genotype-dependent expression (Grishkevich et al. 2012), though there 241 

are additional important roles of downstream and intronic regulatory elements in gene 242 

expression (Merritt et al. 2008). Therefore, we quantified the incidence of single-nucleotide 243 

polymorphisms (SNP) between the AF16 and HK104 genomic backgrounds in 500bp upstream 244 

and downstream flanking regions of coding sequences, as promoter regions tend to be in close 245 

proximity to coding sequences in Caenorhabditis (Saito et al. 2013). 246 

We called single nucleotide variants between AF16 and HK104 based on Illumina paired-end 247 

sequencing of HK104 to ~33x coverage using identical methods of Thomas et al. (2015), 248 

yielding 761,531 SNPs and 173,341 indels. Sequences are available in NCBI in project 249 

accession PRJNA509247. We calculated the per-bp density of SNPs () in the pairwise 250 

comparison of AF16 and HK104 in a 500bp window upstream (and downstream) of coding 251 

sequences, excluding genes internal to operons (and using just the 5’-most or 3’-most operon 252 

gene for upstream or downstream sequence, respectively). 1070 operons comprising 2573 253 
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genes were identified based on orthology and synteny with annotated C. elegans operons, as in 254 

Tu et al. (2015). We also calculated the per-bp incidence of SNPs for different genomic features 255 

on a per-gene basis, including non-synonymous sites, synonymous sites, and introns, in 256 

addition to the 500bp flanking regions, after masking non-covered and low-quality sites. The 257 

effective number of codons (ENC) metric of biased codon usage was calculated for each gene 258 

in the C. briggsae reference genome WS253 with codonw (J. Peden, 259 

http://codonw.sourceforge.net). We used 6911 coding sequence divergence values (dN/dS’) for 260 

1-1 orthologs between C. briggsae and C. nigoni from Thomas et al. (2015). 261 

Results 262 

Widespread genotype- and temperature-dependent differential gene expression 263 

We tested for differential expression across the C. briggsae transcriptome in response to three 264 

rearing temperature conditions and two genotypes, based on gene expression quantification 265 

from 45.7 million uniquely-mapped RNA sequence reads for each triplicate sample on average 266 

(824 million total mapped reads; Supplementary Table S1). Over half (54%, n=8795) of C. 267 

briggsae genes analyzed showed significant differential expression due to genotype, 268 

temperature, or both (16,199 genes tested after quality filtering for the genome’s 21,827 269 

annotated coding genes). The majority of these genes had a significant genotype-specific 270 

response to temperature (n=4919 “GxT genes”; 56% of 8795 differentially expressed genes; 271 

30.4% of all genes analyzed; Supplementary File S1) (Figure 1A). In contrast to this “complex” 272 

GxT pattern, the remaining 3876 differentially expressed genes exhibited a “simple” 273 

dependence on genotype, temperature, or additive effects of both (8.8% “G genes”, n=770; 23% 274 

“T genes”, n=1987; 13% “G&T genes”, n=1119 genes). Although 64% more genes overall 275 

exhibited a simple plastic response to temperature than a deterministic response to genotype 276 

(1987 + 1119 = 3106 vs 770 + 1119 = 1889), the abundance of genes with a complex GxT 277 

interaction of both factors highlights the important roles of both environmental plasticity and 278 

genetic determinism in transcriptome profiles (Figure 1A). 279 

Distinct genetic responses to chronic heat versus cold stress 280 

Genes with expression influenced by chronic cold stress (14°C) responded differently than 281 

genes affected by chronic heat stress (30°C) in terms of the number of genes involved, whether 282 

genes increased or decreased expression, and the magnitude of expression change. In 283 
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particular, cold stress affected expression of 74% of those genes with simple effects of 284 

temperature relative to benign conditions at 20°C (2308 of the 3106 T and G&T genes), 285 

whereas it was heat stress that altered expression of the plurality of GxT genes (2393 of 4919 286 

genes, 49%) (Figure 1B). Among all these genes that responded to temperature in some way, 287 

more genes showed reduced expression at cool temperatures and elevated expression at warm 288 

temperatures, compared to benign conditions (Figure 1C; 1.05-fold reduction for T plus G&T 289 

and 1.3-fold reduction for GxT at 14°C, 6.8-fold elevated for T plus G&T and 1.2-fold elevated 290 

for GxT at 30°C). In terms of the magnitude of differential expression, chronic cold and heat 291 

stress were similar for genes with simple expression dynamics (T and G&T genes; Figure 1D; 292 

6.1 to 6.5-fold increase for heat and cold; 3.0 to 3.7-fold decrease for heat and cold). The 293 

magnitudes of elevated expression change for GxT genes, however, were much larger under 294 

chronic heat stress than under chronic cold stress (hot 8.57-fold vs. cold 3.73-fold increase). 295 

Reciprocally, GxT genes that decreased expression under chronic cold stress had a larger 296 

magnitude change than under chronic heat stress (hot 6.50-fold vs. cold 9.19-fold decrease). 297 

These observations support the idea that distinct genetic networks mediate response to cold 298 

versus heat stress, rather than control by a single shared temperature stress response. 299 

Co-expression modules define gene sets with distinct sensitivities to temperature 300 

and genotype 301 

We defined 22 co-expression clusters in the C. briggsae transcriptome with WGCNA to capture 302 

modules showing distinctive patterns of differential gene expression in response to temperature 303 

and genotype differences (Figure 2, Figure 3, Supplementary File S1). The stereotypical 304 

expression profile for genes in each co-expression module is represented by its “module 305 

eigengene,” defined by the first principal component in expression space (Figure 3). These 306 

eigengene profiles illustrate how a given module reflects a dominant trend of genotype-307 

dependence (e.g. M10), temperature-dependence (e.g. M12), additive effects of genotype and 308 

temperature (G&T, e.g. M4), or genotype-specific sensitivity to temperature (GxT, e.g. M22) 309 

(Figure 3). An average of 46% of genes in a module showed individually-significant differential 310 

expression, ranging from a low of just 6% (M13) to a high of 84% (M15) (Figure 3, 311 

Supplementary Figure S3). Genes with temperature- and genotype-specific differential 312 

expression are concentrated within distinct subsets of modules (Figure 3). Moreover, modules 313 

differ in sequence characteristics and in their enrichment with sex-related differential gene 314 

expression, as described below.  315 
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Rapid molecular evolution in modules sensitive to genotype or temperature alone 316 

Genotype-dependent expression profiles predominate in just two modules (M7 and M10), which 317 

together include 44% (n=342) of all 770 genes with significant ‘genotype-only’ differential 318 

expression. Their eigengene expression profiles show limited dynamics across temperatures, 319 

with expression for the Temperate HK104 genotype consistently higher than Tropical AF16 in 320 

M7 and consistently lower in M10 (Figure 3). M10 is enriched for gene ontology (GO) terms 321 

related to extracellular constituents (Supplementary File S2). GO term enrichment in M7 322 

indicates disproportionate representation of genes with nervous system function, including 11 323 

GABA and 11 acetylcholine receptor activity genes, such as the ortholog of C. elegans nicotinic 324 

acetylcholine receptor acr-9. This nervous system enrichment of M7 is salient due to the HK104 325 

and AF16 strains of C. briggsae differing in rearing-dependent thermal taxis and locomotion 326 

(Stegeman et al. 2013; Stegeman et al. 2019), a suite of behaviors under neural control.  327 

Genes in module M10 have several other special features compared to other modules: rapidly-328 

evolving protein coding sequences (high dN/dS’), high density of SNPs in replacement sites 329 

despite lowest SNP density in introns, the highest enrichment in arm regions of autosomes, 330 

enrichment on the X-chromosome, and exceptional rarity in operons (Figure 4, Figure 5A). We 331 

observed that genes in M10 also have the least consistent expression among replicates, with 332 

very few gene members having orthologs with “oogenic” expression according to Ortiz et al. 333 

(2014) (Figure 4A; Figure 5A). These features imply weaker canalization of expression of genes 334 

in M10, reflecting either weaker purifying selection or perhaps recent adaptive divergence in 335 

average expression levels that has not yet fine-tuned expression variability. 336 

By contrast to the pronounced genotype-dependent differential expression in modules M7 and 337 

M10, two other modules each were comprised of >50% ‘temperature-only genes’ (M12, M15), 338 

although they accounted for just 12% (n=247) of the 1987 total T-only gene set (Figure 3). In 339 

both modules, eigengene expression is highest at high rearing temperatures across genotypes 340 

(Figure 3). In addition, modules M6 and M4 also contained a large fraction of temperature-only 341 

genes, and as large modules they also contain a large count of such genes (Figure 3). Modules 342 

M12 and M15 have genes with the highest average rates of evolution (dN/dS’) and that occur 343 

only rarely in operons (Figure 5). They also have among the lowest average expression levels 344 

and codon usage bias (Figure 5A). Module M12 is highly enriched (3.7-fold) for orthologs with 345 

an oogenic gene classification in C. elegans (Ortiz et al. 2014), whereas M15 is depleted of 346 

such genes by having 2.6-fold fewer than expected (Figure 4A). Module M12 GO terms show 347 
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enrichment for genes associated with chromatin, like the ortholog of C. elegans cec-7, but with 348 

just 8 such genes of the 245 in M12, it is unclear how distinctive a property this is. More 349 

enigmatically, M15 shows no GO term enrichment, providing little clue as to whether these heat-350 

sensitive and rapidly-evolving genes act in related functional pathways (Supplementary File S2).  351 

Sperm gene function associated with both temperature- and genotype-352 

dependence 353 

Two co-expression modules were especially enriched in genes with additive effects of both 354 

genotype and temperature (M4, M5; G&T genes), accounting for over half (56%) of all such 355 

genes genome-wide (Figure 3). Their eigengene profiles show high expression at low 356 

temperatures, with the Tropical AF16 genotype having consistently higher expression than 357 

Temperate HK104 in M5 and vice versa for M4 (Figure 3). Interestingly, we found that module 358 

M5 is 3.3-fold enriched for orthologs of “spermatogenic” genes from Ortiz et al. (2014), a level 359 

unlike any other module (Figure 4A). Genes in M5 also are rare on the X-chromosome and 360 

nearly absent from operons, as expected for sperm-related genes (Reinke et al. 2000; Reinke & 361 

Cutter 2009; Albritton et al. 2014), and with fewer transcription factors (TFs) than most modules 362 

(Figure 4B; Figure 5A). Moreover, GO term enrichment in M5 indicates a prominent role of 363 

genes with phosphatase/kinase activity and glycogen metabolism (Supplementary File S2), 364 

including the orthologs of C. elegans gsp-3/4 and aagr-1. Previous expression studies have 365 

reported male-biased and sperm-related genes to be enriched for genes with 366 

phosphatase/kinase GO terms (Reinke et al. 2004; Thomas et al. 2012), and some 367 

glycoproteins play crucial roles in sperm competitiveness in C. briggsae (Yin et al. 2018). Sperm 368 

fertility is known to show temperature sensitivity differently between the AF16 and HK104 369 

genotypes of C. briggsae (Prasad et al. 2011; Poullet et al. 2015). Thus, the M5 expression 370 

pattern implies that universally higher expression for a suite of sperm-related genes, rather than 371 

a GxT profile, is associated with the greater sperm fertility at high temperatures observed in the 372 

AF16 genetic background.  373 

Modules enriched for GxE and non-differential expression involved in core 374 

biological processes 375 

Eight modules contained an especially large set of GxT genes (M1, M2, M3, M9, M14, M16, 376 

M18, M22), indicating a prominent influence of genotype-specific responses to temperature 377 

(Figure 3). These eight modules accounted for 71% (n=3477) of all GxT genes genome-wide. 378 
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The eigengene profiles for four of them show dramatic ‘crossing reaction norms’ such that the 379 

Temperate HK104 and Tropical AF16 genotypes exhibit opposite expression responses to 380 

rearing temperature (M9, M14, M18, M22; Figure 3). The known genotype-dependence in C. 381 

briggsae for how sensitive oogenesis is to temperature, with strong reductions of mitotic and 382 

meiotic cell counts in the gonad of HK104 animals (Poullet et al. 2015), suggests prime 383 

candidates among the GxT genes in M9 that has 2.7-fold enrichment for orthologs with oogenic 384 

roles (Ortiz et al. 2014) (Figure 4A). The other four modules show a much more exaggerated 385 

eigengene expression response for just one of the genotypes specifically under high 30°C 386 

conditions (M1, M2, M3, M16; Figure 3), rather than crossing reaction norms.  387 

GO terms for core biological processes like mitochondria-related, ribosome-related, and/or 388 

translation-related function are enriched in M14, M18 and M22, with M1, M2 and M9 enriched 389 

for chromatin and transcription-related GO terms (Supplementary File S2). Genes in modules 390 

M18 and M22 also are enriched for orthologs of “sex neutral” genes (Ortiz et al. 2014), are 391 

enriched in operons, and include few TFs (Figure 4A; Figure 5A). Consistent with these 392 

modules involving core biological functions, we also observed the distinctive features of M18 393 

and M22 in having genes with the highest average expression and strongest codon usage bias, 394 

while also having the strongest protein sequence conservation (lowest dN/dS’) and the lowest 395 

incidence of replacement-site SNPs (Figure 5; Supplementary Figure S5).  396 

The seven remaining co-expression modules consisted primarily of genes that lacked 397 

individually significant differential expression, though their module eigengene profiles 398 

nevertheless suggest important effects of genetic background and temperature on the 399 

stereotypical expression profile (M8, M11, M13, M17, M19, M20, M21). Several of these 400 

modules showed GO term enrichment for various metabolic processes (M8, M11, M17, M21) 401 

and transcriptional or translational functions (M8, M11, M13, M20). Among these modules, M8, 402 

M19 and M20 are extremely enriched for orthologs of “oogenic” genes from Ortiz et al. (2014), 403 

but include very few operonic genes (Figure 4A; Figure 5A). M20 also has the highest incidence 404 

of TFs (29%) among all co-expression modules, has low average expression, and is enriched 405 

for genes on autosomal arms and on the X-chromosome (Figure 4, Figure 5A, Supplementary 406 

Figure S5). Genome-wide, TFs are more likely to show no differential expression than other 407 

kinds of genes (no DE for 54.5% of TFs vs. 45.2% of other genes; G-test 2=29.2, P<0.0001). 408 

Module M21 is distinctive in having the highest incidence of genes in operons (60.4%), which 409 

are extremely rare on autosomal arms and the X-chromosome (Figure 4, Figure 5A). The 96 410 

genes in M21 have extremely consistent expression across replicates, with most showing no 411 
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individually-significant differential expression due to either temperature or genotype (Figure 3; 412 

Figure 5A). In C. elegans, these features are typical of genes that are expressed constitutively 413 

across development (Cutter et al. 2019). 414 

Genomic position and differential gene expression 415 

We hypothesized that genomic architectural and molecular evolutionary features might lead to 416 

local enrichment of genes with genotype-dependent differential-expression. For example, SNP 417 

variation is greater in the high recombination arm domains of autosomes in C. briggsae 418 

(Thomas et al. 2015), and the X-chromosome exhibits a variety of distinctive features compared 419 

to autosomes (Ross et al. 2011; Cutter 2018). Therefore, we tested for non-random distributions 420 

of differentially-expressed genes along chromosomes and between chromosomes. We found 421 

that autosome arm domains contained 22% more genes with genotype-dependent expression 422 

than expected by chance, and also were slightly enriched for GxT genes (1.04-fold; Figure 1B). 423 

Chromosome arms of C. elegans also have been reported to contain a disproportionate 424 

representation of genes with genotype-dependent differential expression (Denver et al. 2005; 425 

Rockman et al. 2010; Grishkevich et al. 2012). By contrast, it was center domains that 426 

contained 15% more G&T genes than expected (Figure 1B). Temperature-only genes and 427 

genes with no differential expression were randomly distributed between arm and center 428 

domains (Figure 1B). Among the 22 co-expression modules, we observed 9 modules to have 429 

significant enrichment in arms and 5 enriched in center domains of autosomes (Figure 4B). 430 

Thus, gene expression profiles are not spatially independent and genome structural features 431 

yield predictable patterns of differential expression within and between chromosomes. 432 

We also found the X-chromosome to be enriched for genes with significant differential 433 

expression due to genetic background (G-only genes) as well as for genes with no individually-434 

significant differential expression (X under-representation for G&T and GxT genes; Figure 1B). 435 

X-linked biases also held true for co-expression modules (X enriched for 8 modules, autosomes 436 

enriched for 8 modules; Figure 4B). Genes from module M21, in particular, are virtually absent 437 

from the X-chromosome (Figure 4B), likely associated with the prevalence of operon genes in 438 

this co-expression module that also tend to be exceptionally rare on the X-chromosome 439 

(Blumenthal et al. 2002; Reinke & Cutter 2009). Chromosomes II and IV were distinctive in 440 

having no module with significant enrichment or under-enrichment of genes (Supplementary 441 

Figure S4). Other autosomes, however, were especially enriched (or under-enriched) for genes 442 

in particular modules, for example, genes from M21 were 2.3-fold enriched on Chromosome III 443 
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and genes from M16 were 2.0-fold enriched on Chromosome V (Supplementary Figure S4). 444 

Given the extreme enrichment on Chromosome V for M16 and its genotype-specific expression 445 

response at 30°C (Figure 3), it is notable that a quantitative trait locus (QTL) mapping study in 446 

C. briggsae found QTL on Chromosome V to control differences in heat-sensitive movement 447 

behaviors (Stegeman et al. 2019). 448 

In C. elegans, loci with genotype-dependent expression tend to have longer upstream intergenic 449 

regions, interpreted as being consistent with more complex cis-regulation of these genes 450 

(Grishkevich et al. 2012). We observed a similar pattern in C. briggsae, with median upstream 451 

length of 1367bp for G-only genes versus 1074bp for T-only genes (ANOVA F4,15414=5.84, 452 

P<0.0001, Tukey post-hoc tests on log-transformed upstream intergenic length show G-only > 453 

T-only). After partitioning the genomic locations of differentially-expressed genes to account for 454 

their non-random distributions in the genome, however, we found that only those G-only genes 455 

in autosomal centers have significantly longer upstream intergenic regions compared to T-only 456 

genes (arms ANOVA F4,5653=0.10, P=0.98; centers F4,6410=5.50, P=0.0002, Tukey post-hoc tests 457 

on log-transformed upstream intergenic length show G-only > T-only). However, genes in 458 

autosomal centers with no differential expression also had longer upstream intergenic lengths 459 

than T-only genes and were not significantly different in length to GxT genes or G&T genes. We 460 

also find significant variation among co-expression modules in upstream intergenic length (arm 461 

ANOVA F22,5635=13.59, P<0.0001; center ANOVA F22,6392=15.48, P<0.0001), but observe no 462 

clear trend between length and the relative composition of genotype- or temperature-dependent 463 

genes. Thus, our analysis of C. briggsae upstream length distributions does not strongly support 464 

the notion that loci with genotype-dependent differential expression have more complex cis-465 

regulatory controls. 466 

Genome structure drives SNP associations with differential expression  467 

We quantified the incidence of single-nucleotide polymorphisms (SNP) for the 761,531 SNPs 468 

between the AF16 and HK104 genomic backgrounds in 500bp upstream and downstream 469 

flanking regions of coding sequences, as promoter regions tend to be in close proximity to 470 

coding sequences in Caenorhabditis (Saito et al. 2013). We found zero upstream SNPs for 471 

26.2% of the 16,167 genes that had expression and genomic coverage in both AF16 and 472 

HK104 (23.0% G-only, 30.9% G+T, 25.6% GxT). Such genes should have no role for cis-acting 473 

SNPs, suggesting this value as a lower-bound estimate for the incidence of entirely trans-acting 474 

regulatory differences that may alter genotype-dependent expression. Moreover, of 475 
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differentially-expressed genes affected by genotype, 32.6% have zero downstream SNPs, 476 

20.3% have zero intronic SNPs, and 18.6% have zero SNPs in the coding sequence, also 477 

consistent with a major role of trans-regulatory control being responsible for the genotype-478 

dependence of differential expression. Consistent with this idea, C. elegans shows a 479 

predominant role of trans-regulatory control in genotype-dependent differential expression to 480 

acute heat stress (Snoek et al. 2017). 481 

We further predicted that an important role of cis-acting SNPs would be most evident by their 482 

enrichment in association with G-only genes (as well as G&T genes and GxT genes), whereas 483 

SNPs would be underrepresented in genes with no differential expression or T-only profiles. 484 

Genome-wide, we did observe significant differences among differential expression categories 485 

in the incidence of SNPs in upstream (ANOVA F4,16141=7.63, P<0.0001), downstream 486 

(F4,16141=4.75, P=0.0008), and intronic portions of coding genes (F4,16141=7.82, P<0.0001). 487 

Overall, G-only genes have significantly higher SNP densities than other expression classes at 488 

replacement sites, synonymous sites, introns and flanking sequences and genes with a GxT 489 

pattern of differential expression had a greater density of SNPs than T-only genes only in 490 

introns. These results mirror the report by Grishkevich et al. (2012) for C. elegans that SNPs are 491 

enriched in promoters of genes with genotype-dependent differential expression.  492 

Our findings therefore superficially support the idea of a key role for cis-acting SNPs controlling 493 

genotype-dependent differential expression. However, we observed that this trend is driven 494 

primarily by the enrichment of G-only genes in chromosome arms (Figure 1B), where SNPs are 495 

disproportionately abundant for both functionally-constrained and unconstrained sites (Thomas 496 

et al. 2015). When we account for genomic region, SNP density remains elevated for G-only 497 

genes among genes in autosomal centers but not in arms (ANOVA F4,6729=3.60, P=0.0062, G-498 

only > other gene classes with Tukey HSD post-hoc test; Figure 5C). Thus, genome structure is 499 

an important determinant of inferences about cis-acting regulators of genotype-dependent 500 

differential expression. We hypothesize that the SNPs in upstream regions of genes in the “SNP 501 

deserts” of chromosome centers are more likely to represent causal regulatory variants that 502 

modulate gene expression. 503 

Molecular evolution is decoupled between coding and regulatory sequence 504 

regions 505 
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Replacement-site SNPs are rarest in the coding sequences of non-differentially expressed 506 

genes (in both chromosome arms and centers), consistent with these genes having strongest 507 

selective constraint that most effectively eliminates new mutations (Figure 5C). Weaker 508 

selective constraint among genes with genotype-dependent differential expression that allows 509 

mutations to accumulate could result in their excess of coding SNPs. However, replacement-site 510 

divergence between species, which reflects a longer timescale of evolution, is no different 511 

between G-only genes and non-differentially expressed genes (median G-only dN/dS’ = 0.0580, 512 

no DE dN/dS’ = 0.0511; no significant difference from Tukey’s post-hoc test on log-transformed 513 

values). These contrasting patterns for the scale of divergence between phylogeographic 514 

groups and between species suggest that relaxed selection on G-only genes might be 515 

evolutionarily recent or that adaptive divergence between Temperate and Tropical 516 

phylogeographic groups of C. briggsae contribute disproportionately to loci with genotype-517 

dependent differential expression.  518 

Consistent with the idea that genes and modules with many SNPs are subject to weaker 519 

selective constraints, co-expression modules with high average coding SNP density have low 520 

average expression and weak codon usage bias (Figure 5A; Figure 5B; Supplementary Figure 521 

S5). Associations were weaker for non-coding flanking regions (Supplementary Figure S5). 522 

Modules M10, M16, M12 and M15 were most enriched for coding SNPs (Figure 5B), also 523 

exhibiting among the lowest average expression and codon bias. Modules with high coding SNP 524 

density also show high long-term molecular evolutionary divergence between species (dN/dS’; 525 

Figure 5B), further implicating their constituent genes being subject to weaker selective 526 

constraints, or potentially, a greater incidence of adaptive divergence.  527 

Finally, we tested for molecular evolutionary correspondence between coding and non-coding 528 

sequence. First, we found that SNPs and interspecies divergence correlate positively across 529 

genes for replacement sites, consistent with concordant pressures of purifying selection at both 530 

short and long evolutionary timescales on coding sequences (log-transformed nonsynonymous and 531 

dN/dS’, F1,5741 = 646.7, P<0.0001). However, interspecies divergence in coding sequence did 532 

not correlate with SNP density in non-coding sequences (Supplementary Figure S6). When we 533 

analyzed average values for co-expression modules instead of per-gene values, however, we 534 

observe positive correlations of non-coding SNP density with both coding SNPs and 535 

interspecies divergence (Supplementary Figure S6), suggesting that the distinct gene contents 536 

and genomic locations of genes among modules partly contributes to the coding-noncoding 537 

correspondence at the module level. Overall, these observations support the idea that selection 538 
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pressures are largely decoupled between coding sequences and non-coding flanking 539 

sequences that contain regulatory elements. 540 

Muted differential expression role among heat shock proteins 541 

We hypothesized that if heat shock proteins (hsp) modulate transcriptomic responses to chronic 542 

temperature stress then we would detect disproportionate differential expression for hsp genes. 543 

Of the 24 hsp genes in our expression dataset, only 8 showed significant differential expression, 544 

which is less than the genome overall (33% vs. 54%; G-test 2 = 4.267, df = 1, P = 0.039), and 545 

similar to the genome in differential expression categories (Fisher Exact Test, P = 0.35). This 546 

suggests that hsp genes may play a lesser role in temperature stress experienced chronically 547 

across development, despite their profound importance to maintaining homeostasis in the face 548 

of acute heat stress (Lindquist & Craig 1988); even with acute heat shock, however, few genes 549 

show consistent upregulation in C. elegans (GuhaThakurta et al. 2002).  550 

Discussion 551 

The C. briggsae transcriptome shows widespread differential expression arising from distinct 552 

chronic temperatures over development and from distinct genotypes representative of 553 

phylogeographic groups from Tropical versus Temperate parts of the world, altering expression 554 

for over half of its genes. Genotype-specific responses to temperature represent the most 555 

common kind of differential expression (i.e. non-additive genotype-by-environment interactions), 556 

with less than a quarter of differentially-expressed genes being sensitive to temperature alone 557 

or genotype alone. Our temperature and genotype conditions cluster transcriptome responses 558 

into 22 co-expression modules, each comprised of genes with distinctive functional and 559 

evolutionary properties that reveal an important role for genome structure in transcriptomic 560 

patterns of differential expression. 561 

The influence of genome structure in differential expression profiles 562 

We found that genome structure plays an important role in shaping the landscape of differential 563 

expression of the C. briggsae transcriptome, and in the molecular evolutionary features of the 564 

corresponding genes. Transcriptome profiles cluster within and between chromosomes, making 565 

them susceptible to cryptic correlations with other non-random genomic features. For example, 566 

genes showing genotype-dependent expression were enriched on C. briggsae chromosomal 567 

arms, genomic regions that also are rich in SNPs and with high rates of recombination (Ross et 568 
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al. 2011; Thomas et al. 2015). This pattern is reminiscent of the excess of eQTL and loci with 569 

genotype-dependent expression on C. elegans chromosome arms (Denver et al. 2005; 570 

Rockman et al. 2010; Grishkevich et al. 2012). One possibility is that direct selection drives this 571 

pattern, as could occur from either adaptive divergence being more prevalent or from purifying 572 

selection being weaker for genes on high recombination arms. Alternatively, it might result as a 573 

byproduct of linked selection, known to be potent in the C. briggsae genome (Cutter & Choi 574 

2010; Thomas et al. 2015), whereby elimination of polymorphisms from low recombination 575 

centers simply leads to few loci with the potential to show genotype-dependent differential 576 

expression.  577 

The higher recombination rate of arm regions means that natural selection favoring a given 578 

allele at one locus will be subject to less interference from selection at other loci in the genome 579 

(Hill & Robertson 1966; Comeron et al. 2008; Cutter & Payseur 2013). Experiments implicate 580 

temperature-related adaptive divergence between C. briggsae genotypes from Tropical and 581 

Temperate latitudes (Prasad et al. 2011). Consequently, gene-specific adaptation to distinct 582 

ecological conditions should operate more efficiently for genes on arms, which might yield the 583 

enrichment of genotype-dependent expression on arms as well as the more rapid sequence 584 

evolution of genes on arms. However, it is difficult to exclude a role of linked selection, as the 585 

high self-fertilization in C. briggsae leaves a substantial imprint on genomic patterns of variation 586 

for both synonymous and non-synonymous polymorphisms (Cutter & Choi 2010; Thomas et al. 587 

2015). Moreover, if our observations of genotype-dependent differential expression depend 588 

primarily on a small number distant trans-acting upstream regulators that influence many target 589 

loci (rather than local cis-acting allelic variants for many genes), then the bias toward 590 

chromosome arms of differentially-expressed genes might simply be a byproduct of non-random 591 

distributions of gene functions encoded across the genome. 592 

Sequence conservation and regulatory controls 593 

The three co-expression modules with the strongest coding sequence conservation also have 594 

the highest make-up of GxT genes, which exhibit crossing reaction norms and very high 595 

average expression as well as functional enrichment of core biological processes (M14, M18, 596 

M22). This finding of especially strong purifying selection implicates either adaptive plasticity in 597 

the expression control of these modules or unusually low robustness of expression levels to 598 

perturbation from both genotypic and environmental sources. At the other end of the spectrum, 599 

modules displaying the highest average rates of sequence evolution have the lowest overall 600 
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expression and the most pronounced dependence on genotype alone (M10) or temperature 601 

alone (M12 and M15). These findings are consistent with expression level as a key determinant 602 

of rates of coding sequence evolution, with faster molecular evolution of weakly expressed 603 

genes. Similarly, C. elegans genes showing non-interaction differential expression tend to have 604 

low expression levels (Grishkevich et al. 2012). These results can be explained by weaker 605 

purifying selection on low-expression genes, though it remains possible that adaptive change 606 

might also play a disproportionate role in their molecular evolution.  607 

Among genes located in chromosome centers, those with genotype-dependent differential 608 

expression are enriched for SNPs in upstream non-coding regions, consistent with local cis-609 

acting alleles affecting their expression. However, long-term coding sequence divergence 610 

correlates poorly with non-coding SNP density across genes, implying that the strength of 611 

selection on coding sequence variation may be decoupled from cis-regulatory genetic variation 612 

(Castillo-Davis et al. 2004; Jordan et al. 2005; Lemos et al. 2005; Liao & Zhang 2006; Tirosh & 613 

Barkai 2008) or that regulatory elements are too sparse within flanking DNA to leave a clear 614 

selective signature with our approach. Nevertheless, the abundance of loci with zero upstream 615 

SNPs suggests that distant trans-regulatory control is a profound source of genetic variation in 616 

the differential expression patterns that we quantified, consistent with studies of short 617 

evolutionary timescales in other systems (Stern & Orgogozo 2008; Wittkopp & Kalay 2012). For 618 

example, eQTL analysis for both C. elegans and yeast implicates a stronger role for trans- 619 

relative to cis-regulation of genotype-environment interactions (Li et al. 2006; Smith & Kruglyak 620 

2008).  621 

Gene function in differential expression profiles 622 

We found that module M5 was unique in having a large representation of sperm-related genes 623 

among its orthologs to C. elegans genes with spermatogenesis-enriched function. It includes 624 

overrepresentation of genes with phosophatase/kinase activity and is associated with glycogen 625 

metabolism, which previous studies show to be especially important in sperm function (Reinke 626 

et al. 2004; Thomas et al. 2012; Wu et al. 2012; Yin et al. 2018). Both genotype and 627 

temperature were important determinants of expression profiles in M5 (Figure 3), implicating the 628 

potential for both adaptive divergence and phenotypic plasticity to influence gene responses. 629 

Sperm-dependent fertility appears to be especially sensitive to high temperature, with Tropical 630 

and Temperate genotypes of C. briggsae differing in sensitivity (Prasad et al. 2011; Poullet et al. 631 

2015), though module M5 shows additive contributions for genetic and temperature effects. As 632 
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expected for sperm genes (Reinke et al. 2000; Reinke & Cutter 2009; Albritton et al. 2014), 633 

genes from M5 are especially rare on the X-chromosome and virtually absent from operons.  634 

Opposite to the rarity of operon genes in sperm-enriched module M5, fully 60% of the genes in 635 

module M21 occurred in operons and yet less than 17% of them had individually significant 636 

differential expression. Overall, genes in operons were much less likely to show significant 637 

differential expression than non-operon genes (43% of operon vs. 56% of non-operon genes; 638 

Fisher exact text P<0.0001). C. elegans operon genes, most of which are conserved in C. 639 

briggsae (Qian & Zhang 2008), are known to show high expression during growth, as for gonad 640 

tissue (Reinke & Cutter 2009) and following growth-arrested states (Zaslaver et al. 2011), and 641 

generally have non-dynamic expression profiles across ontogeny (Cutter et al. 2019). These 642 

observations are consistent with operon genes being disproportionately robust to both 643 

environmental and genetic perturbation.  644 

Plasticity versus adaptive divergence in expression profiles 645 

In C. elegans and C. remanei, plasticity dominates the transcriptome response to temperature 646 

stress, at least in terms of acute heat shock (Jovic et al. 2017; Sikkink et al. 2019). We also 647 

found in C. briggsae that over 90% of differentially-expressed genes changed at least in part 648 

due to temperature, but more commonly due to chronic cool rather than warm conditions. If 649 

environment-dependent expression responses reflect adaptive plasticity, then our observations 650 

suggest stronger canalization of stereotyped cool-rearing expression responses. While the large 651 

number of such differentially-expressed genes does not pinpoint the key determinants of 652 

temperature-dependent adaptive divergence, we can nevertheless largely rule out the nearly 653 

9500 genes in the genome that show temperature-only effects or no differential expression. Our 654 

analysis of C. briggsae finds a stronger signal of genotype-dependent differential gene 655 

expression than the C. remanei study, perhaps reflecting the longer period of divergence 656 

between AF16 and HK104 than between the experimental evolution lines for C. remanei, in 657 

addition to technical differences between the studies (Sikkink et al. 2019). Warm conditions 658 

causing pervasive genotype-specific responses in C. briggsae might reflect adaptive evolution 659 

by the distinct genetic backgrounds from Tropical and Temperate regions (Prasad et al. 2011). 660 

Phylogenetic comparative analysis of differential expression among genotypes and 661 

environments could prove fruitful in deciphering whether shared gene networks across species 662 

provide common substrate for adaptive divergence and adaptive plasticity in organismal 663 

responses to chronic and acute temperature stress. 664 
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Conclusions 665 

Genome-wide differential gene expression is sensitive to both extrinsic temperature conditions 666 

and to intrinsic genomic background in the nematode C. briggsae, with co-expression modules 667 

defining distinctive functional features, genomic distributions and molecular evolutionary 668 

patterns of their constituent genes. Most genotype-specific responses occur under heat stress, 669 

indicating that cold versus heat stress responses involve distinct genomic architectures. Co-670 

expression modules associated with reproductive function, and which exhibit strong sensitivity 671 

to both temperature and genotype, provide candidates for adaptive divergence between 672 

Temperate and Tropical phylogeographic groups of C. briggsae. The fastest-evolving protein 673 

coding sequences correspond to a predominant influence of temperature alone or genotype 674 

alone, and have overall low levels of expression across conditions. However, chromosome-675 

scale patterning of nucleotide differences is a key predictor of SNP content of genes, 676 

undermining gene-centric causes and cis-regulatory inferences for SNP differences across 677 

differential-expression classes of genes. These findings highlight the powerful way that genome 678 

structure can influence transcriptome profiles to make them susceptible to cryptic correlations 679 

with other non-random genomic features. 680 
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Figures 880 

 881 
Figure 1. (A) Differential expression (DE) analysis identified 54% of 16,199 genes to have 882 

significant differential expression (8795 genes at 5% FDR in limma, colored area proportional to 883 

gene number). Most DE genes had significant interaction effects (55.9% “GxT”), whereas 12.6% 884 

of DE genes had independent additive effects of both genotype and rearing temperature 885 

(“G&T”). Other DE genes showed effects of genotype alone or rearing temperature treatments 886 

alone (8.8% “G only”; 22.6% “T only”). (B) G-only and GxT genes are significantly enriched on 887 

autosomal arms, whereas G&T genes are enriched in autosomal centers (colors as in A; * 888 

indicates G-test Bonferroni corrected P<0.05). Genes with G-only or no differential expression 889 

(“no DE”) are enriched on the X-chromosome, whereas genes with GxT and G&T patterns of 890 

differential expression are underrepresented on the X-chromosome (* indicates G-test 891 

Bonferroni corrected P<0.05). (C) Similar proportions of GxT genes increase vs decrease 892 

expression at a given stressful rearing temperature relative to benign 20°C (filled vs empty 893 

orange triangles within a temperature condition), but fewer GxT genes show expression 894 

differences for cool rearing than for hot rearing (orange triangles for 14°C vs 30°C). By contrast, 895 

genes with a non-interacting effect of temperature on expression (T only and G&T genes) show 896 

disproportionate response to cool rearing (blue triangles for 14°C vs all other triangles). (D) The 897 

magnitude of expression change is similar for genes with a non-interacting effect of temperature 898 

(T only and G&T genes) under chronic cold stress and chronic heat stress (blue boxes for 14°C 899 

vs 30°C; median with interquartile range, whiskers show 1.5x interquartile range). For GxT 900 

genes, however, the magnitude of expression increase is greater under heat stress than cold 901 

stress (orange boxes for 14°C vs 30°C). 902 
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 903 
Figure 2. (A) WGCNA analysis yielded 23 co-expression modules for 16,199 genes (including 904 

module M0 with genes that did not cluster), after merging modules with expression similarity 905 

distance <0.25 from an initial set of 124 co-expressed gene sets. The dendrogram and heatmap 906 

summarize module expression profile similarity. For example, (B) module M10 is comprised of 907 

338 genes with disproportionate representation of genotypic differences in expression, reflected 908 

as higher expression by the AF16 (Tropical) genotype. (C) Module M15, by contrast, is enriched 909 

in genes with individually significant differential expression due to rearing temperature, as 910 

reflected in higher expression when reared at 30°C. See also Figure 3. 911 
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 912 
Figure 3. Co-expression clustering of 16,199 genes into 23 modules, reflected in eigengene 913 

plots of normalized log2-transformed expression profiles across rearing temperature treatments 914 

(14°C, 20°C, 30°C) for each genotype (Tropical AF16, Temperate HK104). Modules range in 915 

size from 3203 genes (M1) to 49 genes (M22). Module compositions contained distinctive 916 

representation of genes with individually-significant patterns of differential expression (cf. Figure 917 

1); modules with highest incidence of T-only genes indicated with blue (M12, M15), G-only 918 

genes in red (M7, M10), G&T genes (M4, M5), and GxT genes with crossing or non-crossing 919 

reaction norms (M9, M14, M18, M22; M1, M2, M3, M16) (Supplementary Figure S3). 920 
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 921 
Figure 4. (A) Module gene over- and under-enrichment for C. elegans orthologs with 922 

spermatogenic, oogenic, or sex neutral expression profiles from Ortiz et al. (2014). Log-2 923 

interval scale for observed/expected number of genes per module in radial plot, with black line 924 

indicating a value of 1 (outer curve indicates 4-fold enrichment, innermost curve indicates 2-5 925 

under-enrichment). (B) Module gene over- and under-enrichment across the genome shows 926 

biases toward autosomal arms (values < 1 indicate enrichment in autosomal centers) and for X-927 

linkage (values < 1 indicate enrichment on autosomes). Significant enrichment indicated by * 928 

(P<0.05 after Benjamini-Hochberg adjustment; FDR = 0.05) and ** (P<0.001 after Benjamini-929 

Hochberg adjustment; FDR = 0.05). Coloring of module names in A and B corresponds to 930 

differential enrichment patterns indicated in Figure 3 (blue, T only; red, G only; purple, G&T; 931 

orange = GxT with crossing reaction norm profile; yellow, GxT with non-crossing reaction norm; 932 

gray, black, differential expression).  933 
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 934 
 935 

Figure 5. (A) Heatmap of module features, sorted by average normalized expression. Modules 936 

with high expression profiles tend to contain genes with stronger codon usage bias, greater 937 

sequence constraint (low dN/dS’), and more operons. (B) Modules with gene orthologs having 938 

little coding sequence divergence between C. briggsae and C. nigoni also have low densities of 939 

replacement-site SNPs in coding sequences. Coloring of module names in A and B corresponds 940 

to differential enrichment patterns indicated in Figure 3 (blue, T only; red, G only; purple, G&T; 941 

orange = GxT with crossing reaction norm profile; yellow, GxT with non-crossing reaction norm; 942 

gray, black, differential expression). (C) Among genes with distinctive profiles of individually-943 

significant differential expression, linkage to autosomal arms versus centers represents the 944 

primary driver of SNP variation with little difference among DE categories for a given genomic 945 

site type (1kb upstream of CDS, intronic, 1kb downstream of CDS, synonymous sites).  946 
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Supplementary Information 947 

 948 

Supplementary File S1. “SuppFile_voomNormFiltLog2Expr_DE_modules.csv” contains log-2 949 

normalized expression values for each of the 16,199 genes analyzed in each replicate sample, 950 

as well as the category of differential expression (G-only, T-only, G&T, GxT, noDE) and name of 951 

the co-expression module (M0 through M22). Columns labeled with sample name (treatment-952 

replicate), where treatment is a combination of genotype and rearing temperature for each of 953 

three biological replicates (“AF” = Tropical AF16 genotype, “HK” = Temperate HK104 genotype; 954 

14=14°C rearing, 20=20°C rearing, 30=30°C rearing). 955 

 956 

Supplementary File S2. “SuppTable_GO.xlsx” contains lists of gene ontology term enrichment 957 

with summary statistics for different PANTHER GO-slim categories for each co-expression 958 

module. 959 

960 
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Supplementary Table S1. Number and percentage of reads that mapped to unique genomic 961 

locations with STAR. 962 

  963 

  
Sample 
(treatment-rep)* 

Number of uniquely 
mapped reads 

% of reads that 
uniquely mapped   

 AF14-1 32007586 93.35%  

 AF14-2 47012080 93.84%  

 AF14-3 54523984 94.15%  

 AF20-1 57787850 94.17%  

 AF20-2 62122726 93.43%  

 AF20-3 43596994 93.75%  

 AF30-1 66295835 93.74%  

 AF30-2 35618842 93.20%  

 AF30-3 33087508 90.10%  

 HK14-1 51264144 93.39%  

 HK14-2 43616826 93.65%  

 HK14-3 48035023 92.74%  

 HK20-1 30262908 90.76%  

 HK20-2 49528582 93.95%  

 HK20-3 41332043 94.26%  

 HK30-1 51537189 91.44%  

 HK30-2 40748065 92.22%  

  HK30-3 35632338 73.62%   

 *AF=AF16, HK=HK104 genotypes; 14=14°C, 20=20°C, 30=30°C rearing  964 
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 965 
 966 

Supplementary Figure S1. (A) Multi-dimensional scaling plot (MDS) of filtered, normalized, and 967 

log-transformed count data for each sample. Sample labels (treatment-replicate) are colored by 968 

experimental treatment for a given genotype and rearing temperature combination (“AF” = 969 

Tropical AF16 genotype, “HK” = Temperate HK104 genotype; 14=14°C rearing, 20=20°C 970 

rearing, 30=30°C rearing). The x- and y-axes show the two principal components that explain 971 

most variation. Biological replicates that cluster together in the plot are more similar to each 972 

other, indicating consistency across replicates. (B) After filtering out genes with very low to no 973 

counts, TMM normalization for different library sizes, and log-transforming count data, a 974 

dendrogram reveals similarity of samples within strain and within temperature (“temp”), but not 975 

replicate (“rep”); red shading along a row indicates shared strain, temperature or replicate value. 976 

This suggests data heterogeneity among samples due to experimental treatments, not batch 977 

effects. (C) Quantile-quantile plot for normalized, voom-transformed count data shows good 978 

approximation to a normal distribution (red line). 979 
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 980 
 981 

Supplementary Figure S2. (A) Analysis of soft-thresholding powers revealed 30 to be the 982 

power at which the scale-free fit is maximized (R2 = 0.75) and most closely approximates a 983 

scale-free network. (B) Analysis of a range of soft-thresholding powers revealed a value of 30 to 984 

have a mean connectivity of at least 100 (k = 115), while also maximizing fit to a scale-free 985 

network. (C) Clustering of 16,199 genes with WGCNA into a preliminary set of 124 co-986 

expression clusters (red in heatmap indicates maximum similarity and blue no similarity; color 987 

bars along the x- and y-axes correspond to the 124 clusters). Clusters with similarity distance 988 

<0.25 were merged, leading to the 22 co-expression modules (plus pseudo-module M0) 989 

analyzed in the main text. 990 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 9, 2019. ; https://doi.org/10.1101/517235doi: bioRxiv preprint 

https://doi.org/10.1101/517235
http://creativecommons.org/licenses/by-nc/4.0/


38 

 991 
 992 

Supplementary Figure S3. Co-expression module eigengene plots of normalized, log2-993 

transformed expression across temperature treatments for each genotype (pink AF16, green 994 

HK104). Module names colored as in Figure 3 of the main text according to representation of 995 

individually significant differentially expressed genes within the module. 996 
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 997 
 998 

Supplementary Figure S4. Enrichment (observed/expected) number of genes on each 999 

chromosome for modules (A) and differential-expression categories (B). Values in black bold 1000 

text indicate significant enrichment or under-enrichment after Bonferroni multiple-test correction 1001 

(2 test df=1 with =0.05/132 for modules, =0.05/30 for categories). 1002 
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 1003 
Supplementary Figure S5. SNP density in upstream, downstream, and intronic non-coding 1004 

locations of genes and at synonymous and non-synonymous sites within coding sequences, 1005 

averaged for genes within each co-expression module as a function of average module 1006 

expression. Correlation across modules: module mean nonsynonymous × average expression 1007 

Spearman  = -0.92, P<0.0001; nonsynonymous × ENC  = 0.418, P=0.048; module mean  × 1008 

average expression Spearman , upstream = -0.72, P<0.0001; downstream = -0.77, P<0.0001; intronic 1009 

= -0.54, P<0.0082. Points are labeled and colored with module name as in Figure 3 of the main 1010 

text. 1011 
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 1012 
Supplementary Figure S6. SNP density in upstream, downstream, and intronic non-coding locations of genes and at non-1013 

synonymous sites within coding sequences, averaged for genes within each co-expression module (left panels) or per gene (right 1014 

panels) as a function of average module interspecies divergence (dN/dS’) or non-synonymous site substitution. Modules are labeled 1015 

and colored as in Figure 3 of the main text.  1016 
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