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Abstract 
  

Background: Transcriptome profiling for distinct environmental and genetic perturbations 

permits genomic characterization of gene expression modularity, and the robustness of that 

modularity in the face of extrinsic and genetically intrinsic changes. We quantified the 

transcriptome responses for distinct temperature-adapted genotypes of the nematode 

Caenorhabditis briggsae when exposed to chronic temperature stress.  

Results: We found that 56% of the 8795 differentially-expressed genes show genotype-specific 

changes in expression in response to temperature (genotype-by-environment interactions, 

GxE). Most genotype-specific responses occur under heat stress, indicating that cold versus 

heat stress responses involve distinct genomic architectures. The 22 co-expression modules 

that we identified differ in their enrichment of genes with genetic versus environmental versus 

interaction effects, as well as their genomic spatial distributions, functional attributes, and rates 

of molecular evolution at the sequence level. Modules enriched for genes with simple effects of 

either genotype or temperature alone on profiles of differential expression tend to evolve 

especially rapidly.  

Conclusions: These results illustrate how the form of transcriptome modularity, in terms of 

response to environmental and genetic perturbation, ramifies to distinctive profiles of 

evolutionary change. Chromosome-scale patterning of nucleotide differences predominates as 

the source of genetic differences among expression profiles rather than cis-acting regulatory 

alleles, and natural selection regimes are largely decoupled between coding sequences and 

non-coding flanking sequences that contain regulatory elements. 
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Background 
Evolutionary adaptation to varying environmental conditions starts with genetic variability, with 

alternate alleles often affecting gene regulation and expression. Consequently, understanding 

the plasticity, robustness, and modularity of transcriptome expression to genetic and 

environmental perturbation is crucial to deciphering how organisms adapt in nature [1]. Gene 

expression represents the most basic level at which phenotypic plasticity to a perturbation can 

manifest, and therefore underpins the degree of robustness of higher level phenotypes in 

response to the same perturbation [2, 3]. Because the transcriptome changes in response both 

to extrinsic factors (e.g. environmental inputs) and to factors that are intrinsic to the organism 

itself (e.g. genetic perturbation) [4, 5], we must consider both extrinsic and intrinsic contributions 

in the dynamism of genetic network composition and its genomic architecture. How much of the 

genome is expressed differentially in a plastic manner sensitive to environmental conditions 

versus a genetically deterministic manner independently of environmental conditions versus a 

non-additive combination of both? How modular are distinct gene expression responses and 

what characteristics of the genome predict their composition? What is the relative importance of 

transcriptional versus post-transcriptional regulation in expression plasticity, and of cis- versus 

trans-regulatory causes of expression differences among divergent genetic backgrounds [6, 7]? 

These questions frame some of the key outstanding issues in connecting transcriptome activity 

to environmental heterogeneity and the molecular evolution of genomes. 

Temperature conditions represent a pervasive extrinsic, environmental perturbation that 

influences gene expression and can help reveal the relative roles of plasticity versus robustness 

of transcriptome profiles [8, 9]. If expression plasticity is adaptive, then we expect organisms to 

modulate their transcriptomes with chronic exposure to heat or cold stress in a coordinated way 

to maintain fitness. However, homeostasis may break down at environmental extremes and lead 

to non-adaptive changes in gene expression that simply reflect a ‘broken’ biological system. 

Pathways associated with the heat shock response are implicated in physiological buffering to 

acute heat stress [10], but chronic sublethal heat stress may not activate this same stress 

response. By characterizing profiles of transcriptome change across ontogenetic and 

physiological timescales of temperature acclimatization, we can test for the similarity and 

uniqueness of plastic responses from physiological timescales to evolutionary timescales of 

genetic divergence in the control over transcriptome change. 

Allelic differences provide another kind of perturbation, a genetic perturbation, that can expose 

the sensitivity of genetic networks to expression changes [11]. Expression modulated by cis-

regulatory alleles may minimize adverse pleiotropic effects and, consequently, modest effects of 

cis-regulatory SNPs might only be pronounced when they accrue over long periods of time to 

give rise to the kinds of expression differences that accumulate between species [12-14]. By 

contrast, changes to trans-acting regulators like transcription factors may lead to many 

downstream pleiotropic consequences, so large trans-acting effects might make up a 

substantial fraction of the genetic variability for gene expression differences among individuals 

within a species and yet rarely contribute to expression differences between species [12, 15-18]; 

because most changes that affect fitness are deleterious and eventually get eliminated by 
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natural selection [19]. The intermediate timescale of adaptive divergence between populations 

of the same species thus has the potential to expose whether distinct regulatory architecture 

must be invoked to describe transcriptome changes across the extremes of timescales from 

polymorphism within a population to divergence between species. 

In this context, the nematode C. elegans has been subject to extensive transcriptome analysis 

in response to heat shock and knock-out mutation starting with microarrays [20], with more 

recent studies using recombinant inbred lines of wild strains to map polymorphic loci that 

contribute genotype-dependent responses to temperature [21, 22]. For example, Li et al. [22] 

found that among 496 detectable expression quantitative trait loci (eQTL), trans-eQTL were 

nearly 8-times as likely as cis-eQTL to show genotype-by-temperature responses. Moreover, 

eQTL are found disproportionately on SNP-dense chromosome arms in C. elegans [23]. 

Grishkevich et al. [21] reported that constitutively-expressed genes in C. elegans tend to have 

short intergenic regions, consistent with simple regulatory controls, and that genes with 

genotype-dependent expression or genotype-by-environment interactions have longer 

intergenic regions, consistent with complex regulation and a larger mutational target. How 

general these properties are across species remains unknown. 

Here we quantified transcriptome expression for C. briggsae nematodes from populations with 

distinct genetic backgrounds thought to have adapted to temperature differences between their 

origins in Tropical versus Temperate latitudes [24-26]. By rearing animals at hot and cold 

sublethal temperatures near their fertile limits, as well as under benign thermal conditions, we 

characterize genotypic and environmentally-induced differential gene expression across the 

genome. We then describe transcriptome complexity in terms of co-expression modularity to 

reflect transcriptome plasticity and robustness to environmental and genetic perturbations, 

demonstrating distinctive genomic spatial distributions, functional attributes, and rates of 

molecular evolution at the sequence level.  

Results 

Widespread genotype- and temperature-dependent 

differential gene expression 

Over half (54%, n=8795) of all 16,199 genes with detectable expression after quality filtering 

differed significantly across genotypes, temperatures, or both (of 21,827 annotated coding 

genes). The majority of differentially expressed genes had a significant genotype-specific 

response to temperature, with these genotype-by-temperature interactions (“GxT genes”) 

comprising 56% of the 8795 differentially expressed genes (n=4919; 30.4% of all genes with 

detectable expression; Supplementary File S1) (Figure 1A). Another 1119 genes (13%) showed 

significant differential expression from the independent, additive effects of both genotype and 

temperature (“G & T genes”). The remaining 2757 genes exhibited a response to either just 

temperature or just genotype, with 2.5-fold more genes showing differential expression due to 
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temperature alone (23% “T genes”, n=1987) than to genotype alone (8.8% “G genes”, n=770). 

As a result, 64% more genes overall exhibited a simple “plastic” response to temperature than a 

“deterministic” response to genotype (1987 + 1119 = 3106 vs 770 + 1119 = 1889). In addition, 

the 4919 genes with a more complex influence of both genotype and temperature (GxT genes) 

further accentuates the important roles of both environmental plasticity and genetic determinism 

in transcriptome profiles (Figure 1A). 

Genes with expression influenced by chronic cold stress (14°C) responded differently than 

genes affected by chronic heat stress (30°C) in terms of the number of genes involved, whether 

genes increased or decreased expression, and the magnitude of expression change. In 

particular, expression of 74% of genes with simple effects of temperature (T and G & T genes) 

differed significantly from benign conditions at 20°C in response to rearing under cold stress 

(2308 of 3106 genes) whereas it was heat stress that altered expression of the plurality of GxT 

genes (2393 of 4919 genes, 49%) (Figure 1B). However, among all the genes that responded to 

temperature in some way, more genes reduced their expression at cool temperatures and 

elevated their expression at warm temperatures, compared to benign conditions (Figure 1C). 

This contrasting bias in the direction of difference in expression level between cool and warm 

temperatures held true both for genes with a simple or complex influence of temperature (Figure 

1C; 1.05-fold reduction for T plus G&T and 1.3-fold reduction for GxT at 14°C, 6.8-fold elevated 

for T plus G&T and 1.2-fold elevated for GxT at 30°C). By contrast, genes with simple 

expression dynamics showed similar magnitudes of expression changes for both chronic cold 

and heat stress (T and G&T genes; Figure 1D; 6.1 to 6.5-fold increase for heat and cold; 3.0 to 

3.7-fold decrease for heat and cold). Those GxT genes that increased expression under chronic 

heat stress, however, showed much larger magnitudes of change than for chronic cold stress 

(hot 8.57-fold vs. cold 3.73-fold increase). Reciprocally, GxT genes that decreased expression 

under chronic cold stress had a larger magnitude change than with chronic heat stress (hot 

6.50-fold vs. cold 9.19-fold decrease). These observations support the idea that distinct genetic 

networks mediate response to cold versus heat stress, rather than control by a single shared 

temperature stress response. 

 

Co-expression modules differ in functionality 

We defined 22 co-expression clusters in the C. briggsae transcriptome with WGCNA to capture 

modules of broad patterns of differential gene expression in response to distinct temperatures 

and genotypes (Figure 2, Figure 3, Supplementary File S1). Six modules each containing >1000 

genes comprise 75% of all genes (M1-M6), whereas just two co-expression modules have <100 

genes each (Modules M21 and M22, plus the 37-gene ‘remainder’ pseudo-module M0).  

Each co-expression module displays a stereotypical expression profile for genes contained 

within it, represented by the “module eigengene” that is defined by the first principal component 

in expression space (Figure 3). These eigengene profiles illustrate how a given module reflects 

a dominant trend of genotype-dependence (e.g. M10), temperature-dependence (e.g. M12), 

additive effects of genotype and temperature (G&T, e.g. M4), or genotype-specific sensitivity to 
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temperature (GxT, e.g. M22) (Figure 3). When we quantified the incidence of genes with 

individually-significant differential expression profiles within modules, we found modules to 

range from a low of just 6% (M13) to a high of 84% (M15) with an average of 46% of genes in a 

module having individually-significant differential expression (Figure 3, Supplementary Figure 

S3). Moreover, we observed genes with temperature- and genotype-specific differential 

expression to be concentrated within particular subsets of modules (Figure 3) and that the 

genes within distinct co-expression modules also differed in sequence characteristics and in 

their enrichment with sex-related differential gene expression, as described below.  

Genotype-dependent expression profiles predominate in just two modules (M7 and M10), which 

together include 44% (n=342) of all 770 genes with G-only differential expression. Their 

eigengene expression profiles show limited dynamics across temperatures, with expression for 

the Temperate HK104 genotype consistently higher than Tropical AF16 in M7 and consistently 

lower in M10 (Figure 3). Gene ontology (GO) term enrichment in M7 indicates disproportionate 

representation of genes with nervous system function, including 11 GABA and 11 acetylcholine 

receptor activity genes, including the ortholog of C. elegans nicotinic acetylcholine receptor acr-

9. M10 is enriched for GO terms related to extracellular constituents (Supplementary File S2). 

Notably, the HK104 and AF16 strains of C. briggsae differ in rearing-dependent thermal taxis 

[26], a suite of behaviors under neural control. Genes in module M10 have several other special 

features compared to other modules: rapidly-evolving genes (high dN/dS’), high density of SNPs 

in replacement sites despite lowest SNP density in introns, the highest enrichment in arm 

regions of autosomes, enrichment on the X-chromosome, and exceptional rarity in operons 

(Figure 4, Figure 5A). We observed that genes in M10 also have the least consistent expression 

among replicates, with very few gene members having orthologs with “oogenic” expression 

according to Ortiz et al. [27] (Figure 4A; Figure 5A). These features imply weaker canalization of 

expression of genes in M10, reflecting either weaker purifying selection or perhaps recent 

adaptive divergence in average expression levels that has not yet fine-tuned expression 

variability. 

Two other modules were especially enriched in genes with additive effects of both genotype and 

temperature (M4, M5; G&T genes), accounting for over half (56%) of all such genes genome-

wide (Figure 3). Eigengene profiles for M4 and M5 show high expression at low temperatures, 

with the Temperate HK104 genotype having consistently higher expression than Tropical AF16 

in M4 and vice versa for M5 (Figure 3). M4 is enriched in lipid-related GO terms, as well as for 

extra-cellular matrix, cell adhesion, and serine peptidase inhibitors; including for example the C. 

briggsae ortholog of C. elegans ttm-5 and human DEGS2, with sphingolipid desaturase activity. 

By contrast, GO term enrichment in M5 indicates a prominent role of genes with 

phosphatase/kinase activity and glycogen metabolism (Supplementary File S2), including the 

orthologs of C. elegans gsp-3/4 and aagr-1. Previous expression studies have reported male-

biased and sperm-related genes to be enriched for genes with phosphatase/kinase GO terms 

[28, 29], and that at least some glycoproteins play crucial roles in sperm competitiveness [30]. 

Interestingly, we found that module M5 is extremely enriched (3.3-fold) in orthologs of 

“spermatogenic” genes from Ortiz et al. [27], a level unlike any other module (Figure 4A). Both 

sperm and oocyte fertility show temperature sensitivity differently between these genotypes of 

C. briggsae [24, 25]. Genes in M5 also are rare on the X-chromosome and nearly absent from 
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operons, as expected for sperm-related genes [31-33], with fewer transcription factors (TFs) 

than most modules (Figure 4B; Figure 5A).  

By contrast to these co-expression modules with strong representation of genes with 

independent allelic genetic effects, two distinct modules each were comprised of >50% 

‘temperature only genes’ (M12, M15), although they accounted for just 12% (n=247) of the 1987 

total temperature genes (Figure 3). Modules M6 and M4 also contained a large fraction of 

temperature-only genes, and as large modules they also contain a large count of such genes 

(Figure 3). For both M12 and M15, eigengene expression is highest at high rearing 

temperatures for both the Temperate and Tropical genotypes (Figure 3). Module M12 is highly 

enriched (3.7-fold) for orthologs with an oogenic gene classification in C. elegans [27], whereas 

M15 is depleted of such genes by having 2.6-fold fewer than expected (Figure 4A). Module M12 

GO terms show enrichment for genes associated with chromatin, like the ortholog of C. elegans 

cec-7, but with just 8 such genes of the 245 in M12, it is unclear how distinctive a property this 

is. Even more enigmatically, M15 has no GO term enrichment, providing little clue as to whether 

these heat-sensitive genes act in related functional pathways (Supplementary File S2). These 

modules have genes with the highest average rates of evolution (dN/dS’) and that occur only 

rarely in operons (Figure 5). The genes in modules M12 and M15 also have among the lowest 

average levels of expression and codon usage bias (Figure 5A). 

Eight modules contained a disproportionately large set of GxT genes (M1, M2, M3, M9, M14, 

M16, M18, M22), indicating a prominent influence of genotype-specific responses to 

temperature (Figure 3). These eight modules accounted for 71% (n=3477) of all GxT genes 

genome-wide. The eigengene profiles for M9, M14, M18 and M22 show dramatic crossing 

‘reaction norms’ such that the Temperate HK104 and Tropical AF16 genotypes exhibit opposing 

expression responses to rearing temperature (Figure 3). By contrast, eigengene profiles for M1, 

M2, M3 and M16 show how one of the genotypes has a much more exaggerated expression 

response specifically at 30°C, the highest temperature (Figure 3). GO terms related to 

chromatin and transcription were enriched in M1, M2 and M9, whereas M14, M18 and M22 

showed enrichment for mitochondria-related, ribosome-related, and/or translation-related GO 

terms; M3 was enriched for genes with nervous system-related terms (Supplementary File S2). 

No GO terms were enriched in M16, despite its 8 of its 18 gene orthologs assessed for gonad 

expression showing spermatogenic roles (1.7-fold enrichment) [27] (Figure 4A). By contrast, M9 

was 2.7-fold enriched for orthologs with oogenic roles [27] (Figure 4A). Among these modules 

enriched with GxT genes, we observed that M18 and M22 were especially unusual in having 

genes that tend to be short, with the strongest codon usage bias and highest average 

expression, while also having the lowest incidence of replacement-site SNPs and lowest 

average rates of protein evolution (dN/dS’) (Figure 5). Genes in modules M18 and M22 also are 

enriched for orthologs of “sex neutral” genes from [27], are enriched in operons, and include few 

TFs (Figure 4A; Figure 5A). M22 also is distinctive among modules in its genes having among 

the lowest density of SNPs in upstream flanking sequence (Supplementary Figure S4). These 

diverse observations for M18 and M22 are highly compatible with their especially strong 

enrichment of ribosome-related GO terms. 
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The seven remaining co-expression modules consisted primarily of genes that lacked 

individually significant differential expression, though their eigengene profiles nevertheless 

suggest important effects of genetic background and temperature on the stereotypical 

expression profile for genes in those modules (M8, M11, M13, M17, M19, M20, M21). Several of 

these modules showed GO term enrichment for various metabolic processes (M8, M11, M17, 

M21) and transcriptional or translational functions (M8, M11, M13, M20). Among these modules, 

M8, M19 and M20 are extremely enriched for orthologs of “oogenic” genes from Ortiz et al. [27], 

but include very few operonic genes (Figure 4A; Figure 5A). Oogenesis is especially sensitive to 

high temperatures in HK104, yielding especially strong reductions in mitotic and meiotic cell 

counts in the gonad [25]. M20 also has the highest incidence of TFs (29%) among all co-

expression modules, and is enriched for genes on autosomal arms and on the X-chromosome 

(Figure 4, Figure 5A). Genome-wide, TFs are more likely to show no differential expression than 

other kinds of genes (no DE for 54.5% of TFs vs. 45.2% of other genes; G-test 2=29.2, 

P<0.0001). In contrast to M20, M21 is distinctive in having the highest incidence of genes in 

operons (60.4%), which are extremely rare on autosomal arms and the X-chromosome (Figure 

4, Figure 5A). The 96 genes in M21 have extremely consistent expression across replicates, 

with most showing no individually-significant differential expression due to either temperature or 

genotype (Figure 3; Figure 5A). 

 

Muted differential expression role among heat shock 

proteins 

We hypothesized that if heat shock proteins (hsp) modulate transcriptomic responses to chronic 

temperature stress then we would detect disproportionate differential expression for hsp genes. 

Of the 24 hsp genes in our expression dataset, only 8 showed significant differential expression, 

which represents a smaller proportion of differentially-expressed genes (33%) than in the 

genome overall (54%) (G-test 2 = 4.267, df = 1, P = 0.039). The limited contribution of hsp 

differential expression suggests that hsp genes may play a less crucial role in chronic 

temperature stress, despite their profound importance to maintaining homeostasis in the face of 

acute heat stress [10]; even with acute heat shock, few genes show consistent upregulation in 

C. elegans [34]. These 8 hsps include 1 G-only gene, 2 T-only genes, and 5 GxT genes, 

indistinguishable from the representation of these categories throughout the genome (Fisher 

Exact Test, P = 0.35). We found 8 of the hsp genes to occur in modules with predominantly GxT 

eigengene profiles (M2, M3), 6 were in predominantly G&T modules (M4, M5), and 1 was in a 

predominantly G-only module (M7). The eigengene profiles for modules containing most of the 

hsps had higher expression in the Temperate genotype than the Tropical and none had highest 

expression at 20°C, suggesting that hsp genes that respond to temperature stress (either 

cooling or heating) do so by increasing expression.  

Genomic position and differential gene expression 
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We hypothesized that genomic architectural and molecular evolutionary features might lead to 

local enrichment of genes with genotype-dependent differential-expression. For example, SNP 

variation is greater in the high recombination arm domains of autosomes in C. briggsae [35], 

and the X-chromosome exhibits a variety of distinctive features compared to autosomes [36, 

37]. Therefore, we tested for non-random distributions of differentially-expressed genes along 

chromosomes and between chromosomes. We found that autosome arm domains contained 

22% more genes with genotype-dependent expression than expected by chance, and also were 

slightly enriched for GxT genes (1.04-fold; Figure 1B). Chromosome arms of C. elegans also 

have been reported to contain a disproportionate representation of genes with genotype-

dependent differential expression [21, 23, 38]. By contrast, it was center domains that contained 

15% more G&T genes than expected (Figure 1B). Temperature genes and genes with no 

differential expression were randomly distributed between arm and center domains (Figure 1B). 

Among the 22 co-expression modules, we observed 9 modules to have significant enrichment in 

arms and 5 enriched in center domains of autosomes (Figure 4B). 

We also found the X-chromosome to be enriched for genes with significant differential 

expression due to genetic background (G-only genes) as well as for genes with no individually-

significant differential expression (Figure 1B). This X-linked bias held true for some co-

expression modules with an overabundance of these gene classes (M10, M20; Figure 4B). 

Autosomes, on the other hand, contained disproportionate representation of G&T and GxT 

genes, also reflected among some co-expression modules (M5, M18) (Figure 1B, Figure 4B). 

Overall, the X-chromosome was enriched for 8 modules, autosomes were enriched for 8 

modules, and genes from 6 modules were randomly distributed between autosomes and the X-

chromosome (Figure 4B). Genes from module M21, in particular, are virtually absent from the X-

chromosome (Figure 4B), likely associated with the prevalence of operonic genes in this co-

expression module that also tend to be exceptionally rare on the X-chromosome [32, 39]. 

In C. elegans, loci with genotype-dependent expression tend to have longer upstream intergenic 

regions, interpreted as being consistent with more complex regulation of these genes [21]. We 

observed a similar pattern in C. briggsae (ANOVA F4,15414=5.84, P<0.0001, Tukey post-hoc tests 

on log-transformed upstream intergenic length show G-only > T-only), with median upstream 

length of 1367bp for G-only genes versus 1074bp for T-only genes. After partitioning the 

genomic locations of differentially-expressed genes to account for their non-random distributions 

in the genome, we found that only those G-only genes in autosomal centers have significantly 

longer upstream intergenic regions compared to T-only genes (arms ANOVA F4,5653=0.10, 

P=0.98; centers F4,6410=5.50, P=0.0002, Tukey post-hoc tests on log-transformed upstream 

intergenic length show G-only > T-only). However, genes in autosomal centers with no 

differential expression also had longer upstream intergenic lengths than T-only genes and were 

not significantly different in length to GxT genes or G&T genes. We also find significant variation 

among co-expression modules in upstream intergenic length (arm ANOVA F22,5635=13.59, 

P<0.0001; center ANOVA F22,6392=15.48, P<0.0001), but observe no clear trend between length 

and the relative composition of genotype- or temperature-dependent genes. 
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Genomic SNP associations with differential expression of 

the transcriptome 

 

Genotype-dependent differences in expression could result from allelic differences in the local 

vicinity of genes (cis-acting effects; e.g. variants in promoter or nearby enhancer elements) or in 

distant regulators (trans-acting effects; e.g. variants in the regulation or functional sequence of 

transcription factors or miRNAs) [40]. The allelic differences contributing to local cis-acting 

regulation are likely to occur in the upstream promoter regions for those genes showing 

genotype-dependent expression [21], though there are additional important roles of downstream 

and intronic regulatory elements in gene expression [41]. Therefore, we quantified the incidence 

of single-nucleotide polymorphisms (SNP) between the AF16 and HK104 genomic backgrounds 

in 500bp upstream and downstream flanking regions of coding sequences, as promoter regions 

tend to be in close proximity to coding sequences in Caenorhabditis [42]. 

 

We first quantified how often genes lacked SNPs altogether (for the 16,167 genes with 

expression and genomic coverage in both AF16 and HK104), which excludes a role for cis-

acting SNPs for such loci. Specifically, we found that 26.2% of such genes have zero upstream 

SNPs (23.0% G-only, 30.9% G+T, 25.6% GxT), suggesting this value as a lower-bound 

estimate for the incidence of entirely trans-acting regulatory differences altering expression of 

loci with genotype-dependent expression. Moreover, of differentially-expressed genes affected 

by genotype, 32.6% have zero downstream SNPs, 20.3% have zero intronic SNPs, and 18.6% 

have zero SNPs in the coding sequence, also consistent with a major role of trans-regulatory 

control being responsible for the genotype-dependence. Genes with differential expression due 

to non-genetic factors might also show unusual incidence of SNPs, as cis-acting regulation 

would show no detectable allelic effects for such loci. While T-only genes had a nominally 

higher incidence of genes that lacked SNPs altogether, it was not significantly different from the 

frequency of genes with zero SNPs observed for other expression classes (G-test 2=8.58, 

P=0.073).  

 

We further predicted that an important role of cis-acting SNPs would be most evident by their 

enrichment in association with G-only genes (as well as G&T genes and GxT genes), whereas 

SNPs would be underrepresented in genes with no differential expression or T-only profiles. 

Genome-wide, we did observe significant differences among differential expression categories 

in the incidence of SNPs in upstream (ANOVA F4,16141=7.63, P<0.0001), downstream 

(F4,16141=4.75, P=0.0008), and intronic portions of coding genes (F4,16141=7.82, P<0.0001). 

Overall, G-only genes have significantly higher SNP densities than other expression classes at 

replacement sites, synonymous sites, introns and flanking sequences and genes with a GxT 

pattern of differential expression had a greater density of SNPs than T-only genes only in 

introns. These results are consistent with the report by Grishkevich et al. [21] for C. elegans that 

SNPs are enriched in promoters of genes with genotype-dependent differential expression.  

 

Our findings therefore superficially support the idea of a key role for cis-acting SNPs controlling 

genotype-dependent differential expression. However, we observed that this trend is driven 
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primarily by the enrichment of G-only genes in chromosome arms (Figure 1B), where SNPs are 

disproportionately abundant for both functionally-constrained and unconstrained sites [35]. 

When we account for genomic location, SNP density remains elevated for G-only genes among 

genes in autosomal centers but not in arms (ANOVA F4,6729=3.60, P=0.0062, G-only > other 

gene classes with Tukey HSD post-hoc test; Figure 5C).  

 

One possible interpretation of the excess of SNPs among genes with genotype-dependent 

differential expression is that these genes are subject to weaker selective constraint that allows 

SNPs to accumulate within them. Replacement-site SNPs are rarest in non-differentially 

expressed genes (in both chromosome arms and centers), which would be consistent with non-

DE genes having strongest selective constraint that most effectively eliminates new mutations 

(Figure 5C). However, replacement-site divergence that reflects a longer timescale of evolution 

is no different between G-only genes and non-differentially expressed genes (median G-only 

dN/dS’ = 0.0580, no DE dN/dS’ = 0.0511; no significant difference from Tukey’s post-hoc test on 

log-transformed values). These contrasting patterns suggest that relaxed selection on G-only 

genes might be evolutionarily recent or that adaptive divergence between Temperate and 

Tropical phylogeographic groups of C. briggsae might contribute disproportionately to this class 

of loci. 

 

Among co-expression modules, average coding SNP density correlated strongly and negatively 

with the average expression level and codon usage bias among genes (module mean 

nonsynonymous × average expression Spearman  = -0.92, P<0.0001; nonsynonymous × ENC  = 

0.418, P=0.048; Supplementary Figure S4). Module SNP density for non-coding flanking 

regions, however, showed weaker negative correlations with expression level  (module mean  

× average expression Spearman , upstream = -0.72, P<0.0001; downstream = -0.77, P<0.0001; 

intronic = -0.54, P<0.0082; Supplementary Figure S4). In particular, coding SNPs were most 

enriched in modules M10, M16, M12 and M15 (Figure 5B); genes in these modules also exhibit 

among the lowest average levels of expression and codon bias. Coding SNPs are most under-

represented in modules M22, M18 and M14, which have especially high average expression 

levels and strong codon usage bias (Figure 5A; Figure 5B). Coding SNP density also correlates 

with long-term molecular evolutionary divergence between species (dN/dS’; Figure 5B). These 

observations support the idea that genes and modules with many SNPs are subject to weaker 

selective constraints.  

 

Finally, we tested for correspondence between coding and non-coding sequence molecular 

evolution. While SNP density at replacement sites correlated strongly with the incidence of 

SNPs in flanking or intronic non-coding sequences in a gene-wise analysis, interspecies 

divergence in coding sequence did not correlate with SNP density in non-coding sequences 

(Supplementary Figure S5). SNPs and interspecies divergence correlate positively across 

genes for replacement sites, consistent with similar pressures of purifying selection at both short 

and long evolutionary timescales (log-transformed nonsynonymous and dN/dS’, F1,5741 = 646.7, 

P<0.0001). When we instead analyzed average values for co-expression modules, however, we 

observe positive correlations of non-coding SNP density with both coding SNPs and 

interspecies divergence (Supplementary Figure S5), suggesting that the distinct gene contents 
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and genomic locations of genes among modules partly contributes to the coding-noncoding 

correspondence at the module level. Overall, these observations support the idea that selection 

pressures are largely decoupled between coding sequences and non-coding flanking 

sequences that contain regulatory elements. 

Discussion 
Temperature-dependent plasticity in gene expression represents the predominant mode of 

differential expression in our analysis of the C. briggsae transcriptome, relative to genotype-

dependent expression differences. Specifically, 91% (n=8025) of the 8795 genes we found to 

be differentially expressed showed temperature-dependence, with most of the purely plastic 

response being to cool relative to benign conditions. In C. remanei, plasticity also dominates the 

transcriptome response to temperature stress, at least in terms of acute heat shock [43]. 

Despite this profound environmental plasticity, we also found genetic effects for 77% (n=6808) 

of differentially-expressed genes. Moreover, more than half (56%) of differentially expressed 

genes show complex non-additive effects of both genotype and temperature (GxT genes), with 

genotype-dependence most often due to warm relative to benign conditions. If environment-

dependent expression responses reflect adaptive plasticity, then our observations suggest 

canalization of stereotyped cool-rearing expression responses whereas responses to warm 

conditions might reflect adaptive evolution by the distinct genetic backgrounds of C. briggsae 

from Tropical and Temperate regions. 

 

We identified 22 co-expression modules in the C. briggsae transcriptome that define collections 

of genes with distinctive functional and evolutionary properties, in addition to their unique 

profiles of expression as a function of genotype and temperature. Genes in modules with the 

most pronounced dependence on genotype alone (M10) or temperature alone (M12 and M15) 

exhibited the lowest overall expression levels and the highest average rates of sequence 

evolution across modules. The amount of expression appears to be a key determinant of rates 

of coding sequence evolution, with slower molecular evolution of highly expressed genes. 

Moreover, C. elegans genes showing non-interaction differential expression similarly tend to 

have low expression levels [21]. Whether these patterns primarily reflect adaptive sequence 

divergence or, instead, weaker purifying selection on low-expression genes is difficult to 

determine from the present data alone. More common among co-expression modules, gene 

profiles exhibited a complex genotype × temperature (GxT) interaction, either showing ‘crossing 

reaction norms’ such that the genotypes responded to temperature in opposite ways or with one 

genotype showing a more extreme response than the other at some temperatures. The three 

modules with slowest average rates of coding sequence evolution also have the highest make-

up of GxT genes, which exhibit crossing reaction norms and very high average expression 

levels (M14, M18, M22). This finding of especially strong purifying selection implicates either 

adaptive plasticity in the expression control of these modules or unusually low robustness of 

expression levels to perturbation from both genotypic and environmental sources. 
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The incidence of coding SNP differences between Tropical AF16 and Temperate HK104 tracks 

closely the inter-species divergence across modules, implicating consistent differences in 

selective constraint on coding sequence among modules at both short (SNP) and long (dN/dS’) 

evolutionary timescales. These molecular evolutionary properties of genes in co-expression 

modules contrasts with the less clear patterns among genes categorized by mode of differential 

expression (i.e. G-only, T-only etc.), suggesting that the finer-grained grouping of genes 

according to co-expression profiles yields more cohesive biological units for analysis.  

 

When we cross-correlated gene identity within co-expression modules with functional attributes 

of their orthologs in C. elegans, we found that module M5 was unique in having a large 

representation of sperm-related genes among its orthologs. It includes overrepresentation of 

genes with phosophatase/kinase activity and associated with glycogen metabolism, which 

previous studies show to be especially important in sperm function [28-30, 44]. Both genotype 

and temperature were important determinants of expression profiles in M5 (Figure 3), 

implicating the potential for both adaptive divergence and phenotypic plasticity to influence gene 

responses. Sperm-dependent fertility appears to be especially sensitive to high temperature, 

with Tropical and Temperate genotypes of C. briggsae differing in sensitivity [24, 25]. As 

expected for sperm genes [31-33], genes from M5 are especially rare on the X-chromosome 

and virtually absent from operons.  

 

Across all genes, those in operons were much less likely to show significant differential 

expression than non-operonic genes (43% of operonic vs. 56% of non-operonic genes; Fisher 

exact text P<0.0001). The trend is even more extreme among the genes in co-expression 

module M21, for which fully 60% of the genes occurred within operons: less than 17% of its 

genes had individually significant differential expression. This observation is consistent with 

operonic genes being disproportionately robust to both environmental and genetic perturbation. 

C. elegans operon genes, most of which are conserved in C. briggsae [45], are known to show 

high expression during growth, as for gonad tissue [32] and following growth-arrested states 

[46]. At the other end of the operonic spectrum, only 2% of genes in M20 are operonic, and 

instead 29% of this module of low-expression genes correspond to transcription factors; just 

27% of genes in M20 show individually significant differential expression. 

 

Genes with genotype-dependent differential expression located in chromosome centers are 

enriched for SNPs in upstream non-coding regions, consistent with local cis-acting alleles 

affecting their expression. However, long-term coding sequence divergence correlates poorly 

with non-coding SNP density across genes, implying that the strength of selection on coding 

sequence variation may be decoupled from cis-regulatory genetic variation [47-51] or that 

regulatory elements are too sparse within flanking DNA to leave a clear selective signature with 

our approach. Nevertheless, the abundance of loci with zero upstream SNPs suggests that 

distant trans-regulatory control is a profound source of genetic variation in the differential 

expression patterns that we quantified, consistent with studies of short evolutionary timescales 

[12, 14]. At least in yeast, eQTL analysis implicates a stronger role for trans- relative to cis-

regulation of genotype-environment interactions [16].  
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Genes showing genotype-dependent expression were enriched on C. briggsae chromosomal 

arms, genomic regions that also are rich in SNPs and with high rates of recombination [35, 36]. 

This pattern is reminiscent of the excess of eQTL and loci with genotype-dependent expression 

on C. elegans chromosome arms [21, 23, 38]. Does this pattern reflect direct selection on the 

affected loci, as could occur from either adaptive divergence being more prevalent or from 

purifying selection being weaker for genes on high recombination arms? Or instead might it be a 

byproduct of linked selection, whereby elimination of SNPs in low recombination centers has 

simply led to few loci with the potential to show genotype-dependent differential expression?  

 

The higher recombination rate of arm regions means that natural selection favoring a given 

allele at one locus will be subject to less interference from selection at other loci in the genome 

[52-54]. Experiments implicate temperature-related adaptive divergence between C. briggsae 

genotypes from Tropical and Temperate latitudes [24]. Consequently, gene-specific adaptation 

to distinct ecological conditions should operate more efficiently for genes on arms, which might 

yield the enrichment of genotype-dependent expression on arms as well as the more rapid 

sequence evolution of genes on arms. However, it is difficult to exclude the role of linked 

selection, as the high self-fertilization in C. briggsae leaves a substantial imprint on genomic 

patterns of variation for both synonymous and non-synonymous polymorphisms [35, 55]. 

Moreover, if our observations of genotype-dependent differential expression depend primarily 

on a small number distant trans-acting upstream regulators that influence many target loci 

(rather than local cis-acting allelic variants for many genes), then the bias toward chromosome 

arms of differentially-expressed genes might simply be a byproduct of non-random distributions 

of gene functions encoded across the genome. 

 

Regardless of the potential role of chromosome structure in adaptation, we can largely rule out 

the nearly 9500 genes with T-only effects or no differential expression as encoding key 

determinants of temperature-dependent adaptive divergence between AF16 and HK104. In 

experimentally evolved populations of C. remanei in response to acute heat stress, Sikkink et al. 

(2018) report genetic responses that yielded altered baseline expression as well as GxE, 

reminiscent of some of the differences we observe for the Temperate and Tropical genotypes of 

C. briggsae. Our analysis of C. briggsae finds a stronger signal of genotype-dependent 

differential gene expression than the C. remanei study, perhaps reflecting the longer period of 

divergence between AF16 and HK104 than between the experimental evolution lines for C. 

remanei, in addition to technical differences between the studies [43]. Phylogenetic comparative 

analysis of differential expression among genotypes and environments could prove fruitful in 

deciphering whether shared gene networks across species provide common substrate for 

adaptive divergence and adaptive plasticity in organismal responses to chronic and acute 

temperature stress. 

 

Conclusions 
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Genome-wide differential gene expression is sensitive to both extrinsic temperature conditions 

and to intrinsic genomic background in the nematode C. briggsae, with 56% of the 8795 

differentially expressed genes in our study exhibiting complex non-additive effects of both 

factors. Most genotype-specific responses occur under heat stress, indicating that cold versus 

heat stress responses involve distinct genomic architectures. When we cluster genes together 

that have similar expression profiles, we find that the resulting 22 co-expression modules define 

distinctive functional features, genomic distributions and molecular evolutionary patterns of their 

constituent genes. The modules with the fastest-evolving protein coding sequences correspond 

to a predominant role of temperature (but not genotype) or genotype (but not temperature) 

inducing differential expression, and overall low levels of expression across conditions. One co-

expression module is exceptionally enriched for gene orthologs associated with sperm function, 

and which exhibit strong sensitivity to both temperature and genotype. Our analysis of SNP 

differences in putative regulatory regions primarily reflects chromosome-scale patterning of 

nucleotide differences rather than evidence for a predominant role of cis-regulatory alleles 

controlling genotype-dependent expression differentiation, and that selection regimes are 

largely decoupled between coding sequences and non-coding flanking sequences that contain 

regulatory elements. 

 

Methods 

Experimental design and sequencing 

To quantify the genome-wide effects of rearing temperature and genetic background on gene 

expression, we isolated and sequenced mRNA transcriptomes from C. briggsae young adult 

hermaphrodites of two isogenic strains (AF16 = “Tropical” strain, HK104 = “Temperate” strain) 

that were reared at 14°C, 20°C, and 30°C from egg to adult. Previous generations of both 

genotypes had been raised at 20°C prior to establishment of eggs for rearing at the treatment 

temperatures following stage synchronization via standard Caenorhabditis sodium hypochlorite 

(“bleaching”) protocol [56]. After reaching young adulthood, total RNA was isolated with Trizol 

extraction and isopropanol precipitation [57] from mass isogenic cultures of each strain at each 

rearing temperature with three biological replicates (2 genotypes x 3 rearing temperatures x 3 

replications = 18 samples). The mRNA was then separated from small RNA fractions of less 

than approximately 200 nucleotides using the mirVana kit from Ambion as per the 

manufacturer’s instructions, and prepared for single-end 100bp sequencing of TruSeq libraries 

via Illumina HiSeq 2000 (Genome Quebec, Canada) with each of the 18 barcoded samples 

sequenced across 2 lanes to control for lane effects [58]. 

 

We obtained an average of 51.4 million reads per sample (range: 34.5 - 73.4 million) for 925.3 

million total reads. Sequences are available in NCBI in project accession PRJNA509247. Over 

96% of reads were retained after cleaning and trimming of raw FASTQ files with Trimmomatic 

0.36 (894.4 million reads retained), using a seed-mismatch rate of 2, a simple clip threshold of 
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10, discarding reads <60bp long, and trimming bases from 5’ and 3’ ends if they had phred33 

scores lower than 3 [59]. 

Read mapping and expression counts 

For each sample, we mapped reads to the C. briggsae genome (WS253) using STAR [60], 

setting the maximum intron size to 5000 bp which includes 99.6% of all intron annotations in the 

C. briggsae reference genome. We applied a liberal mismatch rate of 10 to accommodate 

potential mapping efficacy differences between the AF16 and HK104 strains due to their genetic 

differences; the reference genome is based on the AF16 strain, so this liberal parameter choice 

minimizes the potential for mapping to bias towards the Tropical genotype that could inflate 

inference of differential expression due to genotype. Over 90% of the 894.4 million total reads 

mapped to unique locations, in all samples (except one replicate of HK104 at 30°C with 73.86% 

of 48.4 million reads mapping uniquely), with an average of 45.9 million reads mapping per 

sample to unique locations (Supplementary Table S1).  

 

We then counted the number of reads that mapped to each exon annotated in the WS253 

reference genome with htseq-count [61] and summed over all exons in a gene to give a raw 

measure of expression for each gene in each sample. For our analysis, we neglected alternative 

splicing isoforms, treating them as contributing to expression levels for the same gene, and set 

the “mode” parameter in htseq-count to “intersection-nonempty” to resolve ambiguity for 

overlapping genes [61]. Among mapped reads, 82-85% were assigned successfully to a 

particular gene among the 23,267 genes annotated in the WS253 C. briggsae genome in all 

samples (again excepting one replicate of HK104 at 30°C, with 24.0 million = 58% of reads 

assigned to genes). Among the reads that were not assigned to genes, most (9% on average) 

could not be associated with any exon or were counted in multiple locations (8% on average) 

and less than 0.1% were ambiguous.  

Differential expression analysis 

We first visualized gene expression counts in a Multi-Dimensional Scaling (MDS) plot [62], 

which showed strong clustering of most biological replicates within a treatment and 

differentiation among treatments (Supplementary Figure S1). We then retained only the subset 

of genes with at least 1 cpm (gene read count per million; using the “cpm” function in edgeR 

[63]) in 3 or more libraries (i.e. in one biological replicate) to exclude 7068 genes with extremely 

low expression that could bias downstream analysis. It is possible that the genes filtered out at 

this step might exhibit higher expression at different developmental stages, males, or alternative 

environmental conditions than those assessed here. To test for statistical evidence of differential 

expression, we next transformed the expression counts using limma and voom, which performs 

well in controlling Type I error and in detecting true positives [64, 65]; preliminary analysis (not 

shown) found limma to be more conservative than edgeR for our dataset [63]. Upon applying 

the voom transformation from the limma package to the remaining set of 16,199 genes, a Q-Q 

plot showed that the data closely approximated a normal distribution (Supplementary Figure 

S1). 
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We then tested these 16,199 genes for differential expression using limma by fitting a linear 

model to the expression profile for each gene as: expression ~ strain + temperature + 

strain*temperature interaction. We first tested for significance of the interaction term, and then 

tested for significance of the main effect terms only if the interaction was non-significant. The 

model intercept was set as expression for the Tropical strain at 20°C and P-values were 

adjusted for multiple testing using the Benjamini-Hochberg correction with significance inferred 

for a false discovery rate (FDR) of 0.05 [66]. To distinguish which genes responded to hot 

versus cold rearing conditions for genes with a significant effect of temperature (either main 

effect or interaction effect), we performed post-hoc tests on the individual temperature 

coefficients (FDR = 0.05). We then classified genes into five mutually exclusive categories 

based on whether they showed significant differential expression due to genotype only (“G only” 

genes), temperature only (“T only” genes), both genotype and temperature as independent main 

effects (i.e. additive effects; “G&T” genes), a non-additive interaction between genotype and 

temperature (“GxT” genes), or no differential expression (“no DE” genes). 

Co-expression clustering of gene expression profiles 

To capture distinct stereotypical profiles of gene expression differences in response to our 

temperature and genotype treatments, we performed a co-expression clustering analysis using 

the Weighted Gene Correlation Network Analysis (WGCNA) package [67]. Because WGCNA 

works best with normally distributed expression values, we again used the voom-transformed 

expression values for the 16,199 filtered genes. A preliminary hierarchical clustering analysis of 

the samples rejected batch effects as a source of heterogeneity among samples, instead 

identifying both genotype and temperature as likely and biologically interesting sources of 

variation in the data (Supplementary Figure S1). We determined the best soft-thresholding 

power parameter for our data to be 30 (R2 correlation with a scale-free network topology = 0.75) 

based on fits across a range of values from 1 to 42 (Supplementary Figure S2), which also 

yielded an acceptable level of mean connectivity (k = 115), which is central to the assumptions 

of the WGCNA model [68].  

 

Running WGCNA yielded 124 initial clusters of genes with similar patterns of expression, which 

we consolidated further by merging similar modules, defined as those with a correlation of 0.75 

or higher with each other (Supplementary Figure S2). This procedure produced 22 co-

expression modules plus one pseudo-module (M0) containing the 37 genes that could not be 

grouped based on expression pattern. The characteristic expression profile of genes in a 

module is represented by WGCNA as the first principal component in expression space, termed 

the “module eigengene” [69], which we plotted for each genotype separately as the module 

eigengene expression values averaged across the three biological replicates as a function of 

rearing temperature. 

  

We performed statistical overrepresentation tests of Gene Ontology (GO) terms associated with 

gene lists of each co-expression module using PANTHER [70], using all four PANTHER lists 

available for C. briggsae: Pathways, GO-slim Molecular Function, GO-slim Biological Process, 
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and GO-slim Cellular Components. P-values were adjusted for multiple testing with the 

Bonferroni correction.  

Genomic enrichment analysis 

C. briggsae chromosomes are defined by distinct recombinational domains (high recombination 

arms, low recombination centres, and small tip regions with little detectable recombination), 

which also correlate with the density of coding genes, repetitive elements and single nucleotide 

polymorphism (SNPs) [35, 36, 71]. We therefore tested whether gene profiles of differential 

expression or module affiliation were enriched in particular chromosomal regions using 

Bonferroni-adjusted G-tests, defining arm-center boundaries as in Ross et al. [36]. Analyses of 

upstream intergenic lengths were log-transformed prior to analysis with ANOVA; genes with 

overlapping positions in the genome annotation were excluded from this analysis. We used the 

transcription factor gene designations from [72]. We also cross-referenced differential 

expression categories and co-expression module membership with Wormbase-defined C. 

elegans orthologs found have sex-biased differential expression by Ortiz et al. [27], which we 

used to test for enrichment with G-tests. 

SNP and molecular evolution analysis 

We called single nucleotide variants between AF16 and HK104 based on Illumina paired-end 

sequencing of HK104 to ~33x coverage using identical methods of Thomas et al. [35], yielding 

761,531 SNPs and 173,341 indels. Sequences are available in NCBI in project accession 

PRJNA509247. We calculated the per-bp density of SNPs () in the pairwise comparison of 

AF16 and HK104 in a 500bp window upstream (and downstream) of coding sequences, 

excluding genes internal to operons (and using just the 5’-most or 3’-most operon gene for 

upstream or downstream sequence, respectively). 1070 operons comprising 2573 genes were 

identified based on orthology and synteny with annotated C. elegans operons, as in Tu et al. 

[57]. We also calculated the per-bp incidence of SNPs for different genomic features on a per-

gene basis, including non-synonymous sites, synonymous sites, and introns, in addition to the 

500bp flanking regions, after masking non-covered and low-quality sites. The effective number 

of codons (ENC) metric of biased codon usage was calculated for each gene in the C. briggsae 

reference genome WS253 with codonw (J. Peden, http://codonw.sourceforge.net). We used 

6911 coding sequence divergence values (dN/dS’) for 1-1 orthologs between C. briggsae and 

C. nigoni from Thomas et al. [35]. 
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Figures 

 
Figure 1. (A) Differential expression analysis identified 54% of 16,199 genes to have significant 

differential expression (5% FDR in limma). Of these genes, most had significant interaction 

effects (GxT), with significant independent effects of genotype and rearing temperature affecting 

12.6% of genes with differential expression (“G&T”) and the remainder of genes having altered 

expression due to genotype or rearing temperature treatments alone (“G only”; “T only”). (B) G-

only and GxT genes are significantly enriched on autosomal arms, whereas G&T genes are 

enriched in autosomal centers (colors as in A; * indicates G-test Bonferroni corrected P<0.05). 

Genes with G-only or no differential expression (“no DE”) are enriched on the X-chromosome, 

whereas genes with GxT and G&T patterns of differential expression are underrepresented on 

the X-chromosome (* indicates G-test Bonferroni corrected P<0.05). (C) In response to high 

30°C rearing, similar proportions of GxE genes increase vs decrease expression relative to 

20°C rearing expression profiles; similar proportions of GxE genes increase vs decrease 

expression when reared under cool 14°C conditions, but expression is modulated for fewer GxE 

genes under cool rearing than for hot rearing. By contrast, genes with a non-interacting effect of 

temperature on expression (T only and G&T genes) show disproportionate response to cool 

rearing. (D) The magnitude of expression change is similar for genes with a significant 

independent effect of temperature (T only and G&T genes) under chronic cold stress and 

chronic heat stress (median with interquartile range, whiskers show 1.5x interquartile range). 

For GxT genes, however, the magnitude of expression increase is greater under heat stress 

than cold stress. 
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Figure 2. (A) WGCNA analysis yielded 23 co-expression modules for 16,199 genes (including 

module M0 with genes that did not cluster), after merging modules with expression similarity 

distance <0.25 from an initial set of 124 co-expressed gene sets. The dendrogram and heatmap 

summarize module expression profile similarity. For example, (B) module M10 is comprised of 

338 genes with disproportionate representation of genotypic differences in expression, reflected 

as higher expression by the AF16 (Tropical) genotype. (C) Module M15, by contrast, is enriched 

in genes with individually significant differential expression due to rearing temperature, as 

reflected in higher expression when reared at 30°C. See also Figure 3. 
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Figure 3. Co-expression clustering of 16,199 genes into 23 modules, reflected in eigengene 

plots of normalized log2-transformed expression profiles across rearing temperature treatments 

(14°C, 20°C, 30°C) for each genotype (Tropical AF16, Temperate HK104). Modules range in 

size from 3203 genes (M1) to 49 genes (M22). Module compositions contained distinctive 

representation of genes with individually-significant patterns of differential expression (cf. Figure 

1); modules with highest incidence of T-only genes indicated with blue (M12, M15), G-only 

genes in red (M7, M10), G&T genes (M4, M5), and GxT genes with crossing or non-crossing 

reaction norms (M9, M14, M18, M22; M1, M2, M3, M16) (Supplementary Figure S3). 
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Figure 4. (A) Module gene over- and under-enrichment for C. elegans orthologs with 

spermatogenic, oogenic, or gender neutral expression profiles from Ortiz et al. (2014). Log-2 

interval scale for observed/expected number of genes per module in radial plot, with black line 

indicating a value of 1 (outer curve indicates 4-fold enrichment, innermost curve indicates 2-5 

under-enrichment). (B) Module gene over- and under-enrichment across the genome shows 

biases toward autosomal arms (values < 1 indicate enrichment in autosomal centers) and for X-

linkage (values < 1 indicate enrichment on autosomes). Significant enrichment indicated by * 

(P<0.05 after Benjamini-Hochberg adjustment; FDR = 0.05) and ** (P<0.001 after Benjamini-

Hochberg adjustment; FDR = 0.05). Coloring of module names in A and B corresponds to 

differential enrichment patterns indicated in Figure 3 (blue, T only; red, G only; purple, G&T; 

orange = GxT with crossing reaction norm profile; yellow, GxT with non-crossing reaction norm; 

gray, black, differential expression).  
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Figure 5. (A) Heatmap of module features, sorted by average normalized expression. Modules 

with high expression profiles tend to contain genes with stronger codon usage bias, greater 

sequence constraint (low dN/dS’), and more operons. (B) Modules with gene orthologs having 

little coding sequence divergence between C. briggsae and C. nigoni also have low densities of 

replacement-site SNPs in coding sequences. Coloring of module names in A and B corresponds 

to differential enrichment patterns indicated in Figure 3 (blue, T only; red, G only; purple, G&T; 

orange = GxT with crossing reaction norm profile; yellow, GxT with non-crossing reaction norm; 

gray, black, differential expression). (C) Among genes with distinctive profiles of individually-

significant differential expression, linkage to autosomal arms versus centers represents the 

primary driver of SNP variation with little difference among DE categories for a given genomic 

site type (1kb upstream of CDS, intronic, 1kb downstream of CDS, synonymous sites). 
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Supplementary Information 
 

Supplementary File S1. “SuppFile_voomNormFiltLog2Expr_DE_modules.csv” contains log-2 

normalized expression values for each of the 16,199 genes analyzed in each replicate sample, 

as well as the category of differential expression (G-only, T-only, G&T, GxT, noDE) and name of 

the co-expression module (M0 through M22). Columns labeled with sample name (treatment-

replicate), where treatment is a combination of genotype and rearing temperature for each of 

three biological replicates (“AF” = Tropical AF16 genotype, “HK” = Temperate HK104 genotype; 

14=14°C rearing, 20=20°C rearing, 30=30°C rearing). 

 

Supplementary File S2. “SuppTable_GO.xlsx” contains lists of gene ontology term enrichment 

with summary statistics for different PANTHER GO-slim categories for each co-expression 

module. 
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Supplementary Table S1. Number and percentage of reads that mapped to unique genomic 

locations with STAR. 

  

  
Sample 
(treatment-rep)* 

Number of uniquely 
mapped reads 

% of reads that 
uniquely mapped   

 AF14-1 32007586 93.35%  

 AF14-2 47012080 93.84%  

 AF14-3 54523984 94.15%  

 AF20-1 57787850 94.17%  

 AF20-2 62122726 93.43%  

 AF20-3 43596994 93.75%  

 AF30-1 66295835 93.74%  

 AF30-2 35618842 93.20%  

 AF30-3 33087508 90.10%  

 HK14-1 51264144 93.39%  

 HK14-2 43616826 93.65%  

 HK14-3 48035023 92.74%  

 HK20-1 30262908 90.76%  

 HK20-2 49528582 93.95%  

 HK20-3 41332043 94.26%  

 HK30-1 51537189 91.44%  

 HK30-2 40748065 92.22%  

  HK30-3 35632338 73.62%   

 *AF=AF16, HK=HK104 genotypes; 14=14°C, 20=20°C, 30=30°C rearing 
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Supplementary Figure S1. (A) Multi-dimensional scaling plot (MDS) of filtered, normalized, and 

log-transformed count data for each sample. Sample labels (treatment-replicate) are colored by 

experimental treatment for a given genotype and rearing temperature combination (“AF” = 

Tropical AF16 genotype, “HK” = Temperate HK104 genotype; 14=14°C rearing, 20=20°C 

rearing, 30=30°C rearing). The x- and y-axes show the two principal components that explain 

most variation. Biological replicates that cluster together in the plot are more similar to each 

other, indicating consistency across replicates. (B) After filtering out genes with very low to no 

counts, TMM normalization for different library sizes, and log-transforming count data, a 

dendrogram reveals similarity of samples within strain and within temperature (“temp”), but not 

replicate (“rep”); red shading along a row indicates shared strain, temperature or replicate value. 

This suggests data heterogeneity among samples due to experimental treatments, not batch 

effects. (C) Quantile-quantile plot for normalized, voom-transformed count data shows good 

approximation to a normal distribution (red line). 
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Supplementary Figure S2. (A) Analysis of soft-thresholding powers revealed 30 to be the 

power at which the scale-free fit is maximized (R2 = 0.75) and most closely approximates a 

scale-free network. (B) Analysis of a range of soft-thresholding powers revealed a value of 30 to 

have a mean connectivity of at least 100 (k = 115), while also maximizing fit to a scale-free 

network. (C) Clustering of 16,199 genes with WGCNA into a preliminary set of 124 co-

expression clusters (red in heatmap indicates maximum similarity and blue no similarity; color 

bars along the x- and y-axes correspond to the 124 clusters). Clusters with similarity distance 

<0.25 were merged, leading to the 22 co-expression modules (plus pseudo-module M0) 

analyzed in the main text. 
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Supplementary Figure S3. Co-expression module eigengene plots of normalized, log2-

transformed expression across temperature treatments for each genotype (pink AF16, green 

HK104). Module names colored as in Figure 3 of the main text according to representation of 

individually significant differentially expressed genes within the module. 
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Supplementary Figure S4. SNP density in upstream, downstream, and intronic non-coding 

locations of genes and at synonymous and non-synonymous sites within coding sequences, 

averaged for genes within each co-expression module as a function of average module 

expression. Points are labeled and colored with module name as in Figure 3 of the main text. 
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Supplementary Figure S5. SNP density in upstream, downstream, and intronic non-coding locations of genes and at non-

synonymous sites within coding sequences, averaged for genes within each co-expression module (left panels) or per gene (right 

panels) as a function of average module interspecies divergence (dN/dS’) or non-synonymous site substitution. Modules are labeled 

and colored as in Figure 3 of the main text.  
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