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Abstract 19 

Stem cells are responsible for generating all of the differentiated cells, tissues, and organs in a 20 

multicellular organism and, thus, play a crucial role in cell renewal, regeneration, and 21 

organization. A number of stem cell type-specific genes have a known role in stem cell 22 

maintenance, identity, and/or division. Yet, how genes expressed across different stem cell types, 23 

referred here as stem-cell-ubiquitous genes, contribute to stem cell regulation is less understood. 24 

Here, we find that, in the Arabidopsis root, a stem-cell-ubiquitous gene, TESMIN-LIKE CXC2 25 

(TCX2), controls stem cell division by regulating stem cell-type specific networks. Development 26 

of a mathematical model of TCX2 expression allowed us to show that TCX2 orchestrates the 27 

coordinated division of different stem cell types. Our results highlight that genes expressed 28 

across different stem cell types ensure cross-communication among cells, allowing them to 29 

divide and develop harmonically together. 30 

Introduction 31 

Stem cells asymmetrically divide to replenish the stem cell and produce a daughter cell that will 32 

go on to differentiate into a specialized cell type. Various mechanisms have been proposed for 33 

how pluripotency is maintained, such as signaling pathways within the stem cell niche (SCN) 34 

that restrict differentiation, predetermined lineages which ensure stem cells are continuously 35 

formed, and cell plasticity which allows differentiated cells to revert to a stem-like state1–4. 36 

However, most of the pathways that have been shown to maintain pluripotency use local 37 

mechanisms, such as short-range signaling, DNA methylation, and chromatin remodeling, that 38 

only act on the dividing cell and/or the directly adjacent cells5–8. There are likely other networks, 39 

upstream of these local mechanisms, which are global in nature and allow for cross-40 

communication across different cell populations.  41 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/517250doi: bioRxiv preprint 

https://doi.org/10.1101/517250


The Arabidopsis root provides an excellent model system for uncovering these global regulatory 42 

networks.  The root SCN is well-defined and located at the tip of the root, and as the stem cells 43 

asymmetrically divide, the differentiated cells are pushed up the root, resulting in a temporal axis 44 

where older cells are more shootward and younger cells are more rootward. Crucially, the 45 

movement of cells in the root is constrained due to cell walls, and cell-to-cell signals travel via 46 

the plasmodesmata, which are small channels in the cell walls9. This lack of cell movement 47 

coupled with well-defined marker lines that label specific cell populations10,11 allows us to study 48 

stem cell identity, division, and maintenance in an isolated environment.  49 

Here, we identified genes expressed specifically (in one stem cell type) and ubiquitously (in all 50 

stem cell types) that control stem cell division and maintenance in the Arabidopsis root. We first 51 

transcriptionally profiled the individual stem cells using spatially well-defined GFP marker lines 52 

and found that near half of the stem cell-enriched genes are expressed in only one stem cell type, 53 

while the other half are expressed in multiple cell types. We next used Gene Regulatory Network 54 

(GRN) inference to predict that there are not only stem-cell-specific gene networks but also an 55 

upstream network that regulates all of the different stem cells. Given that most known 56 

mechanisms for maintaining stem cell identity and plasticity are local in nature, we focused on 57 

identifying genes expressed in all the stem cells (hereinafter referred to as a stem-cell-ubiquitous 58 

gene) that regulates aspects of stem cell maintenance. Using our network prediction, we found 59 

that TESMIN-LIKE CXC 2 (TCX2), a member of the family of CHC proteins which are 60 

homologues of components of the DREAM cell-cycle regulatory complex in animals12, is a key 61 

regulator of stem cell division. Further, using Ordinary Differential Equation (ODE) modeling, 62 

we show that using the dynamics of TCX2 expression we could predict the timing of stem cell 63 

division. Our results provide evidence that genes that participate in global regulatory pathways 64 

which span many, different cell types are important for controlling stem cell division and 65 

maintenance. 66 

Results 67 

Stem-cell-type-specific and stem-cell-ubiquitous transcriptional profile control stem cell 68 

pluripotency  69 

To understand how and whether stem-cell-ubiquitous genes contribute to cell identity, 70 

maintenance, and/or division, we performed gene expression analysis of the stem cells in the 71 

Arabidopsis root, as this offers a tractable system given its 3-dimensional radial symmetry and 72 

temporal information encoded along its longitudinal axis. To this end, seven root stem cell 73 

markers (Figure 1A), as well as a non-stem cell control (i.e., a population of cells from the root 74 

meristem excluding most of the stem cells), were used to identify stem cell-enriched genes, and 75 

among those, stem-cell-ubiquitous and stem-cell-specific genes, as it has been shown that there 76 

is a correlation between expression levels and functionality in specific cell types1,13 77 

(Supplementary Figure 1, see Methods). Notably, we found that the expression profiles of our 78 

markers together with known stem cell genes, agree with their known expression domains, 79 

supporting that our transcriptional profiles are specific to each stem cell population 80 

(Supplementary Figure 1). To measure transcriptional differences between the stem cells and the 81 

non-stem cells, we next performed a Principal Component Analysis (PCA.) Looking at the top 3 82 

principal components (50.6% of the variation in the data), the PCA shows that the non-stem cell 83 

samples (red) are distant from all of the stem cell populations, suggesting that the stem cells have 84 

a different transcriptional signature than the non-stem cells (Figure 1B). Accordingly, when we 85 
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performed differential expression analysis on these data, we found that 9266 (28% of genes) are 86 

significantly enriched (q < 0.06 and fold change > 2) in at least one stem cell population 87 

compared to the non-stem cells and considered these genes the stem cell-enriched genes (see 88 

M&M and Supplemental Table 1). Thus, this approach allowed us to identify core stem cell 89 

genes, as functionally important genes are often enriched in the specific cell populations they 90 

control1,13.  91 

While the PCA gives us a general idea of how many genes are cell-specific vs cell-ubiquitous, it 92 

reduces the dimensionality of the problem to the three largest components of variance. 93 

Consequently, we would expect some genes been differentially enriched across all of the stem 94 

cell populations. Indeed, when we performed differential expression analysis on the 9266 stem 95 

cell-enriched genes (see Methods), we find that 2018 genes (21.8% of the stem cell-enriched 96 

genes, hereinafter referred to as the stem-cell-ubiquitous genes) are enriched in at least 4 of the 6 97 

unique stem cell types, with 569 of these 2018 (6.1% of the stem cell-enriched genes) enriched in 98 

5 or 6 cell types (Figure 1C). Moreover, as each stem cell population clusters independently from 99 

the others in the PCA, we identified 7248 genes (78.2% of the stem cell-enriched genes), 100 

hereinafter referred to as the stem-cell-specific genes, enriched in 3 or less stem cell types, with 101 

4331 of those 7248 genes (46.7% of the stem cell-enriched genes) enriched in only 1 stem cell 102 

type. This suggests that each specific stem cell type has its own, unique transcriptional signature.  103 

Both stem-cell-specific and stem-cell-ubiquitous genes are predicted to be important stem 104 

cell regulators  105 

Given the separation between stem-cell-ubiquitous genes and stem-cell-specific genes, we next 106 

wanted to know if these two groups of genes have seemingly separated functions or, for 107 

example, if stem-cell-ubiquitous genes modulate stem-cell-specific gene expression to 108 

orchestrate coordinated processes between different cell types. To test the latter hypothesis, in 109 

which stem-cell-specific genes are important for regulating cell type-specific aspects (e.g cell 110 

identity), but are regulated by stem-cell-ubiquitous genes so that stem cell maintenance and 111 

divisions are tightly coordinated, we used Gene Regulatory Network (GRN) inference and 112 

predicted the relationships between all 9266 genes enriched in the stem cells. We developed a 113 

machine-learning, regression tree approach to infer dynamic networks from steady state, 114 

replicate data (see Methods). Our inferred GRN found regulations among 2982 (32.2%) of the 115 

stem cell-enriched genes and predicted that the stem-cell-ubiquitous (red) genes are located in 116 

the center of the network, which represents the beginning of the regulatory cascade, and are 117 

highly connected to each other (Figure 2A). Meanwhile, the cell-specific (blue) genes mostly 118 

regulate each other within the same cell type and are located on the outside of the network, 119 

therefore downstream of the cell-ubiquitous genes (Figure 2A). This suggests that the cell-120 

ubiquitous genes are potentially involved in coordinating processes between different stem cells 121 

through the regulation of cell-specific genes.  122 

We next wanted to identify if the most biologically important genes in the network were cell-123 

specific, cell-ubiquitous, or both, as most results in animals assume that core TFs must be 124 

expressed in a cell-specific manner1. To predict biological significance, we developed a Network 125 

Motif Score (NMS) to quantifies the number of times each gene appears in certain network 126 

motifs, such a feedback and feedforward loops (see Methods). These motifs were chosen as they 127 

were significantly enriched in our biological network versus a random network of the same size, 128 

and have been shown to often contain genes that have important biological functions14–16 129 
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(Supplementary Figure 2). In our inferred GRN, we found that 737 (24.7%) of the 2982 genes 130 

have an NMS > 0, meaning they appear in at least one of the network motifs. To validate the 131 

NMS, we found that 22 known stem cell regulators had scores in the top 50% of genes, with 10 132 

of those 22 (45.5%) in the top 25% of genes, supporting that high NMS scores are correlated 133 

with stem cell function (Supplemental Table 2). Further, 510 (69.2%) and 217 (31.8%) of these 134 

genes are cell-ubiquitous (4 or more enriched stem cells, red) and cell-specific (3 or less enriched 135 

stem cells, blue), respectively (Figure 2A). Given that more cell-ubiquitous genes have higher 136 

importance scores in our dataset, we focused our downstream analysis on identifying a stem-cell-137 

ubiquitous gene with characteristics of a functionally important regulator.  138 

TCX2 is an important stem-cell-ubiquitous regulator controlling stem cell division and 139 

identity 140 

When we began to examine the stem-cell-ubiquitous regulators, we found that TESMIN-LIKE 141 

CXC 2 (TCX2, also known as SOL2), a known homologue of the LIN54 DNA-binding 142 

component of the mammalian DREAM complex which regulates the cell cycle and the transition 143 

from cell quiescence to proliferation12,17,18, had the ninth highest NMS (top 1.2% of genes). This 144 

suggests that TCX2 could have an important role across all of the stem cells.  To further support 145 

the biological significance of TCX2, we examined the subnetwork of its first neighbors (i.e., 146 

genes predicted to be either directly upstream or downstream of TCX2). We found that TCX2 is 147 

enriched in 5 out of the 6 stem cell types and predicted to regulate at least one gene in all of 148 

those cell types, supporting that TCX2 could be a stem-cell-ubiquitous regulator that controls 149 

stem-cell-specific core genes (Figure 2B). In addition, when compared to the genes with the top 150 

10 NMS, TCX2 has the highest outdegree (number of edges going out) and low indegree 151 

(number of edges coming in), suggesting that TCX2 could orchestrate coordinated stem cell 152 

division as suggested by the function of its mammalian homologue12,17,18. 153 

If TCX2 is indeed a key regulator for stem cell maintenance and division, we would expect that a 154 

change in its expression would cause a developmental phenotype related to these aspects. To test 155 

this hypothesis, we obtained two knockdown (tcx2-1, tcx2-2) and one knockout (tcx2-3) mutants 156 

of TCX2, which all show similar phenotypes (Figure 3A, Supplementary Figure 3). Importantly, 157 

we observed in tcx2-3 an overall disorganization of the stem cells, including aberrant divisions in 158 

the Quiescent Center (QC), columella, endodermis, pericycle, and xylem cells (Figure 3A). 159 

Additionally, tcx2-3 mutants showed longer roots due to a higher number in meristematic cell/ 160 

higher proliferation (Figure 3A, Supplementary Figure 3). Notably, similar phenotypes related to 161 

cell divisions have been observed also in the stomatal lineage of tcx2 sol1 double mutants12. To 162 

further investigate TCX2’s role in stem cell division, we crossed the cell division (G2/M phase) 163 

marker CYCB1;1:CYCB1;1-GFP19,20 into the tcx2 mutant and performed temporal tracking of 164 

the GFP signal over time. We first found that average CYCB1;1 expression was higher in the 165 

tcx2 mutant compared to WT. Second, we separated cells expressing CYCB1;1 into 3 categories: 166 

low, intermediate, and high expression. We found that significantly more cells in the tcx2 mutant 167 

have high CYCB1;1 expression, while significantly fewer cells have low CYCB1;1 expression. 168 

Finally, we calculated the number of consecutive time points each cell shows CYCB1;1 169 

expression. We found that significantly fewer cells in the tcx2 mutant had 2 consecutive 170 

timepoints with CYCB1;1 expression (Supplementary Figure 4). All of these alterations in 171 

CYCB1;1 expression in the tcx2 mutant suggest that reduction of TCX2 expression correlates 172 

with more actively dividing cells. Taken together, these results suggest that TCX2, as a stem-173 

cell-ubiquitous gene, regulates stem cell divisions across different stem cell populations.  174 
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We hypothesized that TCX2 controls stem cell division by regulating important, cell type-175 

specific genes. Notably, all of our stem cell markers, in addition to being expressed only to one 176 

stem cell type, are known to have functions in stem cell regulation21–25. Thus, we crossed the 177 

marker lines for the Quiescent Center (QC; WOX5:GFP), Cortex Endodermis Initials (CEI; 178 

CYCD6:GFP), Epidermis/Lateral Root Cap Initials (Epi/LRC;FEZ:FEZ-GFP), and Xylem 179 

Initials (Xyl;TMO5:3xGFP) (Figure 1A) into the tcx2-2 and tcx2-3 mutant alleles (Figure 3B). 180 

Compared to WT, in a tcx2 mutant the expression pattern of these markers is expanded. 181 

Specifically, the QC marker expands into the CEI, the CEI marker expands into the endodermis 182 

and cortex layers, the Epi/LRC marker expands into the Columella Stem Cells (CSCs), and the 183 

Xyl marker expands into the procambial cells (Figure 3B). This suggests that in the absence of 184 

TCX2 coordination of stem cell division and identity is unregulated through an unknown 185 

mechanism. 186 

When we examined the predicted upstream regulators and downstream targets of TCX2, we 187 

found that 75% are predicted to be cell-specific (expressed in ≤3 stem cell types), suggesting that 188 

TCX2 could be regulated and it regulates targets in a cell type-specific manner. (Supplemental 189 

Table 3). Thus, to identify additional cell-specific regulators as well as targets of TCX2, we 190 

obtained mutants of the transcription factors (TFs) predicted to be TCX2’s first neighbors (i.e. 191 

directly upstream or downstream) that also had high NMS scores (Figure 3C, Supplemental 192 

Table 3). Two of the genes, SHORTROOT (SHR), and SOMBRERO (SMB) have phenotypes in 193 

the stem cells of their loss-of-function mutants, while the loss-of-function mutant of STERILE 194 

APETALA (SAP) is homozygous sterile22,24,26–28. Additionally, a quadruple mutant of 195 

REVOLUTA (REV) together with three other xylem regulators results in missing xylem layers29. 196 

Further, we obtained loss-of-function mutants of GATA TRANSCRIPTION FACTOR 9 197 

(GATA9), AT1G75710, ORIGIN OF REPLICATION COMPLEX 1B (ORC1B), 198 

ANTHOCYANINLESS 2 (ANL2), and REPRODUCTIVE MERISTEM 28 (REM28), which 199 

showed root stem cell phenotypes (Figure 3C, Supplementary Figure 5). We were able to 200 

validate that TCX2 was differentially expressed (p<0.05) in gata9, at1g75710, rev, orc1b, and 201 

anl2 mutants using qPCR as well as in the SHR overexpression line22. Further, we performed 202 

FACS coupled with RNA-Seq on the 4 marker lines (WOX5:GFP, CYCD6:GFP, FEZ:FEZ-203 

GFP, and TMO5:3xGFP) that we crossed into the tcx2 mutant to determine the effect of TCX2 204 

on its predicted downstream stem-cell-specific targets. In addition, we performed RNA-Seq on 205 

tissue from the stem cell area of the tcx2 mutant (Supplemental Table 5).  Using these data, we 206 

were able to validate that 77.78% of the predicted direct targets of TCX2 are differentially 207 

expressed in the tcx2 mutant stem cells. Further, 41.54% of these edges are predicted in the 208 

correct cell type, and of those edges predicted in the correct cell type that had a predicted sign, 209 

58.33% of the edge signs are correctly predicted (slightly better than randomly assigning edge 210 

signs, which would have a 50% rate of success). To validate some of the direct interactions 211 

between TCX2 and its downstream targets, we mined a published DAP-Seq dataset from 212 

Arabidopsis leaves30 and were able to confirm that TCX2 can directly bind 15.05% of its 213 

predicted direct targets (Figure 3C, Supplemental Table 4).  Overall, these results suggest TCX2 214 

orchestrates coordinated stem cell divisions through stem-cell-specific regulatory cascades.  215 

The TCX2 regulatory network changes over time to regulate stem cell division  216 

Given that most of the validated upstream regulators of TCX2 are stem-cell-type specific 217 

(Supplemental Table 3), we propose that these cell-specific regulators modulate the dynamics of 218 

TCX2 expression in individual cell types. In turn, changes in TCX2 dynamics correlate with 219 
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changes in expression of its downstream targets (Figures 3C, 3D). Thus, we hypothesized that 220 

different dynamics of TCX2 in specific stem cells, as well as changes in TCX2 expression, could 221 

be used to predict when each stem cell population divides.  222 

If TCX2 expression is dynamically changing over time in a cell-specific manner, we would 223 

predict that the TCX2 GRN also changes temporally. Specifically, we could expect that TCX2 224 

differentially regulates its targets in specific cell types at certain times depending on its 225 

expression levels. Thus, to determine if the TCX2 regulatory network changes over time, we first 226 

selected 176 genes of interest that were differentially expressed in the tcx2 root tip sample 227 

(Supplementary Table 5) as well as enriched in the stem cells, as these are most likely to be the 228 

downstream of TCX2 across different stem cell populations. We inferred GRNs using a time 229 

course of the root meristem that is stem cell-enriched (hereinafter referred to as the stem cell 230 

time course, see Methods) to predict one network per time point (every 8 hours from 4 days to 6 231 

days). We found that genes in the first neighbor network of TCX2 have different predicted 232 

regulations depending on the time point. Specifically, most of the regulation to and from TCX2 233 

are predicted to occur between 4 days (4D) and 5 days (5D), which is the developmental time at 234 

which many stem cell divisions take place22. (Supplementary Figure 6). Thus, since our gene 235 

expression data suggest that loss of TCX2 function correlates with an increase in stem cell 236 

division, we hypothesized that most of the TCX2-regulated stem cell division is occurring 237 

between 4D 16H and 5D, time at which TCX2 expression decreases at least by 1.5 fold-change 238 

(Supplementary Figure 6).  239 

To test how these time- and cell-specific GRNs affect TCX2 expression and therefore cell 240 

division, we built a mechanistic model of the GRNs predicted every 8 hours from 4D to 5D (see 241 

M&M and Supplementary Information). We used our stem cell time course to determine the cell-242 

specific networks at each time point and constructed equations for each gene in the network 243 

(Figure 4A, Supplementary Figure 7). Unlike our GRN, which only predicts the regulations in 244 

each cell at each time point, our Ordinary Differential Equation (ODE) model converts the 245 

network prediction into a quantitative model of gene expression. Thus, this model allowed us to 246 

quantify how TCX2 dynamics change over time and to correlate significant changes in 247 

expression with cell division. Our model included the possibility of some of the proteins moving 248 

between cell types, as this is a known local signaling/ cell-to-cell communication mechanism27,31. 249 

Specifically, we used scanning Fluorescence Correlation Spectroscopy (Scanning FCS) and 250 

observed that TCX2 does not move between cells, thus suggesting a cell-autonomous function, 251 

while observed movement of WOX532,33 and CRF2/TMO3 between cells is in line with a non-252 

cell-autonomous function (Supplementary Figure 8). As our sensitivity analysis predicted that 253 

the oligomeric state of TCX2 in the Xyl, diffusion coefficient of WOX5 from the CEI to the QC, 254 

and diffusion coefficient of WOX5 from the QC to the Xyl were three of the most important 255 

parameters in the model, we experimentally determined these parameters (Supplementary Figure 256 

8, Supplemental Table 6).  Given that our network and time course data predict that TCX2-257 

mediated cell division is tightly coordinated and controlled between 4D 16H and 5D, we wanted 258 

to ensure that we accurately measured TCX2 dynamics in this time period to produce the best 259 

predictive model of stem cell division. To this end, we quantified the expression of the 260 

TCX2:TCX2-YFP marker in different stem cells every 2 hours from 4D 18H to 4D 22H 261 

(hereinafter referred to as the YFP tracking data) (Figure 4B, see M&M). We then used the 262 

average expression of TCX2 in each cell at each time point to estimate parameters in our model 263 

(Supplemental Table 7). The result of this model is thus a spatiotemporal map of the expression 264 
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dynamics of TCX2 and its predicted first neighbors. Given that TCX2 expression has previously 265 

been shown to disappear 1-2 hours before stomatal division12, we reasoned that we could use our 266 

model of TCX2 expression to predict when stem cell division occurs in the root.  267 

Our model predicts that there is a significant (fold-change > 1.5) increase in TCX2 expression 268 

specifically in the QC and Xyl between 4D 8H and 4D 16H.  After this time, our model predicts 269 

that the expression of TCX2 in the QC does not significantly decrease and is significantly higher 270 

than in all of the actively dividing stem cells (Figure 4C, Supplemental Table 8). Given that the 271 

QC is relatively mitotically inactive, this suggests that high levels of TCX2 correlate with a lack 272 

of QC division. This prediction is supported by our YFP tracking data which shows that half of 273 

the QC cell clusters have either relatively constant or increased TCX2 expression between 4D 274 

16H an 5D (Supplementary Figure 9). Meanwhile, TCX2 expression is predicted to significantly 275 

decrease between 4D 16H and 5D in both the Xyl and CSCs, suggesting that these cells divide 276 

during this time. This prediction is also supported by our YFP tracking data showing that the 277 

majority of Xyl and CSCs cells have low TCX2 expression after 4D 20H (Supplementary Figure 278 

9). In contrast, the CEI and Epi/LRC show only a modest decrease in TCX2 expression between 279 

4D 16H and 5D. This could be due to only some of these cells dividing at that time, as our YFP 280 

tracking data shows a large amount of variation in TCX2 expression in these cell populations 281 

(Supplementary Figure 9). Taken together, our model and experimental data both suggest that 282 

TCX2 not only initiates the division of the actively dividing stem cells, but it also inhibits the 283 

division of the QC during the same timeframe, through an unknown mechanism Further, our 284 

results allow us to narrow the timing of TCX2-induced stem cell division to a 4-hour window, 285 

between 4D 20H and 5D. 286 

Discussion 287 

Here, we unraveled the communication between stem-cell-specific and stem-cell-ubiquitous 288 

networks in the Arabidopsis root through a combination of transcriptomic profiling, GRN 289 

inference, biological validation, and mathematical modeling. Our stem cell transcriptional profile 290 

revealed that there is both a stem-cell-specific profile that likely provides the foundation for stem 291 

cell identity networks as well as a stem-cell-ubiquitous profile that encodes the unique properties 292 

shared by all stem cells, such as their ability to asymmetrically divide. Further, our GRN 293 

inference predicted that these stem-cell-specific and stem-cell-ubiquitous networks are 294 

connected, with the stem-cell-ubiquitous regulators potentially coordinating the downstream 295 

stem-cell-specific mechanisms.  296 

Using our network motif score, we identified TCX2 as an important stem-cell-ubiquitous gene 297 

that regulates stem cell division by coordinating stem-cell-specific regulatory networks. We 298 

validated that TCX2 regulates stem-cell-specific genes through transcriptionally profiling some 299 

of the stem cell populations in the tcx2 mutant, supporting that stem-cell-ubiquitous and stem-300 

cell-specific genes work together to coordinate cell division. Specifically, we were able to 301 

validate that 77.78% of the predicted direct targets of TCX2 are differentially expressed in the 302 

tcx2 mutant, 44.54% are predicted in the correct cell type, 58.33% have the correct sign, and 303 

15.08% are directly bound by TCX2. Our results showed that most of the stem cell markers are 304 

mis-expressed in other stem cells in the tcx2 mutant (Figure 3), suggesting that either TCX2 305 

could affect the stem-cell-specific localization of some of these genes or that their cell identity is 306 

delayed. 307 
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We showed that tcx2 mutants have additional cell divisions in all stem cell populations, 308 

misexpression of known stem-cell-specific marker genes, and higher expression of the cell cycle 309 

marker CYCB1;1. Further, our ODE model of the TCX2 GRN illustrated that we can use TCX2 310 

expression to predict the timing of stem cell division.  Specifically, our model and TCX2:TCX2-311 

YFP tracking support that a drop in TCX2 expression in most of the stem cell populations 312 

between 4D 16H and 5D correlates with stereotypical stem cell division. In contrast, TCX2 313 

levels are relatively stable during this time in the relatively mitotically inactive QC. This is 314 

supported by our stem-cell-specific profiling of the tcx2 mutant which shows that many cell 315 

cycle genes, including members of the CYCLIN and CYCLIN DEPENDENT KINASE families, 316 

are differentially expressed in different stem cell types (Supplementary Table 5). Notably, TCX2 317 

is a member of the CHC protein family, which in mammalian systems contains components of 318 

the DREAM complex such as LIN5412. The DREAM complex has been shown to regulate the 319 

cell cycle, which supports our proposed role for TCX2 in regulating stem cell division in the 320 

Arabidopsis root. It is likely that the other members of the CHC family and other homologs of 321 

the DREAM complex in Arabidopsis act together with TCX2 to control this process.  322 

Taken together, our results provide evidence that cell-ubiquitous genes and global signaling 323 

mechanisms are important for maintaining stem cell identity and plasticity.  324 

Materials and Methods 325 

Lines used in this study 326 

A list of T-DNA insertion lines used in this study is provided in Supplemental Table 9. All T-327 

DNA insertion lines were obtained from the Arabidopsis Biological Resource Center (ABRC: 328 

https://abrc.osu.edu/ ). The marker lines used in this study are described as follows: 329 

WOX5:GFP21, CYCD6:GFP22, J2341:GFP34, FEZ:FEZ-GFP24, TMO5:3xGFP25, CVP2:NLS-330 

VENUS35, AGL42:GFP36. The TCX2:TCX2-YFP translation fusion is described in12, the 331 

WOX5:WOX5-GFP translational fusion is described in33, the CYCB1;1:CYCB1;1-GFP 332 

translational fusion is described in20, and the TMO3:TMO3-GFP translational fusion is described 333 

in37. 334 

Stem cell transcriptional profile and differential expression analysis 335 

Three to four biological replicates were collected for each marker line. For each biological 336 

replicate, 250-500mg of seed were wet sterilized using 50% bleach, 10% Tween and water and 337 

stratified at 4°C for 2 days. Seeds were plated on 1x MS, 1% sucrose plates with Nitex mesh and 338 

grown under long day conditions (16 hr light/8 hr dark) at 22°C for 5 days. Protoplasting, cell 339 

sorting, RNA extraction, and library preparation were performed as described in36. For the non-340 

stem cell control, the GFP-negative cells from the AGL42:GFP line were collected. Libraries 341 

were sequenced on an Illumina HiSeq 2500 with 100bp single end reads. Reads were mapped 342 

and FPKM (fragments per kilobase per million mapped reads) values were obtained using 343 

Bowtie, Tuxedo, and Rsubread as described in38. Data are available on Gene Expression 344 

Omnibus (GEO: https://www.ncbi.nlm.nih.gov/geo/ ), accession #GSE98204. 345 

Differential expression analysis was performed using PoissonSeq38,39. First, stem cell-enriched 346 

genes were identified as being enriched (q-value < 0.06 and fold change > 2) in any one stem cell 347 

population compared to the non-stem cell control (q-value cutoff of 0.06 was chosen since one of 348 

our marker genes, WOX5, had q-value 0.058). Then, genes were classified as enriched in each 349 
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stem cell type if they had fold change > 2 (enrichment criteria set based on our marker genes) in 350 

that stem cell type versus all other stem cell types. If genes were equally expressed in more than 351 

one stem cell type, they were considered enriched in multiple stem cell types. All differentially 352 

expressed genes are reported in Supplemental Table 1. The Venn diagram in Figure 1C 353 

displaying the proportions of genes enriched in each stem cell was constructed using 354 

InteractiVenn40 (http://www.interactivenn.net/).  355 

Gene regulatory network inference 356 

The Regression Tree Pipeline for Spatial, Temporal, and Replicate data (RTP-STAR) was used 357 

for all network inference. The pipeline consists of three parts: spatial clustering using the k-358 

means method41, network inference using GENIE342, and edge sign (positive/negative) inference 359 

using the first order Markov method10. An earlier version of this pipeline was used to infer GRNs 360 

of root hair development43. This pipeline is implemented in MATLAB and available from 361 

https://github.com/nmclark2/RTP-STAR.  362 

For the SCN GRN (Figure 2), networks were inferred for each stem cell separately (resulting in 6 363 

networks, one for each stem cell) and then combined to form the final network.  For the stem-364 

cell-specific networks, only the genes enriched in that specific stem cell were used in the 365 

network inference. If genes were enriched in multiple stem cells, they were included in all of 366 

those individual stem cell networks (e.g. TCX2, which is enriched in all of the stem cells except 367 

Protophlo, was included in 5 of the 6 stem cell networks). Genes were first clustered using the 368 

mean expression of each gene in each stem cell. Then, network inference was performed using 369 

GENIE on only the replicates from that specific stem cell and the SCN marker (e.g. for the QC-370 

enriched cells, only the WOX5:GFP and AGL42:GFP replicates were used). After network 371 

inference, the number of edges in the network is trimmed based on the proportion of 372 

transcription factors (more transcription factors = more edges kept). Finally, the sign of the edge 373 

was determined using a previously published time course dataset of Arabidopsis root stem cells 374 

collected from 3 day to 7 day old plants10.  375 

For the time point-specific GRNs (Figure 4 and Supplementary Figure 6), we used genes DE in 376 

the tcx2 mutant root tissue sample and enriched in the stem cells. Clustering was performed as 377 

for the SCN GRN using mean gene expression in each stem cell. Network inference was 378 

performed using the biological replicates from each time point from our stem cell time course 379 

collected every 8 hours from 4 days to 6 days old (see Stem cell time course section for more 380 

details). Edge sign was determined using this same time course, but using mean expression in all 381 

of the time points. One network was built using the biological replicates for each time point and 382 

then combined. In Figure 4, the stem cell transcriptomic data was used to determine the stem cell 383 

type of each edge. 384 

Due to the pseudo-random nature of k-means clustering (i.e., the first clustering step is always 385 

random), 100 different clustering configurations (numiter=100 in RTP-STAR parameters) were 386 

used for network inference. For the stem cell transcriptional network, edges that appeared in at 387 

least 1/3 of the 100 different networks (maxprop=1/3 in RTP-STAR parameters) were retained in 388 

the final network as this cutoff resulted in a scale-free network. This parameter was set to edges 389 

that appeared in at least 45% of the 100 different networks (maxprop=0.45 in RTP-STAR 390 

parameters) for the time point-specific GRNs. 391 
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All parameters used to infer these networks in RTP-STAR are included in Supplementary Table 392 

10. All files used to perform GRN inference are available on figshare (see Data Availability 393 

section). All network visualization was performed using Cytoscape (http://cytoscape.org/ ). 394 

Network Motif Score (NMS) 395 

Five different motifs were used to calculate the NMS namely feed-forward loops, feedback 396 

loops, diamond, bi-fan, and multilayer motifs14–16 (Supplementary Figure 2). All motifs were 397 

significantly enriched in the SCN GRN to a randomly generated network of the same size. First, 398 

the number of times a gene appeared in each motif was counted using the NetMatchStar app44 in 399 

Cytoscape. Then, the counts were normalized to a scale from 0 to 1 and summed to calculate the 400 

NMS for each gene. The most functionally important genes are those that have high NMS scores. 401 

Biological validation 402 

Confocal imaging was performed on a Zeiss LSM 710. Cell walls were counterstained using 403 

propidium iodide (PI). Corrected Total Cell Fluorescence (CTCF) was calculated to determine 404 

the intensity of cells expressing a fluorescently tagged protein. To complete these measurements, 405 

the confocal settings (gain, digital offset, laser percentage) were left constant for the entirety of 406 

the experiment. Imaging software (ImageJ) was used to measure the CTCF, which is defined as 407 

(Integrated density of GFP)/(Area of selected cells * Mean fluorescence of background) where 408 

background is a region of the root with no GFP45. The CTCF was divided by the area of the cells 409 

(CTCF/area) before performing statistics to account for different numbers of cells selected in 410 

each image. When counting cells with GFP expression, a local auto threshold using the 411 

Phansalkar method was applied in ImageJ to the GFP channel before counting.  412 

For qPCR, total RNA was isolated from approximately 2mm of 5 day old Col-0, gata9-1, gata9-413 

2, at1g75710-1, at1g75710-2, rev-5, orc1b-1, orc1b-2, anl2-2 and anl2-3, root tips using the 414 

RNeasy Micro Kit (Qiagen). qPCR was performed with SYBR green (Invitrogen) using a 7500 415 

Fast Real-Time PCR system (Applied Biosystems) with 40 cycles. Data were analyzed using the 416 

∆∆Ct (cycle threshold) method and normalized to the expression of the reference gene 417 

UBIQUITIN10 (UBQ10).. qPCR was performed on two technical replicates of two to three 418 

independent RNA samples (biological replicates). Differential expression was defined as a 419 

p<0.05 using a z-test with a known mean of 1 and standard deviation of 0.17 (based on the Col-0 420 

sample). Primers used for qPCR are provided in Supplementary Table 11. SHR regulation of 421 

TCX2 was validated using data from20.  422 

Stem-cell-specific transcriptional profiling in the tcx2 mutant 423 

Three biological replicates were collected for WOX5:GFP, CYCD6:GFP, FEZ:FEZ-GFP, and 424 

TMO5:3xGFP crossed into the tcx2-2 or tcx2-3 mutant background. Seedlings were grown and 425 

roots were collected as described for the stem cell transcriptional profile. Libraries were 426 

sequenced on an Illumina HiSeq 2500 with 100bp single end reads. Reads were mapped and 427 

FPKM (fragments per kilobase per million mapped reads) values were obtained using Bowtie, 428 

Tuxedo, and Rsubread as described in38. Differential expression analysis was performed using 429 

PoissonSeq38,39. To account for differences in library size between the stem cell transcriptional 430 

profile and the TCX2 cell specific transcriptional profile, library sizes were normalized before 431 

differential expression was performed.  We set a differential expression cutoff of q<0.05 and fold 432 
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change > 2 based on our cutoff for the stem cell transcriptional profileAllprofile. AllprofileAll 433 

differentially expressed genes are reported in Supplemental Table 1. 434 

For the tcx2-3 transcriptional profile, total RNA was isolated from approximately 2mm of 5 day 435 

old Col-0 and tcx2-3 root tips using the RNeasy Micro Kit. cDNA synthesis and amplification 436 

were performed using the NEBNext Ultra II RNA Library Prep Kit for Illumina. Libraries were 437 

sequenced on an Illumina HiSeq 2500 with 100 bp single-end reads. Reads were mapped and 438 

differential expression was calculated as previously described, except the differential expression 439 

criteria were chosen as q<0.5 and fold change > 1.5 based on the values for TCX2, which was 440 

assumed to be differentially expressed in its own mutant background.  441 

 442 

All differentially expressed genes are reported in Supplemental Table 5. Data for both the stem 443 

cell type specific profiling and root tip profiling are available on GEO, accession #GSE123984. 444 

 445 

TCX2:TCX2-YFP and CYCB1;1:CYCB1;1-GFP tracking 446 

Confocal images of the TCX2:TCX2-YFP, CYCB1;1:CYCB1;1-GFP, and CYCB1;1:CYCB1;1-447 

GFP x tcx2  lines were obtained by imaging roots submerged in agar every 2 hours. A 448 

MATLAB-based image analysis software (https://github.com/edbuckne/BioVision_Tracker) was 449 

used to detect, segment, and track individual cells expressing YFP/GFP in 3D time-course 450 

fluorescence microscopy images46. The average voxel intensity, which is a proxy for YFP/GFP 451 

expression, was measured as the average voxel value within the set of voxels describing a 452 

segmented cell.  453 

Scanning Fluorescence Correlation Spectroscopy (Scanning FCS) 454 

Image acquisition for Scanning FCS was performed on a Zeiss LSM880 confocal microscope. 455 

For Number and Brightness (N&B) on the TCX2:TCX2-YFP and 35S:YFP lines, the parameters 456 

were set as follows: image size of 256x256 pixels, pixel dwell time of 8.19 µs, and pixel size of 457 

100 nm. The 35S:YFP line was used to calculate the monomer brightness and cursor size as 458 

described in27,47. For Pair Correlation Function (pCF) on the 35S:GFP, TCX2:TCX2-YFP and 459 

TMO3:TMO3-GFP lines, the parameters were set as follows: image size of 32x1 pixels, pixel 460 

dwell time of 8.19 µs, and pixel size between 100-500nm. The movement index (MI) of the 461 

35S:GFP line was used as a positive control. All analysis was performed in the SimFCS software 462 

as described in27,47. 463 

Stem cell time course 464 

Two to three biological replicates were collected for each time point. For each biological 465 

replicate, 100-250mg of PET111:GFP seed were wet sterilized using 50% bleach, 10% Tween 466 

and water and stratified at 4°C for 2 days. Seeds were plated on 1x MS, 1% sucrose plates with 467 

Nitex mesh and grown under long day conditions (16 hr light/8 hr dark) at 22°C for 4 days, 4 468 

days 8 hours, 4 days 16 hours, 5 days, 5 days 8 hours, 5 days 16 hours, and 6 days. Roots were 469 

collected at the same time of day for all samples to minimize circadian effects. GFP-negative 470 

cells were collected as PET111:GFP marks only the differentiated columella, so collecting the 471 

surrounding GFP-negative cells results in a population of mostly stem cells. Protoplasting, cell 472 

sorting, RNA extraction, and library preparation were performed as described in36. Libraries 473 

were sequenced on an Illumina HiSeq 2500 with 100bp single end reads. Reads were mapped 474 

and FPKM (fragments per kilobase per million mapped reads) values were obtained using 475 
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Bowtie, Tuxedo, and Rsubread as described in38. Data are available on Gene Expression 476 

Omnibus (GEO: https://www.ncbi.nlm.nih.gov/geo/ ), accession #GSE131988. 477 

Ordinary Differential Equation (ODE) modeling 478 

ODE equations were constructed based on the GRNs shown in Figure 4A. One set of equations 479 

was built for each gene in each cell type. The equations changed at 4D 8H and 4D 16H to 480 

account for the changes in the predicted network (as shown in Figure 4A). If a sign was not 481 

predicted in the network, it was assumed that the regulation was positive (activation) in the 482 

model. A schematic showing the location of genes, and what proteins can move between cell 483 

types, is presented in Supplementary Figure 7. All equations are provided in Supplemental 484 

Equations. 485 

A sensitivity analysis was performed using the total Sobol index25,38,39. Sensitive parameters 486 

were defined as having a significantly higher (p<0.05) total Sobol index than the control 487 

parameter using a Wilcoxon Test with Steel-Dwass for multiple comparisons. (Supplemental 488 

Table 6) The sensitive diffusion coefficients and oligomeric states were experimentally measured 489 

using scanning FCS. The remainder of the parameters were estimated either directly from the 490 

stem cell time course or by using simulated annealing50 on the stem cell time course. For 491 

simulated annealing, Latin hypercube sampling was used to sample the parameter space for a 492 

total of 50 sets of initial parameter estimates. Each set of initial estimates was fit to the residual 493 

function using simulated annealing with least squares (simulannealbnd function in MATLAB) 494 

for 5 minutes (total runtime = 250 minutes for 50 sets of initial estimates). The average of the 10 495 

parameter values with the lowest error was used in the final model simulation. All parameter 496 

values, and how they were estimated, are reported in Supplemental Table 7. All MATLAB files 497 

used for the ODE model are available on figshare (see Data Availability section). 498 

Statistics 499 

For all confocal phenotyping and RICS analyses, a two-tailed Wilcoxon test (for one 500 

comparison) or Steel-Dwass with control (for multiple comparisons) was used as some of the 501 

data did not follow a normal distribution. All exact p-values, test statistics, and sample sizes are 502 

included in Source Data. 503 

Data Availability 504 

All raw RNA-Seq data and calculated FPKM values are available on GEO, accession 505 

#GSE98204, GSE123984, and GSE131988. The Source Data underlying Figure 3 and 506 

Supplementary Figures 3, 4, 5, 8, and 9 are provided as a Source Data file. All raw images, the 507 

data used for GRN inference, and MATLAB code for the ODE model are deposited on figshare: 508 

10.6084/m9.figshare.c.4539071 509 

Supplementary Information 510 

Supplementary figures, tables, and equations are included in the Supplementary Information 511 

PDF. 512 
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Main Figures 537 

 538 

Figure 1. Distribution of cell-specific and cell-ubiquitous genes within the Arabidopsis root 539 

stem cell niche. (A) (left) Schematic of the Arabidopsis root stem cell niche. CEI – cortex 540 
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endodermis initials (blue); Protophlo- protophloem (pink); Epi/LRC – epidermis/lateral root cap 541 

initials (green); CSCs – columella stem cells (purple); Xyl – xylem initials (orange); QC – 542 

quiescent center (yellow). (left) GFP marker lines used to transcriptionally profile stem cells. 543 

SCN – stem cell niche; Scale bar = 20µm. (B) 3D principal component analysis (PCA) of the 544 

stem cell transcriptional profiles. The x, y, and z axis represent the three largest sources of 545 

variation (i.e. three largest principal components) of the dataset. Small spheres are biological 546 

replicates, large spheres are centroids. Red – Non stem cells (NSCs); Brown – SCN; Blue – CEI; 547 

Pink – Protophlo; Green – Epi/LRC; Purple – CSCs; Orange – Xyl; Yellow – QC; (C) 548 

Distribution of the 9266 stem cell-enriched genes across the stem cell niche. Enrichment criteria 549 

are q-value < 0.05 (from PoissonSeq) and fold change in expression > 2. 550 
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 551 

Figure 2. Gene regulatory network (GRN) of the stem cell-enriched genes connects cell-552 

specific and cell-ubiquitous hub genes.  (A) Inferred GRN of 2982 out of the 9266 stem cell-553 

enriched genes. Genes are colored based on the number of genes in which they are enriched, with 554 
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red genes (>3 enriched cells) considered cell-ubiquitous and blue genes (≤ 3 enriched cells) 555 

considered cell-specific. Black outlines represent hub genes which have a normalized motif score 556 

(NMS) > 0. (B) First-neighbor GRN of TCX2. Gene size represents the NMS score. Red borders 557 

represent the genes which have a known stem cell (SC) phenotype. Edge colors represent the cell 558 

in which the regulation is inferred. Blue – CEI; Pink – Protophlo; Green – Epi/LRC; Purple – 559 

CSCs; Orange – Xyl; Yellow – QC. (C) Outdegree (top plot) and indegree (bottom plot) vs NMS 560 

score of the genes with the top 10 NMS scores in (A). TCX2 is highlighted in orange. 561 

 562 

Figure 3. TCX2 controls stem cell division through cell-specific regulators and targets. (A) 563 

(Left panel) Medial longitudinal (left) and radial (right) sections of 5 day old WT (top) and tcx2 564 
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mutant (bottom) plants. In medial longitudinal sections, * labels QC cells and numbers denote 565 

columella cell files. In radial sections, white numbers denote xylem cells, yellow pericycle, and 566 

blue endodermis. (Middle panel) Length of 7 day old WT (blue, n=18) and tcx2 mutant (orange, 567 

n=18) roots. (Right panel) Quantification of stem cell phenotypes (top plot) and number of cell 568 

files (bottom plot) in 5 day old WT (blue) and tcx2 mutant (orange) roots. * denotes p < 0.1, ** 569 

denotes p < 0.05, Wilcoxon test. Error bars denote SEM. (B) (left panels) Medial longitudinal 570 

sections of 5 day old WOX5:GFP (left), CYCD6:GFP (second from left), FEZ:FEZ-GFP (third 571 

from left), and TMO5:3xGFP (right) in WT (top) and tcx2 mutant (bottom) plants. For 572 

TMO5:3xGFP, a radial section (middle) is also shown taken at the location of the white, dashed 573 

line. (right panels) Quantification of GFP in WT (blue, n>5) and tcx2 mutant (orange, n>5) 574 

plants. Black dots represent outliers. * denotes p < 0.1, ** denotes p < 0.05, Wilcoxon test. (C) 575 

(left) Predicted direct targets of TCX2 and (right) predicted upstream regulators of TCX2 with 576 

stem cell (SC) phenotypes. Gene size represents the NMS score. Red borders represent the genes 577 

that have a known SC phenotype. Arrows represent predicted activation, bars inferred repression, 578 

and circles no inferred sign. Thick edges were validated using qPCR/RNA-Seq. Black edges 579 

were predicted in the correct cell type but did not have a predicted sign. Blue edges have the 580 

correct cell type and correct sign, while orange edges have the correct cell type but the incorrect 581 

sign. Arrows with chevrons are DAPSeq validated. Source data are provided as a Source Data 582 

file. 583 
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 584 

Figure 4. Mathematical modeling of TCX2 network predicts timing of cell division. (A) 585 

TCX2 first neighbor TF networks predicted using RTP-STAR on the stem cell time course for 4 586 

day (4D) to 4 days 8 hours (4D 8H) (top), 4D 8H to 4D 16H (middle), and 4D 16H to 5D 587 

(bottom). Networks are separated based on the cell type the genes are expressed in: QC (yellow), 588 

CEI (blue), CSCs (purple), Epi/LRC (green), Xyl (orange). Arrows represent predicted 589 

activation, bars inferred repression, and circles no inferred sign. (B) (left) Representative image 590 

of TCX2:TCX2-YFP at 4D 16H. White box represents the stem cell niche were cells were 591 

tracked over time. (right, top) YFP-positive cells tracked every 2 hours from 4D 16H (left) to 4D 592 

20H (right). Stem cells that were tracked are marked in blue (CEI), green (Epi/LRC), and orange 593 

(Xyl). Two Xyl cells were tracked, #1 and #2. All of these 4 stem cells had no measurable YFP 594 

expression at 4D 22H. (right,bottom) Quantification of YFP expression in tracked cells. (C) ODE 595 

model prediction of cell-specific TCX2 expression from 4D to 5D. FPKM: fragments per 596 

kilobase per million mapped reads. 597 

  598 
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