
IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 1

BigMPI4py: Python module for parallelization of
Big Data objects

Alex M. Ascension and Marcos J. Araúzo-Bravo

Abstract—Big Data analysis is a powerful discipline due to the growing number of areas where technologies extract huge amounts of
knowledge from data, thus increasing the demand for storage and computational resources. Python was one of the 5 most used
programming languages in 2018 and is widely used in Big Data. Parallelization in Python integrates High Performance Computing
(HPC) communication protocols like Message Passing Interface (MPI) via mpi4py module. However, mpi4py does not support
parallelization of objects greater than 231 bytes, common in Big Data projects. To overcome this limitation we developed BigMPI4py, a
Python module that surpasses the parallelization capabilities of mpi4py, and supports object sizes beyond the 231 boundary and up to
the RAM limit of the computer. BigMPI4py automatically determines, taking into account the data type, the optimal object division
strategy for parallelization, and uses vectorized methods for arrays of numeric types, achieving higher parallelization efficiency. Our
module has simpler syntax than MPI4py and warrants “robustness” and seamless integration of complex data analysis pipelines. Thus,
it facilitates the implementation of Python for Big Data applications by taking advantage of the computational power of multicore
workstations and HPC systems.
BigMPI4py is available at https://gitlab.com/alexmascension/bigmpi4py.

Index Terms—Parallelization, Python, MPI, Big Data.

F

1 INTRODUCTION

The term Big Data has been known since the 1990s [1],
and has gained popularity since 2010 due to the exponen-
tial amount of data from diverse sources. Until 2007, the
volume of all available data was estimated to be slightly
less than 300 EB [2]; in 2018, more than 2.5 EB of data
were generated daily [3] due to the vast number of users
of social networks, online business, messaging platforms,
society administration [4], goverment sector aplications [5]
and objects belonging to the Internet of Things (IoT) [6].
Big Data elements are also found in many branches of
science such as physics, astronomy, omics (like genomics
or epigenomics [7] [8]). Omics are currently tightly bound
to the rising number of patient records in medical sciences
and the application of Next Generation Sequencing (NGS)
technologies. The cumulative amount of genomic datasets
in the SRA (Sequence Read Archive) database increased to
9000 TB in 2017 [9]. Astronomy also produces vast amounts
of data, with databases such as the Square Kilometer Array
(SKA) or the Large Synoptic Survey Telescope (LSST), with
weights of nearly 4.6 EB and 200 PB, respectively [10]. The
quick evolution of Big Data resources has hindered the
correct rooting of the discipline, resulting in even a lack of
consensus on its definition. Andrea De Mauro et al. [11]

• Alex M. Ascensión and Marcos J. Araúzo-Bravo are with Computational
Biology and Systems Biomedicine department, Biodonostia Health Re-
search Institute; P/ Doctor Begiristain, Donostia, Spain, 20014.

• Marcos J. Araúzo-Bravo is with the Computational Biomedicine Data
Analysis Platform, Biodonostia Health Research Institute; P/ Doctor
Begiristain, Donostia, Spain, 20014.

• Marcos J. Araúzo-Bravo is with IKERBASQUE, Basque Foundation for
Science, Bilbao, Spain, 48013.

• Marcos J. Araúzo-Bravo is the corresponding author. Email:
mararabra@yahoo.co.uk

Manuscript received XXX XX, XXXX; revised XXX XX, XXXX.

considered Big Data as a mixture of three main types of
definitions:

• Attributes of data: Big Data satisfy the Laney’s ”3
Vs” (Volume, Velocity and Variety) [12], and extends
2 more Vs: Veracity and Value. Size of Big Data
generation follows an exponential growth associated
to Moore’s law [13]

• Technological needs: Big Data structures usually re-
quire HPC facilities [14].

• Social impact: Big Data is tightly linked to the ad-
vance of the society’s technology, culture and schol-
arization.

Big Data is also defined as a consequence of three shifts
in the way information is analyzed [15]: (1) All raw data is
analyzed instead of a sample. (2) Data is usually inaccurate
or incomplete. (3) General trends and correlations overtake
analysis of focused characteristics and minute details.

There are multiple computer languages that can deal
with the challenges of Big Data. Among them, Python is
a dynamic-typed programming language commonly used
in Big Data since

• Python is the top ranked language by IEEE Spectrum
in 2018 [16] and is the second top ranked by number
of active users in Github (14.69%) [17].

• Python is suited both for beginners and experienced
programmers.

• Being dynamically typed considerable time is saved
in code production at the expense of higher. This
effect is reduced with the C-extensions for Python
(Cython) and the numba modules integrate C ar-
chitecture into Python code, drastically diminishing
computational times.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

https://orcid.org/0000-0002-0013-3052
https://orcid.org/0000-0002-3264-464X
https://gitlab.com/alexmascension/bigmpi4py
https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 2

• Python integrates a vast amount of modules for data
analysis, such as pandas, numpy, scipy or scikit-
learn, partially implemented in C to overcome low
computation times.

The requirements of Big Data have prompted the devel-
opment of a set of tools for data processing and storage such
as Hadoop [18], Spark, NoSQL databases, or Hierarchical
Data Format (HDF) [19]. Spark is gaining popularity in
Python with PySpark module, and there are other libraries
like Dask, that implement routines for parallelization using
common modules like numpy, pandas or scikit-learn, suit-
ing them to apply Machine Learning in Big Data. Still, they
do not fully implement all functions from these modules,
or are limited to adapt to complex algorithms which re-
quire extra modules. MPI is still a common communication
protocol used for parallelization, and Open MPI is one of
the most commonly used implementations of MPI, since
it is open source and constantly updated by an active
community [20]. MPI4py [21] is the most used module that
allows the application of MPI parallelization on Python
syntax, allowing users to avoid adapting their pipelines
to C++ language, supported by MPI, decreasing code pro-
duction time. MPI4py allows the communication of pickable
elements, like numpy arrays, in a faster manner than the
common communication method.

Nonetheless, there is a limitation in MPI which im-
pedes parallelization of data chunks with more than 231 =
2147483648 elements [22] [23] [24]. The MPI standard uses
C int for element count, which has a maximum value of
231 for positive values and, thus, any object bigger than
that cannot be communicated by MPI. This limit is indeed
an upper bound since many Python objects, e.g. numpy
arrays or pandas dataframes, have a complex structure in
which one element of the object corresponds to several
C-type elements, decreasing that upper bound to around
106 to 2 · 107 elements. Communication of bigger objects
to the cores throws an OverflowError. The object size
problem is also encountered in the case of an object small
enough for distribution to the cores that after computation
it transforms into an object too large to be recovered to the
original core, throwing an OverflowError. Thus, the size
limitation problem does not only restrict the use of MPI
but also negatively affects its “robustness” since there are
algorithms whose final object has a undetermined object
size (UOS), hampering to know in advance whether the size
limitation will be fulfilled. This case leads to a long delay
in code execution, since OverflowError occurs only after
distributing the object and waiting its processing.

Due the importance of facilitating the development of
Python solutions for Big Data applications, several solutions
to the size limit problem were proposed. Hammond et
al. [24] [25] developed BigMPI, that circumvents the C int
problem using derived C types allowing up to ∼ 9 · 109
GB of data for parallelization. However, BigMPI developers
acknowledge the limitation of BigMPI of supporting more
complex datatypes, which must be derived to built-in types,
posing a problem for users whose pipelines include Python-
like objects, which would need to be transformed into C-
type objects for parallelization. Another solution is to divide
the parallelizable object into chunks, and parallelize each

chunk independently. The main drawback of this method,
implementable in Python, is that it has to be tailored to suit
the object type, i.e., a pandas dataframe and a numpy array
have to be divided using different syntax. Moreover, the
number of chunks that have to be produced to parallelize
without error is not straightforward to calculate.

We developed BigMPI4py to overcome these prob-
lems. BigMPI4py is a Python implementation which uses
MPI4py as the base parallelization module, and applies
the chunking strategy to automatically distribute large ob-
jects across processors. BigMPI4py distributes the most
common Python data types (pandas dataframes, numpy
arrays, simple lists, nested lists, or lists composed of pre-
vious elements), regardless of the size, and keeping an
easy syntax. BigMPI4py currently allows collective com-
munication methods bcast(), scatter(), gather(), or
allgather(), as well as the point-to-point communication
method sendrecv(), adapted from the homonym func-
tions on MPI4py. Furthermore, BigMPI4py automatically
communicates numpy arrays with vectorized Scatterv()
and Gatherv() methods, providing a substantial time
optimization. Thus, BigMPI4py seamlessly implements the
most common parallelization pipelines with an easy and
understandable syntax.

The remainder of this paper is organized as follows. Sec-
tion 2 provides a system overview of the main functions im-
plemented in the BigMPI4py module. Section 3 describes the
two strategies of BigMPI4py to split the objects and their use
by scatter() and gather() functions. Section 4 explains
how other functions from this module were implemented.
Section 5 explains the vectorization details of BigMPI4py.
Section 6 presents numerical results on how BigMPI4py
overcomes the object size limit of MPI4py, and performs
faster in several computationally demanding applications.
Section 7 includes several pieces of code illustrating the
simplicity of the design of the parallelization task. Finally,
Section 8 has the concluding remarks.

2 SYSTEM OVERVIEW

BigMPI4py has 5 functions which mimic the actions of
its MPI and MPI4py counterparts: bcast(), scatter(),
gather() and allgather() belong to the collective com-
munication category, and sendrecv() belongs to the point-
to-point communication category.

• bcast() communicates replicates of an object from
the source (root) core to the remaining cores.

• scatter() divides the object from the source core
into n chunks (n = number of cores) and distributes
them to the remaining cores.

• gather() combines the objects from all the cores
into a unified object and sends it to a destination core.

• allgather() combines the objects from all the
cores and distributes copies of the combined object
to all the cores.

• sendrecv() communicates an object to a specific
destination core.

Due to similarities in the algorithmic structure of these 5
functions, some of them are combined into 2 unified func-
tions: _general_scatter() and _general_gather().

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 3

_general_scatter() is called by bcast(), scatter()
and sendrecv(), whereas _general_gather() is called
by gather() and allgather(). _general_scatter()
has 3 main arguments:

• object type: pandas dataframe, series, numpy ar-
rays or lists. Lists are divided into “simple” lists
when they contain integers, floats or strings; and
“complex” lists when they contain dataframe, series,
arrays or other lists. “Mixed” lists with “complex”
and “simple” type of elements simultaneously are
not currently supported.

• optimize: if True and when the object is a nu-
meric numpy array it can be scattered using the
comm.Scatterv() function from MPI4py. This
function uses a vectorized implementation of the
parallelization, drastically improving parallelization
efficiency.

• by: columns referring to one or several categorical
variables. E.g., if a table contains one column with
months and another one with week days, choosing
by with these two columns selects all combinations
of months and week days and distributes tables so
that no combination of both columns is distributed.

_general_gather() takes the same arguments as
_general_scatter() although by is not considered. In
both functions, the main structure has the following steps:

1) Determine the object type. Different partitioning
strategies follow depending on the type.

2) Determine the positions to divide the object into n
parts, or chunks, n being the number of processors.

3) Determine, for each chunk of the object, secondary
parameters to further divide this object in case of
memory limitations.

4) Perform the division of the object.
5) Merge all the communicated objects into a final

object.

During the second step (Determine the division posi-
tions), a list of indexes by which the object is divided is
created, where A, the input object, is split into n chunks. A
will be divided into equally-sized chunks unless by argu-
ment is set; in that case the number of combinations will be
equally distributed.

If A has length |A| (number of rows in arrays, dataframes
or series, and number of elements in lists), then the index
positions of the division are

pni =

⌊
|A| · i
n

⌋
ni ∈ {1, · · · , n}

Ani
is defined as the ni-th chunk of A with

ni ∈ {1, · · · , n}. Thus, the set of indexes would be
{0, p1, p2, · · · , pn−1, pn = |A|}, and the ni-th chunk would
start at position pni−1 and end at position pni

. If by argu-
ment is set to True, then pni−1 and pni

would be limited
indexes between two categories.

During the third step (Determine secondary parameters),
instead of dividing the object into n parts, or chunks, each
of the chunks is further split into k subchunks, so that the
object size restriction is overcome during the communica-
tion of A to the processors. To calculate k, two strategies

are developed, hereby termed Strategy I and Strategy II.
Those strategies are slightly different depending on whether
an scattering or a gathering is being performed, since the
final object will be distributed to all the cores, or will be
communicated to a specific one.

3 STRATEGIES TO CALCULATE THE NUMBER OF
subchunks
3.1 Strategy I
Strategy I deals with “simple” and “complex” lists, ar-
rays, dataframes and series. After A has been divided into
A1, A2, · · · , An, if the size (memory allocation) of any of
those chunks, A∗

i , is greater than Ln = L/n, L being the
memory limit (which can be assigned by the user), then kI
is defined as

kI = max

{⌈
A∗

ni

Ln

⌉}
BigMPIpy defines Ani,ki as the ki-th subchunk of the ni-

th chunk. By choosing this kI value, it is assured that any
combination (ni, ki) will result in an Ani,ki smaller than
Ln. Therefore, A could be expressed as the following matrix
of subchunks:

A =

A1,1 · · · A1,kI

...
. . .

...
An,1 · · · An,kI


The positions by which the objects are divided are:

pni,ki
= pni−1

⌊
ki · (pni − pni−1)

kI

⌋
ki ∈ {1, · · · , kI}

For each value ki, all Ani,ki
are combined into a list, and

communicated by MPI4py functions. The model of organi-
zation varies depending on whether the object is scattered
or gathered, although the main strategy remains the same.
The description of the scattering algorithm is described in
Algorithm 1, where SCATTER() refers to comm.scatter()
function from MPI4py whereas MERGE() is a function de-
veloped in the module that inputs a list with objects of
the same type (e.g., a list of dataframes), and returns a
concatenated object. idx A refers to the list of indexes that
divides A into n parts. During the scattering kI is selected
as the maximum k value of all chunks. Using this kI all pni,ki

positions are calculated. Then, for each ki value, the list with
Ani,ki

subchunks is created and scattered. Each core ni will
have its subchunk Ani,ki

. In the end, each core will have a
list with subchunks scatter_object=[Ani,1, · · · , Ani,kI

], which will be merged into the original chunk Ani
. The

gathering strategy is similar, although its initial step dif-
fers, since the object is now distributed across cores. In
this procedure, for each core, its kI value is calculated,
and the final kI is the highest across cores, which is then
communicated. Afterwards, each Ani

is divided into kI
subchunks (Ani,1, · · · , Ani,kI

). For each ki ∈ {1, · · · , kI},
Ani,ki

is gathered, and the destination core receives the
list gather_ki= [A1,ki

, · · · , An,ki
], which occupies the

ki + ni · n positions of a return list gather_list, ni being
the position of each element in gather_ki. After the gath-
ering loop, gather_list= [A1,1, · · · , A1,kI

, · · · , An,kI
] is

merged onto the final object A.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 4

Algorithm 1 Strategy I for scattering
1: procedure STRATEGY I SCATTER(A, idx A, L, n)
2: if rank == root then
3: k← 0
4: idx k← []
5: scatter A← []
6: for i in 0:len(idx A) do
7: k← max(k, int(size(A[idx A[i:i+1]]) / L) + 1)
8: end for
9: for i in 0:len(idx A) - 1 do

10: APPEND(idx k, int(z) for z in
np.linspace(idx A[i], idx A[i + 1], k + 1)][:-1])

11: end for
12: APPEND(idx k, len(A))
13: for i in 0:len(idx k) - 1 do
14: APPEND(scatter A, A[idx k[i]:idx k[i + 1]])
15: end for
16: end if
17: k← SCATTER(k)
18: scatter object← [None] * k
19: for ki in 0:k do
20: scatter object[ki] ← SCATTER([scatter A[i] for i

in range(0, k * n, k)])
21: for i in 0:k * n:k do . Deleting to free memory
22: del scatter A[i]
23: end for
24: end for
25: return MERGE(scatter object)
26: end procedure

Algorithm 2 Strategy I for gathering
1: procedure STRATEGY I GATHER(A, L, n)
2: k← 0
3: divide A← []
4: for i in 0:len(idx A) do
5: k← int(size(A) / L) + 1
6: end for
7: k← max(ALLGATHER(k))
8: idx k← [int(z) for z in np.linspace(0, len(A), k + 1)]
9: for i in 0:len(idx k) - 1 do

10: APPEND(divide A, A[idx k[i]:idx k[i + 1]])
11: end for
12: if rank == root then
13: gather list← [None] * (n * k)
14: end if
15: for ki in 0:k do
16: gather ki← GATHER(divide A[ki])
17: for ni in 0:n do
18: gather list[ki + ni * k] = gather ki[i]
19: end for
20: end for
21: return MERGE(gather list)
22: end procedure

3.1.1 Example of array scattering with Strategy I
A is distributed into n = 5 cores as illustrated in Fig. 1
where the object A is represented with a pentagon. Since
n = 5 A is divided into 5 chunks: A1, A2, A3, A4, and A5,
represented with triangles. If L = 3, then Ln = 3/5 = 0.6.
if the weights of the chunks are 1, 1.5, 1.2, 1.1 and 1 re-
spectively, k = d1.5/0.6e = 3. Then, the distribution of
subchunks is A1,1, A1,2, A1,3, A2,1, · · · ..., A5,2, A5,3, which
are combined in the list scatter_A. During the first itera-
tion on kI , all Ai,1 are combined, distributed and attached
to scatter_object, i.e., the third core receives A1,3. Af-
ter all iterations, each core has the list scatter_object
= [Ani,1, Ani,2, Ani,3], which, after merging, will be trans-
formed to Ani

.

3.1.2 Example of list scattering with Strategy I
A = [a1, a2, a3, · · · , a9] is distributed into n = 5 cores, thus
it is divided into 5 chunks: A1 = [a1, a2], A2 = [a3, a4], · · · ,
A5 = [a9]. If kI = 2, then the distribution of subchunks
is [[a1], [a2], [a3], [a4], · · · , [a9], []], i.e., A1,1 = a1, A1,2 =
a2, A1,3 = a3, · · · , A5,1 = a9, A5,2 = []. After scattering,
each core receives the list [Ani,1, Ani,2]; for core 3 this list is
[[a5], [a6]], and for core 5 it is [[a9], []]. After merging, core 3
has [a5, a6] and core 5 has [a9].

3.1.3 Example of array gathering with Strategy I
Let’s suppose that n = 3 and there are three arrays to
be gathered: A1, A2, A3; as illustrated in Fig. 2, where
each array is represented with a rhomboid and the final
gathered array with a triangle. If Ln = 2 and A∗

1 = 3,
A∗

2 = 3.5, A∗
3 = 3.7, then k = dmax{3/2, 3.5/2, 4/2}e = 2.

Therefore, Ani is split into Ani,1 and Ani,2. In the re-
ceiver core gather_object is set to [None, None, None,
None, None, None]; and after the first iteration on kI , the
receiver core receives gather_ki= [A1,1, A2,1, A3,1], and
gather_object is [A1,1, None, A2,1, None, A3,1, None].
After the second iteration, gather_object is [A1,1, A1,2,
A2,1, A2,2, A3,1, A3,2], which is merged onto the object A
represented with a triangle in Fig. 2. Gathering a list with
Strategy I involves similar steps as gathering an array.

3.2 Strategy II
Strategy II deals with “complex” lists in which one or more
elements individually exceeds the memory limit. In this
case, the kI value from strategy I is not suitable since the
best partition of elements would be the one that makes each
element of the list to be scattered or gathered individually.
E.g., for A = [a1, a2, · · · , a4, a5], with a∗2 = 4 and Ln = 2,
if n = 2, then the k value for this case would be kI = 3,
making each element to be scattered individually. However,
since a∗2 alone is greater than Ln, the scattering would be
impossible.

Given a list A with f elements A = [a1, · · · , af], the
main objective of Strategy II is to split each element of A

into kII sub-elements ai,ki
, so that

∑f
i ai,ki

< L ∀ ki ∈
{1, · · · , kII} ⇐⇒ ai,ki

< Ln ∀ i, ki.
Firstly, kII is obtained by sampling kII for each element

in the list, and then returning the highest integer round up
value. Once kII is fixed, each element ai in A is divided into
kII sub-elements ai,1, ai,2, · · · , ai,kII

. Then, for each ki ∈

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 5

n = 5
L = 3
Ln = 0.6

kI = 3

ki = 1

ki = 2

ki = 3

Si
ze

 c
al

cu
la

tio
n

kI
ca

lc
ul

at
io

n
sc

at
te

r_
A

SC
AT

TE
R

sc
at

te
r_

ob
je

ct
M

ER
G

E

Core 1

Core 4Core 3Core 2Core 1 Core 5

A1 A2

A3A5
A4

1 1.5
1.21

1.1

A4,2

A4,1

A4,3 A3,
2

A3,
1

A4,2

A4,1

A4,3

A
5,2

A
5,1

A
5,3 A3,

3

A
2,2

A
2,1

A
2,3

A1,2
A1,1

A1,3

Fig. 1. Array scattering of example 3.1.1. n represents the number
of cores, L is the memory limit (in GB) and Ln = L/n. For each
colored piece, hue is the core that will process the chunk or subchunk,
and luminosity represents the ki loop in which the subchunk will be
processed. Joined pieces belong to the same object, whereas sepa-
rated pieces represent a list with subchunks. Dashed lines represent
Nonetype objects within a list.

n = 3
L = 6

Ln = 2
Core 3Core 2Core 1

Si
ze

 c
al

cu
la

tio
n

k
ca

lc
ul

at
io

n
di

vi
de

_A
ga

th
er

_o
bj

ec
t

M
ER

G
E

G
AT

H
ER

ki = 1

ki = 2

Core 1

A1 A2 A3

3 3.5 3.7
2

max(ALLGATHER) kI = 2

1.75 1.85

A1,1

A1,2

A2,1

A2,2

A3,1

A3,2

Fig. 2. Array gathering of example 3.1.3. n is the number of cores,
L is the memory limit (in GB) and Ln = L/n. For each colored
piece, hue represents the core that will process the chunk or subchunk,
and luminosity represents the ki loop in which the subchunk will be
processed. Joined pieces belong to the same object, whereas sepa-
rated pieces represent a list with subchunks. Dashed lines represent
Nonetype objects within a list.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 6

{1, · · · , kII} the list with all ai,ki
is scattered, and each core

receives a respective set of sub-elements. At the end of the
scattering loop, all ai,ki

sub-elements are merged into their
respective ai elements.

The gathering strategy is similar, considering that kII is
the greatest value across cores. Since the number of elements
for the list to be processed by each core may differ, all lists
are filled with empty elements to match lengths. With this
lengthening it is possible to iterate through all the elements
of the list at the same time across cores.

After A elongation and kII calculation, gather_list
list with n · len(A) None elements is created to be
filled with all ai elements. For each ki ∈ {1, · · · , kII}
a list return_list with all gathered ai,ki

subelements
is created, and the ki + ni · n elements are filled with
return_list. After all ni iterations, gather_list is
complete. After gathering, gather_list might contain
some None values, which are removed from the list.

Algorithm 3 Strategy II for scattering
1: procedure STRATEGY II SCATTER(A, idx A, L, n)
2: k← 0
3: for i in A do
4: k← max(k, int(size(i) / L) + 1)
5: end for

scatter list← [[[] for ki in k] for ni in n]
6: for ni in n do
7: A ni← A[idx A[ni]:idx A[ni+1]
8: A ni k← []
9: for obj in A ni do

10: idx k ← [int(i) for i in LINSPACE(0, len(obj),
k+1)]

11: obj k← [obj[idx k[i]:idx k[i+1] for i in 0:k]
12: APPEND(A ni k, obj k)
13: end for
14: scatter list[ni]← A ni k
15: end for

merge← []
16: for ki in 0:k do
17: if rank == root then
18: merge ki← []
19: for sc list ni in sc list do
20: x← []
21: for l in 0:len(sc list ni) do
22: APPEND(x, sc list ni[l][ki])
23: end for
24: APPEND(merge ki, x)
25: end for
26: end if
27: merge ki← SCATTER(merge ki)
28: APPEND(merge, merge ki)
29: end for
30: return list← []
31: for l in 0:len(merge[0]) do
32: return ki← [merge[ki][l] for ki in 0:k]
33: APPEND(return list, MERGE(return ki))
34: end for
35: return return list
36: end procedure

Algorithm 4 Strategy II for gathering
1: procedure STRATEGY II GATHER(A, L, n)
2: k← 0
3: for i in A do
4: k← max(k, int(size(i) / L) + 1)
5: end for
6: k← max(ALLGATHER(k))
7: max len A← len(A)
8: max len A← max(ALLGATHER(max len A))
9: A← A + [[] * (max len A - len(A))]

10: gather list← [None] * (n * max len A)
11: for i in 0:len(max size list) do
12: cut idx ← [int(x) for x in LINSPACE(0, len(i),

k+1)]
13: return i← []
14: for ki in range(k) do
15: x← A[i][cut idx[ki]: cut idx[ki+1]
16: gather obj← GATHER(x)
17: APPEND(return i, gather obj)
18: end for
19: if return i[0] then
20: for ni in 0:n do
21: list return i ← [return i[ki][ni] for ki in

range(k)]
22: merged i←MERGE(list return i)
23: if len(merged i) > 0 then
24: gather list[i + ni*max len A] ←

merged i
25: end if
26: end for
27: end if
28: end for
29: return gather list
30: end procedure

3.2.1 Example of scattering with Strategy II

A = [a1, a2, a3, a4, a5] is distributed into
n = 2 cores, and kII = 3. The list of dis-
tribution, A_ni, is [[a1, a2, a3], [a4, a5]]. Then,
each ai element is split into [ai,1, ai,2, ai,3],
and the previous list becomes scatter_list
= [[[a1,1, a1,2, a1,3], [a2,1, a2,2, a2,3], [a3,1, a3,2, a3,3]],
[[a4,1, a4,2, a4,3], [a5,1, a5,2, a5,3]]]. Now, for each ki (in
this example, ki = 1) the list merge_ki is created:
[[a1,1, a2,1, a3,1], [a4,1, a5,1]], and after the scattering the first
core receives [a1,1, a2,1, a3,1] while the second core receives
[a4,1, a5,1]. This list is appended to the list merge. After all
ki values, merge is [[a1,1, a2,1, a3,1], · · · , [a1,3, a2,3, a3,3]]
for core 1 and [[a4,1, a5,1], · · · , [a4,3, a5,3]] for core 2. Then,
[ani,1, ani,2, ani,3] is merged to ani for ni = 1, · · · , 5, and
return_list is [a1, a2, a3] for core 1 and [a4, a5] for core
2.

3.2.2 Example of gathering with Strategy II

The first core has the list A1 = [a1, a2, a3], and the second
core has the list A2 = [a4, a5]. We obtain a kII value of
2 for the second core, and of 4 for the first core, thus
kII = 4. A2 is filled to [a4, a5, []], and gather_list is
[None,None,None,None,None,None]. BigMPI4py iterates

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 7

for obj in 0:3 and, for each iteration, gathers the i-th
value of A1 and A2. The first iteration takes a1 and a4
respectively. Next, iterating for ki, x = a1,1 and a4,1 for each
core, and gather_obj = [a1,1, a4,1]. After all ki iterations,
return_i is [[a1,1, a4,1], [a1,2, a4,2], · · · , [a1,4, a4,4]]. Then,
iterating through n, [a1,1, · · · , a1,4] and [a4,1, · · · , a4,4]
are merged to a1 and a4, and gather_list is filled
to be [a1,None,None, a4,None,None]. After all iterations,
gather_list is [a1, a2, a3, a4, a5,None], the None element
is removed, and the list is returned.

4 SENDRECV(), ALLGATHER() AND BCAST()
FUNCTIONS

sendrecv() function was implemented for point-to-point
communication, whereas allgather() and bcast()
were implemented for collective communication of whole
objects across cores. sendrecv() was implemented to-
gether with scatter(), in _general_scatter() func-
tions, since Strategy I and Strategy II are shared by the two
functions. The main differences in the use of scatter()
and sendrecv() are:

1) sendrecv() sends the object to a single core, thus
n = 1 is set.

2) Since no scattering is performed, by argument is
empty in sendrecv().

3) scatter() calls comm.scatter()
for scattering, whereas sendrecv()
calls comm.send(object, dest) and
comm.recv(root) for communication of the
object.

4) Merging of objects with Strategy II in sendrecv()
is simplified since n = 1.

allgather() was integrated together with gather()
in _general_gather(), since Strategy I and Strategy
II are also shared. The main differences in the use of
allgather() and gather() are:

1) Instead of calling comm.gather(),
comm.allgather() is called.

2) Combination of subchunks is performed for all cores
instead of the destination core only.

bcast() function was implemented in a separate function,
with the strategy developed in Algorithm 5. The first step in
bcast() is to obtain the available memory of the computer
(mem) and the memory allocation of the object (size_A). If
n·size_A > mem a MemoryError is thrown before broad-
casting is performed. Then, for each ni in 1:n, bcast_list
is created, where the nth

i element is A, and the rest are None.

5 VECTORIZED IMPLEMENTATION OF GATHER()
AND SCATTER()
MPI4py includes vectorized functions Scatterv() and
Gatherv() for numeric numpy arrays, in which the scat-
tering and gathering are improved since they communi-
cate the buffer of the chunks, instead of the values of
the chunks. The original vectorized methods were imple-
mented within MPI_Gatherv() and MPI_Scatterv()
routines. BigMPI4py implements these functions within

Algorithm 5 bcast() algorithm
1: procedure BCAST(A, L, n)
2: mem← GET MEMORY()
3: size A← GET SIZE(A)
4: for n i in 0:n do
5: bcast list← [None] * n
6: bcast list[n i]← A
7: bcast obj← SCATTER(bcast list, L)
8: if rank == n i then
9: return obj← bcast obj

10: end if
11: end for
12: return return obj
13: end procedure

_general_scatter() and _general_gather(). Thus,
when called, BigMPI4py automatically checks whether the
object is a numeric array and scatters or gathers the object
using the corresponding function. During the vectorized
implementation the array splitting positions, the number
of rows, and the number of cells in each chunk are calcu-
lated, and these values are used with Scatterv() and
Gatherv() methods from MPI4py, based on the original
implementation from MPI using sendbuf, sendcount and
displs. BigMPI4py adapts the vectorization also for large
arrays, supporting values of kI greater than 1. For this case,
when using scatterv(), the scatter_A list for each ki
is merged into an array, and the counts for each array are
considered. Although this step might be computationally
expensive for big arrays, since scatter_A list must be
transformed into an array, time performance is still im-
proved, as shown in Results section.

6 RESULTS

To test the time performance of scatter() and gather()
functions, we performed several simulations. For each func-
tion, random numpy arrays or pandas dataframes with
10 columns and row numbers ranging from 22 to 226

(gather()) or 230 (scatter()) at step 2 were generated.
Additionally, different types (int, float and string)
were used during random array generation. Then, scatter-
ing and gathering computational times were tested with
n = 10, and with 5 repetitions for each state. The tests
were performed on a Lenovo ThinkStation P910, Intel Xeon
@ 2.3 GHz (28 cores) with 512 GB RAM. cProfile and
line_profiler Python modules were used for moni-
toring time profiling. The simulations compare MPI4py,
and BigMPI4py vectorized and non-vectorized implemen-
tations. The results of the times required for scattering and
gathering are shown in Figs. 3 and 4, respectively.

Both vectorized and non-vectorized approaches process
larger tables than the MPI4py approach, i.e., when scatter-
ing, int and float tables MPI4py can only process up to
nearly 224 ∗ 10 ≈ 167 million cells, and string tables up
to 220 ∗ 10 ≈ 10 million cells; whereas BigMPI4py reaches
table sizes up to the maximum available memory in some
situations. The objects that MPI4py cannot process due to
its size limitation have sizes that are common for objects
required to be processed in multiple Big Data projects.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 8

Scattering and gathering processing times show a com-
mon trend across all tables and types: there is a quasilinear
behavior until 213 · 10 ≈ 80000 to 215 · 10 ≈ 300000 cells,
in which the processing times are around 10−3 for numpy
arrays, and 10−2 for pandas dataframes. For larger numbers
of cells, however, the times increase exponentially (linearly
after log-log transformation), following a trend with almost
no deviation from the expected exponential regression. For
short processing times, MPI4py shows faster computation
performance, up to an order of magnitude. This difference
is due to the preprocessing done by BigMPI4py, where the
main contributions are the communication of intermedi-
ate objects with MPI4py, like kI values, consuming up to
60% of the total time. For longer processing times when
the behavior is exponential, most of the time (> 95%) is
dedicated to the communication of the main object across
cores, or the merging of a list of tables into a single table.
For vectorized processing merging can take up to 70% of the
processing time, whereas with non-vectorized processing
merging takes up to 35% of the processing time. Inter-
estingly, vectorized parallelization is still nearly 10 times
faster, even considering that long time dedicated to merging.
For string arrays the processing times are longer for the
vectorized processing since a conversion between string
and float must be performed for vectorized parallelization
using Scatterv(), which consumes up to 80% of the total
processing time. By default, string arrays are not processed
by vectorized parallelization, which ought to be used for
numeric arrays.

Vectorized parallelization is only available for arrays,
and not for pandas dataframes, due to the large amount of
time that requires to transform a numpy array to a pandas
dataframe in case of big object sizes. Thus, processing times
for vectorized and non-vectorized parallelization in pandas
arrays are technically the same. Differences between vector-
ized and non-vectorized parallelization are shown in Figs.
5 and 6. Numpy float arrays show a great parallelization
advantage (up to five times for 218 rows) by vectorization
both in scattering and gathering. For numeric types, vector-
ized scattering shows at least a two-fold time decrease even
for number of rows that are not supported by MPI4py due
to size limitations. Regarding vectorized gathering, numpy
float arrays show improved computation times across the
entire size spectrum, although for int arrays the processing
time increases with respect to the non-vectorized processing.
Profiling shows that >95% of time is associated to barrier
synchronization, which implies a mismatch in processing
rhythms across cores. This time profiling is highly depen-
dent on the number of cores, obtaining better times with
fewer processors, and cannot be always reproduced.

7 EXAMPLES OF USE OF BIGMPI4PY

Besides overcoming the object size limitation of MPI4py,
BigMPI4py is designed to follow the philosophy of a simple
syntax, only requiring the strictly necessary code to com-
municate with BigMPI4py. Any piece of code or attribute
that is not essential for describing the parallelization is in-
cluded inside BigMPI4py code, and is optional. BigMPI4py
functions share some common attributes:

Not vectorized
Vectorized
MPI4py

/s

Fig. 3. Scattering times for numpy arrays and pandas dataframes for
three data types. The number of cells that MPI4py is not able to process
due to OverflowError is shadowed in red for int and float data types, and
in yellow for string data type. Color filling between lines represents the
10th and 90th percentiles of the data.

• scatter_object or similar: object to be communi-
cated.

• comm: MPI4py.MPI.COMM_WORLD object.
• size_limit: limit of object size for kI and kII .
• root: in gather() function, the destination core

where objects will be gathered; in the rest of func-
tions, the core from which the object comes.

• optimize: apply optimized communication if possi-
ble.

Only the scatter_object and comm objects are re-
quired attributes, and the rest have default values. To use
BigMPI4py the following code lines are required at the
beginning of Algorithm 6.

Algorithm 7 shows array, dataframe and complex list
scattering and broadcasting.

Firstly, all variables must be declared as None to do the
communication (line 1). Then, for the root core, the object
is created (lines 2-5). Finally, scatter() function is called

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 9

Not vectorized
Vectorized
MPI4py

/s

Fig. 4. Gathering times for numpy arrays and pandas dataframes in three
data types. The number of cells that MPI4py is not able to process due
to OverflowError is shadowed in red for int and float data types, and in
yellow for string data type. Color filling between lines represents the 10th

and 90th percentiles of the data.

Algorithm 6 Header of a Python file
from mpi4py import MPI
import BigMPI4py as BM
comm = MPI.COMM_WORLD
size, rank = comm.Get_size(), comm.Get_rank()

(lines 7-9). The same syntax is applied for object broad-
casting (line 10). The code is simple, and with a working
knowledge MPI4py, scattering is implemented in 4 lines of
code.

If an object is distributed according to some categorical
columns, by argument must be used. Algorithm 8 shows
an example of this. In this example BigMPI4py extracts all
pairs of values from the categorical columns ([’A’, ’Red’],
[’B’, ’Red’], [’B’, ’Blue’], [’A’, ’Blue’], [’C’, ’Red’] and [’C’,
’Blue’]), and scatters the dataframe so that no dataframe
with each pair of values is distributed across cores.

/s
N

ot
 v

ec
to

riz
ed

 /
ve

ct
or

iz
ed

Fig. 5. Scattering time ratio between non-vectorized and vectorized
approaches. The number of cells that MPI4py is not able to process
due to OverflowError is shadowed in red for int and float data types, and
in yellow for string data type. Color filling between lines represents the
10th and 90th percentiles of the data.

N
ot

 v
ec

to
riz

ed
 /

ve
ct

or
iz

ed
/s

Fig. 6. Gathering time ratio between non-vectorized and vectorized
approaches. The number of cells that MPI4py is not able to process
due to OverflowError is shadowed in red for int and float data types, and
in yellow for string data type. Color filling between lines represents to the
10th and 90th percentiles of the data.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 10

Algorithm 7 Object scattering and broadcasting
arr, df, lst = None, None, None
if rank == 0:
arr = np.random.rand(2 ** 26, 10)
df = pd.DataFrame(arr)
lst = [arr, df, arr, df, arr, df]

scatter_arr = BM.scatter(arr, comm)
scatter_df = BM.scatter(df, comm)
scatter_lst = BM.scatter(lst, comm)

bcast_lst = BM.bcast(lst, comm)

Algorithm 8 Object scattering with categorical variables
arr = None
if rank == 0:
arr = pd.DataFrame(
[[’A’, ’Red’, 0],
[’A’, ’Red’, 1],
[’B’, ’Red’, 0],
[’B’, ’Red’, 0],
[’B’, ’Blue’, 0],
[’A’, ’Blue’, 1],
[’C’, ’Red’, 0],
[’C’, ’Blue’, 0]],
columns=[’Letter’, ’Color’, ’Number’])

scatter_arr = BM.scatter(arr, comm,
by=[’Letter’, ’Color’]])

The procedure to code object gathering and allgathering
is similar to the procedure of scattering. Algorithm 9 shows
the communication of an array for gather and allgather.
The rest of object types follow the same syntax.

Algorithm 9 Object gathering and allgathering
arr = np.random.rand(2 ** 26, 10)
gather_arr = BM.gather(arr, comm)
allgather_arr = BM.allgather(arr, comm)

Gathering and allgathering of an object requires only two
lines of code, making it even easier to program.

An example of array point-to-point communication is
shown in Code 10.

Algorithm 10 Object point-to-point communication
arr = np.random.rand(2 ** 26, 10)
sendrecv_arr = BM.sendrecv(arr, comm,

dest = 2)

The dest argument in line 2 is the processor that will
receive the object.

Any code that uses MPI4py and BigMPI4py must be run
externally using an MPI implementation, since it depends
on MPI. Algorithm 11 shows an example using mpirun
program from OpenMPI implementation.

More detailed examples of the simplicity of BigMPI4py
are provided as a Jupyter notebook in the installation pack-
age.

Algorithm 11 Example of MPI launch
mpirun -np 4 python ˜/mycode.py

8 CONCLUSION

BigMPI4py brings the possibility to take advantage of the
parallelization implementing MPI in Python without any
theoretical object size limitation, using all the computational
power (number of cores and memory) of hardware (mul-
ticore PC, workstation or HPC) in Big Data projects with
the only limitation being the resources in the system. The
use of BigMPI4py increases the “robustness” of MPI4py,
since it allows to overcome the OverflowError arising in
MPI4py when the size of the output object exceeds the limit
of MPI4py even when the size of the input object does not
exceed such limit. Additionally, BigMPI4py simplifies the
use of MPI4py by automatically splitting the object to be
communicated across the cores and by automatically decid-
ing whether to optimize the parallelization by performing
vectorization of objects.

ACKNOWLEDGMENTS

This work have been supported by grants DFG113/18
from Diputación Foral de Gipuzkoa, Spain, Ministry of
Economy and Competitiveness, Spain, MINECO grant
BFU2016-77987-P, Basque Government Predoctoral Grant
PRE 2018 1 0008, Spain, and Instituto de Salud Carlos
III (AC17/00012) co-funded by the European Union (Era-
cosysmed/H2020 Grant Agreement No. 643271).

The authors would like to thank Daniela Gerovska for
fruitful discussion and comment during the preparation of
this manuscript.

Conflict of Interest: none declared.

REFERENCES

[1] S. Lohr, “The Origins of ’Big Data’: An Etymological
Detective Story,” https://bits.blogs.nytimes.com/2013/02/01/
the-origins-of-big-data-an-etymological-detective-story/.

[2] M. Hilbert and P. Lopez, “The World’s Technological Capacity to
Store, Communicate, and Compute Information,” Science, vol. 332,
no. 6025, pp. 60–65, 2011.

[3] B. Marr, “How Much Data Do We Create Every Day? The Mind-
Blowing Stats Everyone Should Read,” https://bit.ly/2FyrOrD,
May 2018.

[4] C. P. Chen and C.-Y. Zhang, “Data-intensive applications, chal-
lenges, techniques and technologies: A survey on Big Data,”
Information Sciences, vol. 275, pp. 314–347, August 2014.

[5] G.-H. Kim, S. Trimi, and J.-H. Chung, “Big-Data Applications in
the Government Sector,” Communications of the ACM, vol. 57, no. 3,
pp. 78–85, March 2014.

[6] M. Gea, H. Bangui, and B. Buhnova, “Big Data for Internet of
Things: A Survey,” Future Generation Computer Systems, vol. 87,
October 2018.

[7] P.-L. Luu, D. Gerovska, M. Arrospide-Elgarresta, S. Retegi-
Carrion, H. R. Scholer, and M. J. Arauzo-Bravo, “P3BSseq: parallel
processing pipeline software for automatic analysis of bisulfite se-
quencing data,” Bioinformatics, vol. 33, no. 3, pp. 428–431, February
2017.

[8] A. M. Ascension, M. Arrospide-Elgarresta, A. Izeta, and M. J.
Arauzo-Bravo, “NaviSE: superenhancer navigator integrating
epigenomics signal algebra,” BMC Bioinformatics, vol. 18, no. 296,
June 2017.

[9] K. He, D. Ge, and M. He, “Big Data Analytics for Genomic
Medicine,” International Journal of Molecular Sciences, vol. 18, no. 2,
p. 412, 2017.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/
https://bits.blogs.nytimes.com/2013/02/01/the-origins-of-big-data-an-etymological-detective-story/
https://bit.ly/2FyrOrD
https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

IEEE TRANSACTIONS ON PARALLEL DISTRIBUTION AND SYSTEMS 11

[10] Y. Zhang and Y. Zhao, “Astronomy in the Big Data Era,” Data
Science Journal, vol. 14, no. 0, p. 11, 2015.

[11] A. D. Mauro, M. Greco, and M. Grimaldi, “A formal definition of
Big Data based on its essential features,” Library Review, vol. 65,
no. 3, pp. 122–135, 2016.

[12] D. Laney, “3D Data Management: Controlling Data Volume, Ve-
locity, and Variety,” 2001.

[13] G. E. Moore, “Cramming more components onto integrated cir-
cuits,” Electronics Magazine, pp. 114–117, April 1965.

[14] T. Pearson and R. Wegener, ““NIST big data public working
group”, Draft of Big Data Definition,” www.bain.com/images/
bain brief big data the organizational challenge.pdf, 2013.

[15] V. Mayer-Schonberger and K. Cukier, “Big Data: A Revolution
That Will Transform How We Live, Work and Think,” in Big Data:
A Revolution That Will Transform How We Live, Work and Think.
John Murray, October 2013.

[16] S. Cass, “The 2018 Top Programming Languages,”
https://spectrum.ieee.org/at-work/innovation/
the-2018-top-programming-languages, July 31.

[17] B. Frederickson, “Trending Programming Languages ranked by
GitHub Users ,” https://github.com/benfred/github-analysis,
April 2018.

[18] A. Cheptsov, “HPC in Big Data Age: An Evaluation Report
for Java-Based Data-Intensive Applications Implemented with
Hadoop and OpenMPI,” in Proceedings of the 21st European MPI
Users’ Group Meeting. New York, NY, USA: ACM, 2014, pp.
175:175–175:180.

[19] T. H. Group, “About us,” https://www.hdfgroup.org/about-us/.
[20] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra,

J. M. Squyres, V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine,
R. H. Castain, D. J. Daniel, R. L. Graham, and T. S. Woodall,
“Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation,” in Recent Advances in Parallel Virtual Machine
and Message Passing Interface. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2004, pp. 97–104.

[21] L. Dalcı́n, R. Paz, and M. Storti, “Mpi for python,” Journal of Parallel
and Distributed Computing, vol. 65, no. 9, pp. 1108–1115, 2005.

[22] M. B. Nardelli and L. Dalcin, “OverflowError: integer 2768896564
does not fit in ’int’,” Bitbucket.

[23] T. Lukinov and L. Dalcin, “OverflowError: integer 2559182040
does not fit in ’int’,” https://groups.google.com/forum/#!topic/
mpi4py/Ny-16HE3Aus.

[24] J. R. Hammond, A. Schäfer, and R. Latham, “To int_max... and
beyond!: Exploring large-count support in mpi,” in Proceedings of
the 2014 Workshop on Exascale MPI, ser. ExaMPI ’14. Piscataway,
NJ, USA: IEEE Press, 2014, pp. 1–8.

[25] J. Hammond, “BigMPI,” https://github.com/jeffhammond/
BigMPI, 2018.

Alex M. Ascensión Graduated with honors
of Biochemistry and Molecular Biology degree,
University of the Basque Country, Spain (2017).
MSc in Bioinformatics, Autonomous University of
Barcelona, Spain (2018). He is currently com-
pleting a Degree in Mathematics as a part-time
student at the National University of Distance
Education, Spain, to complement his biologi-
cal and computational knowledge with a solid
mathematics basis. Currently doing his PhD in
Computational Biology with Basque Government

grant. He is currently working at Biodonostia Health Research Institute,
Spain, at the Computational Biology group (leadered by Marcos J.
Araúzo-Bravo) alongside with the Tissue Engineering group (leadered
by Ander Izeta). His research is focused on several topics, such as
epigenomic signaling or single-cell studies. He is interested in the de-
velopment and application of computational techniques and mathemat-
ical methods to his topics of research. He has more than 3 years of
experience in the computational field, his main programming languages
are Python and R, as well as Matlab, Perl or C++ to a lesser extent.
He is a member of the scientific committee of the European Project
at the Eracosysmed JTC-2 (H2020) call 4D-Healing: Data-Driven Drug
Discovery for Wound Healing. His main functions within the committee
are the development of the web page and the computational analysis of
the generated single-cell RNA-seq data.

Marcos J. Araúzo-Bravo Graduated as an Elec-
tronic and Control Engineer, University of Val-
ladolid, Spain (1996). In 2001 he earned a Ph.D.
in industrial technologies from the University of
Cartagena, developing neuro-fuzzy algorithms
for monitoring penicillin production. From 1998
to 2004 he was an Associate Professor in elec-
trical engineering at Burgos University. In 2000
he received a scholarship from the Japanese
Ministry of Education to work in the field of
Metabolic Engineering at Kyushu Institute of

Technology, Japan. In 2002 he earned a Ph.D. in Information Technology
and Biotechnology from the Kyushu Institute of Technology, Iizuka,
Japan. From 2004 to 2006 he was a Japan-Society-for-the-Promotion-
of-Science postdoctoral research fellow at the Kyushu Institute of Tech-
nology, where he worked on the synergetic control of genetic networks
through transcriptional regulators. From 2006 to 2014 he led the labo-
ratory of Computational Biology and Bioinformatics at the Max Planck
Institute for Molecular Biomedicine in Mnster, Germany, developing
tools for deciphering cellular reprogramming, methods to study tran-
scription regulation, and algorithms for high-throughput data analysis.
Since 2014 he is an Ikerbasque Research Professor, head of the group
of Computational Biology and Systems Biomedicine and head of the
Computational Biomedicine Data Analysis Platform at the Biodonostia
Health Research Institute, San Sebastin, Spain. He develops Big Data
approaches for integrating omics, image and clinical history data to
study the interaction of biological networks in terms of their topology,
dynamics, and perturbations to interpret complex biological systems
associated with neurodegenerative diseases, cancer, aging, stem cells
and regenerative medicine. His vast experience analyzing and deriving
models from omics data produced more than 120 publications, some of
them very high impact such as Science, Nature, Nature, Cell. He is the
leader of the European Project at the Eracosysmed JTC-2 (H2020) call
4D-Healing: Data-Driven Drug Discovery for Wound Healing.

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/517441doi: bioRxiv preprint

www.bain.com/images/bain_brief_big_data_the_organizational_challenge.pdf
www.bain.com/images/bain_brief_big_data_the_organizational_challenge.pdf
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages
https://github.com/benfred/github-analysis
https://www.hdfgroup.org/about-us/
https://groups.google.com/forum/#!topic/mpi4py/Ny-16HE3Aus
https://groups.google.com/forum/#!topic/mpi4py/Ny-16HE3Aus
https://github.com/jeffhammond/BigMPI
https://github.com/jeffhammond/BigMPI
https://doi.org/10.1101/517441
http://creativecommons.org/licenses/by-nd/4.0/

	Introduction
	System overview
	Strategies to calculate the number of subchunks
	Strategy I
	Example of array scattering with Strategy I
	Example of list scattering with Strategy I
	Example of array gathering with Strategy I

	Strategy II
	Example of scattering with Strategy II
	Example of gathering with Strategy II

	Sendrecv(), allgather() and bcast() functions
	Vectorized implementation of gather() and scatter()
	Results
	Examples of use of BigMPI4py
	Conclusion
	References
	Biographies
	Alex M. Ascensión
	Marcos J. Araúzo-Bravo

