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ABSTRACT 

Objectives.  HLA alleles affect susceptibility to more than 100 diseases, but the mechanisms to account 

for these genotype-disease associations are largely unknown. HLA-alleles strongly influence 

predisposition to ankylosing spondylitis (AS) and rheumatoid arthritis (RA).  Both AS and RA patients 

have discrete intestinal and faecal microbiome signatures.  Whether these changes are cause or 

consequence of the diseases themselves is unclear.  To distinguish these possibilities, we examine the 

effect of HLA-B27 and HLA-DRB1 RA-risk alleles on the composition of the intestinal microbiome in 

healthy individuals. 

 

Methods. 568 samples from 6 intestinal sites were collected from 107 otherwise healthy unrelated 

subjects and stool samples from 696 twin pairs from the TwinsUK cohort.  Microbiome profiling was 

performed using sequencing of the 16S rRNA bacterial marker gene. All patients were genotyped using 

the Illumina CoreExome SNP microarray, and HLA genotypes were imputed from these data.   

 

Results. Association was observed between HLA-B27 genotype, and RA-risk HLA-DRB1 alleles, and 

overall microbial composition (P=0.0002 and P=0.00001 respectively).   These associations were 

replicated in the TwinsUK cohort stool samples (P=0.023 and P=0.033 respectively). 

 

Conclusions. This study shows that the changes in intestinal microbiome composition seen in AS and 

RA are at least partially due to effects of HLA-B27 and –DRB1 on the gut microbiome.  These findings 

support the hypothesis that HLA alleles operate to cause or increase the risk of these diseases through 

interaction with the intestinal microbiome, and suggest that therapies targeting the microbiome may 

be effective in their prevention and/or treatment. 

 

Keywords 

Ankylosing spondylitis, rheumatoid arthritis, microbiome.  
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INTRODUCTION 

HLA molecules affect susceptibility to many diseases, but in the majority of cases the mechanism by 

which HLA molecules predispose to disease remains a mystery.  The risks of developing both 

ankylosing spondylitis (AS) and rheumatoid arthritis are primarily driven by genetic effects, with 

heritability >90% (1, 2) for AS, and 53-68% for RA (3, 4).  In both diseases HLA alleles are the major 

susceptibility factors, with AS being strongly associated with HLA-B27, and RA with HLA-DRB1 ‘shared-

epitope’ (SE) alleles.   

 

Particularly in AS, there is strong evidence of a role for gut disease in disease pathogenesis.  Up to an 

estimated 70% of AS patients have either clinical or subclinical gut disease, suggesting that intestinal 

inflammation may play a role in disease pathogenesis (5, 6).  Increased gut permeability has been 

demonstrated in both AS patients and their first-degree relatives compared with unrelated healthy 

controls (7-11).  Crohn’s disease (CD) is closely related to AS with a similar prevalence and high 

heritability. The two commonly co-occur with an estimated ~5% of AS patients developing CD, and 4-

10% of CD patients developing AS (12, 13). Strong co-familiality (14), and the extensive sharing of 

genetic factors between AS and inflammatory bowel disease (IBD) (15, 16) suggests that they have a 

shared aetiopathogenesis.  This is consistent with the hypothesis that increased ‘leakiness’ of the gut, 

and potentially the capability of HLA-B27 to present relevant microbial antigens, may alter the gut 

microbial composition and increase gut mucosal microbial dissemination, and hence drive 

inflammation in the disease (17, 18).  Reduced expression of the intestinal barrier protein zonulin and 

histopathological evidence of gut wall invasion by bacteria in AS further support this hypothesis (19).    

 

Using 16S rRNA community profiling we have previously demonstrated that AS cases have a discrete 

intestinal microbial signature in the terminal ileum (TI) compared with healthy controls (HC) (P<0.001)  

(20), a finding that has subsequently been confirmed by other studies (21, 22).  We have also 

demonstrated that dysbiosis is an early feature of disease in HLA-B27 transgenic rats, preceding the 
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onset of clinical disease in the gut or joints (23).  Similarly, RA cases have also been shown to have gut 

dysbiosis (24, 25), and animal models of RA such as collagen-induced arthritis have been shown to be 

influenced by the gut microbiome (26, 27).  In these studies it is difficult to distinguish between effects 

of the immunological processes going on in the intestinal wall in cases, and the effects of treatments 

on the intestinal microbiome, from potential effects of the gut microbiome on the disease. 

 

The role of the host genetics in shaping intestinal microbial community composition in humans is 

unclear. In animal models, host gene deletions have been shown to result in shifts in microbiota 

composition (28). In addition, a recent quantitative trait locus mapping study in an inter-cross murine 

model, linked specific genetic polymorphisms with microbial abundances (29).   Large scale studies in 

twins (n=1126 twin pairs) have demonstrated that of 945 widely shared taxa, 8.8% showed significant 

heritability, with some taxa having heritability of >40% (e.g. family Christensenellaceae, heritability 

42%) (30).   

  

Further studies are needed into whether the changes in intestinal microbial composition are due to 

host genetics, and how this affects the overall function of the gut microbiome in cases, including how 

the microbiome then goes on to shape the immune response and influence inflammation.   In AS, 

given the strong association of HLA-B27, the hypothesis has been raised that HLA-B27 induces AS by 

effects on the gut microbiome, in turn driving spondyloarthritis and inducing immunological processes 

such as IL-23  production (31, 32).  Further experiments comparing the intestinal microbiome of HLA-

B27 negative and positive patients would shed light of the influence of HLA-B27 on overall intestinal 

microbiome composition, particularly given the work in HLA-B27 transgenic rats showing that HLA-

B27 was associated with altered ileal, caecal, colonic and fecal microbiota (23, 33, 34).  Similar theories 

have been proposed with regard to interaction between the gut microbiome and the immunological 

processes that drive RA (reviewed in (35)).  
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In this study we investigated if AS and RA-associated HLA alleles influence the gut microbiome in 

healthy individuals, to support the hypothesis that they influence the risk of developing AS and RA 

through effects on the gut microbiome. 
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METHODS 

Human subjects 

A total of 107 subjects (aged 40-75) who were undergoing routine colorectal cancer screening at 

Oregon Health & Science University’s Center for Health and Healing were included in this study. 

Individuals were excluded if they had a personal history of inflammatory bowel disease or colon 

cancer, prior bowel or intestinal surgery or were pregnant. All subjects underwent a standard 

polyethylene glycol bowel prep the day prior to their colonoscopy procedure. During the procedure, 

biopsies were collected for research purposes from the terminal ileum or other tissue sites as 

indicated. Subjects were instructed to collect a stool sample on a sterile swab at home, just prior to 

starting their bowel prep procedure. Stool samples were brought to the colonoscopy appointment at 

room temperature. All samples (biopsies and fecal swabs) were placed at 4°C in the clinic and 

transported to the lab within 2 hours of the colonoscopy procedure, where they were snap frozen and 

stored at -80°C prior to processing. Patient samples were obtained over a 24-month period. 

 

Ethical approval for this study was obtained from the Oregon Health & Science University Institutional 

Review Board. Written informed consent was obtained from all subjects. This study was performed 

subject to all applicable U.S. Federal and State regulations. 

 

TwinsUK 

All work involving human subjects was approved by the Cornell University IRB (Protocol ID 

1108002388). Matched genotyped and stool samples were collected from 1392 twins. Genotyping, 

16S rRNA amplicon sequencing, filtering and analysis were performed as described in Goodrich et al., 

2014 (36). 
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16S rRNA amplicon sequencing and analysis 

568 stool and biopsy samples across 107 individuals were extracted and amplified for the bacterial 

marker gene 16S rRNA as previously described (20).  Samples were demultiplexed and filtered for 

quality using the online platform BaseSpace (http://basespace.illumina.com).  Paired end reads were 

joined, quality filtered and analysed using Quantitative Insights Into Microbial Ecology (QIIME) v1.9.1 

(37).  Operational taxonomy units (OTU) were picked against a closed reference and taxonomy was 

assigned using the Greengenes database (gg_13_8) (38), clustered at 97% similarity by UCLUST (39) 

and low abundance OTUs were removed (<0.01%). 

 

Multidimensional data visualisation was conducted using a sparse partial least squares discriminant 

analysis (sPLSDA) on centered log ratio transformed data, as implemented in R as part of the MixOmics 

package v6.3.1 (40). Association of the microbial composition with metadata of interest was 

conducted using a PERMANOVA test as part of vegan v2.4-5 (41) on arcsine square root transformed 

data at species level, taking into account individual identity where multiple sites per individual were 

co-analysed, as well as the sources of covariation such as BMI and gender. Alpha diversity was 

calculated at species level using the rarefy function as implemented in vegan v2.4-5 and differences 

were evaluated using a Wilcoxon rank-sum test. The metagenome functional content was predicted 

using PICRUSt v1.1.3 (42) and the resulting predictions were mapped to KEGG pathways using 

HUMAnN2 v0.11.1 (43)  Differential abundance of bacterial taxa and KEGG pathways were tested for 

significance using MaAsLin v0.0.5 (44). 
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Genotyping 

DNA was extracted from mucosal biopsies and stool samples, and genotyped using Illumina 

CoreExome SNP microarrays according to standard protocols.  Bead intensity data were processed 

and normalized for each sample, and genotypes called using Genome Studio (Illumina).  We imputed 

HLA-B genotypes using SNP2HLA (45), as previously reported (46). The distribution of HLA-B27 and 

HLA-DRB1 RA-risk, -protective and –neutral subtypes is available in Supplementary Table 1. 
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RESULTS 

16S rRNA profiling and SNP array genotyping was successfully completed for 107 individuals (61 

female, 46 male) involving a total of 564 biopsy samples (see Table 1).   

 

We studied the effect of BMI, gender and sampling site on the gut microbiome to identify relevant 

covariates for analysis of AS-associated genes and their association with the gut microbiome.  

Considering sample site, striking differences were observed, particularly between the stool samples 

and mucosal samples (Figure 1A, P<0.0001).  Excluding stool samples, marked difference was still 

observed between sites (P<0.0001), but it can be observed that this is mainly driven by differences of 

the ileal samples from the colonic mucosal samples (left and right colon, cecum, rectum), which largely 

clustered together (Figure 1B).   

 

Stool samples are much more convenient to obtain than ileal or colonic mucosal samples, which 

require an endoscopic procedure for collection.  Given the prior evidence of  primarily ileal 

inflammation in AS (5), we were interested in the relationship between the ileal and stool microbiome.  

In this comparison marked differences were observed between sites, though with some overlap seen 

on the sPLSDA plot (Supplementary Figure 1, P<0.0001).   
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Table 1: Number of samples and HLA-B27 and HLA-DRB1 shared epitope allele status by site.  Note 
that different subjects had different numbers of samples obtained, and at no individual site did all 
subjects have samples obtained. 
 

 

 

 

Figure 1:  sPLSDA comparing the microbiome composition at various sample sites, showing A. marked 
difference of stool/luminal site compared with all other sites, which are mucosal, and B. in the absence 
of stool samples, the ileal site remains distinct from colonic sites. 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  

 

 

 
 

 

 
 
 

 

 

 
 

 
   

 

  
 

 

 
 

 
 

 

 
    

 

 

 

 

 

 

 

   

 

 

  
 
 

 

 

 

 

 

 

 

  
 

 

  

 

 

  

 
  

 

  

  

 
 

 

  
 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
  

  

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 
  

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

  

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 

  

  

 

  
  

 

 

  

  

 

 

 

 

 

 

 

  

 

 

 

    

  

  

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

  

  
 

 

 
 

 

 

 

 

 

 

 

 

 

  
 
 

 

 

 

 

   

 

 

 

 

 

 

 

 
  

 

 

 

 

  

 
  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 
 

 
 

 

 
 

 

 

 

 

  

 

  

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

   
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 

 

  

 

 

 
 

 

 
 

 
   

 

 

 

 

 

 

 

 

  

 
  

 

 

 

 

 

 

 

 

 
 
 
 
  

 
 

 

 
 

 

 

 

 
 

  
  

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

 
 

  

 

 

 

 

 
  

 

 

 

 
 

 

 
 

 

 

 

 
 

 
 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

  

 

  

  
 

 
 

 

  

 

 

 

 

 

 

 

   

           

          

   

  

 

 

                          

 
 
 
 
  
 
  
  
  
 
 
  
 
 
  
  
 
 

      

      

      

      

      

      

      

     

     

          

      

           

      

 

  

 

 
 

 

 

 

 

 

 

 

 

 

  

 

 

 
 

 

 

 

 
 

 

 

  

 

 

 

 

 

  
  

 

 

 

 

 

 

 

 

 

 

 

  

 

 
 

 

 

 

 

  

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
 

 

 

 

  

 

 

 

 
 

 

 

 

 

  

 

 

  

 

 

 

 

 

 

 

  

 

 

 

 

 
 

 

 

 

 

   
 

 

 

 

 

 

 
 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 
 

 

  

  

 
 

 
 

 

 

 
  

 
 

 

 
 

 

 

 
 

  
 

 
 

 
 

 

 

 

 

 

  

 

 

 
 

 

  

 

 
 

 

 

 

 

 

 

 
 

 

 

 

  

 

 
 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 
 

 

 
  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

  

 

 

 

 

 
 

 
 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

  
 

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

  

 

 

 
 

 

 

 
 

 

 

 

 

 

 

 

 

  

 

  

 

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 
 

  

 

           

       

  

  

 

 

 

 

                          

 
 
  
  
 
  
  
  
 
 
  
 
 
  
  
 
 

      

     

     

     

     

     

     

     

          

      

           

 

 

 

 

 
 

 

 

 

 

 

 

 

 

  

 

 

 
 

 

 
 
 

 

 

 
 

 
   

 

  
 

 

 
 

 
 

 

 
    

 

 

 

 

 

 

 

   

 

 

  
 
 

 

 

 

 

 

 

 

  
 

 

  

 

 

  

 
  

 

  

  

 
 

 

  
 
 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
  

  

 

 

 
 

 

  

 

 

 

 

 

 

 

 

 
  

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

 

 

 
 

  

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

  

 

 
 

 

 

 

 

 

 
 

 

 

 

 

 
 

 

 
 

 

 

 

 
 

 

 
 

 

 

  

  

 

  
  

 

 

  

 
 

 

 

 

 

 

 

 

  

 

 

 

    

  

  

 

 

 

 

 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 
 

 

 

  

  
 

 

 
 

 

 

 

 

 

 

 

 

 

  
 
 

 

 

 

 

   

 

 

 

 

 

 

 

 
  

 

 

 

 

  

 
  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 
 

 
 

 

 
  

 

 

 

  

 

  

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

   
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 
 

 

  

 

 

 
 

 

 
 

 
   

 

 

 

 

 

 

 

 

  

 
  

 

 

 

 

 

 

 

 

 
 
 
 
  

 
 

 

 
 

 

 

 

 
 

  
  

 

 

 

 
 

 

 

 

 

 

 
 

 

 

 

 
 

 

 
 

 

 

 

 
 

  

 

 

 

 

 
  

 

 

 

 
 

 

 
 

 

 

 

 
 

 
 

  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

 

 

  

 

  

  
 

 
 

 

  

 

 

 

 

 

 

 

   

           

          

   

  

 

 

                          

 
 
 
 
  
 
  
  
  
 
 
  
 
 
  
  
 
 

      

      

      

      

      

      

      

     

     

          

      

           

     

  

Site Total Female Male 
HLA-B27 

Negative 

HLA-B27 

Positive 

HLA-DRB1 

Risk 

Genotype 

HLA-DRB1 

Protective 

Genotype 

HLA-DRB1 

Neutral 

Genotype 

Cecum 103 59 44 93 10 34 8 47 

Ileum 90 51 39 80 10 36 8 45 

Left Colon 100 57 43 90 10 33 7 47 

Rectum 91 53 38 81 10 33 7 41 

Right Colon 97 57 40 87 10 33 8 45 

Stool 83 46 37 73 10 29 8 36 
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Several studies have noted an increase (47), decrease (20, 21) or no change (48) in alpha diversity 

metrics for AS cases, and an increase (22) or decrease (49) in alpha diversity for RA cases.  In the 

current study, calculation of rarefied species richness revealed that carriage of HLA-B27 and HLA-

DRB1 alleles was not associated with differences in alpha diversity, except for stool samples for 

which carriage of HLA-DRB1 RA-risk alleles was associated an increased alpha diversity across both 

cohorts (Figure 2).  

 

 

 

Figure 2: Alpha diversity across each sampling site, and in the TwinsUK cohort A. Alpha diversity 
according HLA-B27 status. B. Alpha diversity according to HLA-DRB1 status, revealing increased alpha 
diversity in stool samples of both cohorts. 
 

 

Considering beta diversity via sPLSDA and PERMANOVA, significant association of BMI category was 

seen with microbiome composition (P=0.0022)(Supplementary Figure 2A).   This appears to be driven 

particularly by the difference of underweight individuals (BMI<18.5) compared with other BMI 

categories.  Removing underweight samples from the analysis, a non-significant trend of association 
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of BMI category with microbiome composition is seen (P=0.078)(Supplementary Figure 2B), consistent 

with previous reports. 

 

Given the marked gender biases in RA and AS, and evidence in mice that gender related hormonal 

differences are associated with differences in the intestinal microbiome (53, 54), we sought to 

evaluate the influence of gender on the microbiome in this cohort.  Whilst substantial overlap 

between males and females was evident (Supplementary Figure 3), significant difference between 

genders in microbiome composition was observed (considering all sites, P=0.0004).   Considering 

indicator species, a significant reduction in carriage of Prevotella genus in males was observed 

(P=0.005). 
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Figure 3: A.  sPLSDA comparing the microbiome composition of HLA-B27 positive and negative 
individuals across each sampling site. Considering all sampling sites and accounting for repeated 
sampling, significant differentiation of the microbiome was observed (PERMANOVA P=0.002). B. 
sPLSDA comparing individuals carrying the HLA-DRB1 RA-risk and -neutral genotypes across each 
sampling site. Considering all sites and accounting for repeated sampling, significant differentiation of 
the microbiome was observed (PERMANOVA P=0.0001). C. sPLSDA plot comparing HLA-B27 positive 
and negative twins (one twin randomly selected from each twin pair, PERMANOVA P=0.023), and HLA-
DRB1 risk and neutral genotypes (one twin randomly selected from each twin pair, PERMANOVA 
P=0.033). 
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We tested whether HLA-B alleles associated with AS were also associated with gut microbial profiles.   

The association of HLA-B alleles with AS is complex, with risk associations observed with HLA-B27, -

B13, -B40, -B47 and –B51, and protective associations with HLA-B7 and –B57 (55).  Of these, only HLA-

B27 showed statistically significant association with microbiome profile across both cohorts. 

Differences in the microbiome composition were more pronounced when comparing risk-associated 

alleles to protective alleles. For example, when focusing on a subset of data (ileal samples), marginal 

differentiation for –B27 (P=0.16) and no differentiation for –B7 (P=0.61) was observed, potentially 

highlighting sample size constraints. However, direct comparison of –B27 to –B7 revealed significant 

differentiation (P=0.008). 

 

HLA-B27-positive subjects exhibited reduced carriage (P<0.05) of Bacterioides ovatus across multiple 

sites (ileum, cecum, left colon, right colon and stool), as well as Blautia obeum (left colon and right 

colon) and Dorea formicigenerans (rectum and stool). Increased carriage of a Roseburia species was 

observed across multiple sites (left colon, right colon, rectum and stool) and family Neisseriaceae 

(cecum and ileum). For subjects with RA-risk HLA-DRB1 alleles, numerous taxonomic groups were 

enriched across multiple sites, notably a Lachnospiraceae species (ileum, cecum, left colon, right colon 

and rectum), a Clostridiaceae species (left colon, right colon, rectum and stool) Bifidobacterium 

longum (cecum, right colon and rectum), amongst many others. Enrichment of Ruminococcus gnavus 

was also observed in the ileum of subjects carrying risk alleles. A full list of differently abundant taxa 

according to HLA-B27 and HLA-DRB1 status are available in Supplementary Tables 2 and 3, 

respectively. Interestingly, when accounting for false discovery rate, no single taxa was significantly 

associated with the investigated genotypes, indicating that community-level differences detectable 

via PERMANOVA may be driven by subtle changes in a high number of taxa, as opposed to marked 

changes in a select few. 
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Considering the inferred metabolic profiles for HLA-B27 positive and negative subjects, we observed 

significant differences (P<0.05) across multiple sites for numerous KEGG pathways (Supplementary 

Table 4). Examples include flagellar assembly (ileum, cecum, left colon, right colon and rectum), 

alanine metabolism (cecum, ileum, left colon, and right colon), lysine biosynthesis (left and right colon) 

and degradation (ileum, rectum and stool), secondary bile acid biosynthesis (ileum and stool) and 

bacterial invasion of epithelial cells (ileum). For the RA-risk alleles (HLA-DRB1), numerous differences 

in KEGG pathways were observed (Supplementary Table 5). Examples include thiamine metabolism, 

the citric acid cycle, lipopolysaccharide biosynthesis, biosynthesis of ansamycins, and bacterial 

chemotaxis, all of which were differentially abundant across every intestinal site.  
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DISCUSSION 

In this study we have demonstrated for the first time that in the absence of disease or treatment, HLA-

B27 and HLA-DRB1 have significant effects on the gut microbiome in humans.  This extends previous 

demonstrations that AS and RA are characterized by intestinal dysbiosis by confirming that this is at 

least in part due to the effects of the major genetic risk factors for AS and RA, HLA-B27 and HLA-DRB1 

risk alleles, respectively.   

 

We demonstrate a clear distinction in microbiome profile between luminal stool samples and mucosal 

samples, as well as between mucosal samples from different intestinal sites.  Of particular note, 

marked difference was observed between ileal and stool samples.  These findings contrast a previous 

smaller study, which may not have observed a difference between ileal and colonic biopsies due to 

sample size considerations (48).  Many studies of the influence of gut microbiome focus on stool 

samples, as they are easier to obtain than mucosal samples.  The existence of gut inflammation, 

particularly involving the ileum, in AS cases has been well documented.  Therefore, our findings 

suggest that studies of the microbiome in AS and RA, particularly where the aim is to identify the key 

indicator species driving or protecting from the disease, should use samples that reflect the ileal 

microbiome.  As the microbiome profile of stool samples do not closely correlate with the ileal 

microbiome, they would not appear to be an optimal sample to study, although studying IgA coated 

bacteria isolated from stool samples may prove more informative (56). 

 

Following our initial study, three further studies have now reported on the difference in gut microbial 

composition in AS cases and controls.  Tito et al (48) in a study of 27 spondyloarthritis patients (i.e. 

not necessarily AS) and 15 healthy controls using 16S rRNA profiling report association of carriage of 

Dialister in ileal or colonic mucosal biopsies with disease activity assessed by the self-reported 

questionnaire the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI), and Ankylosing 

Spondylitis Disease Activity Score (ASDAS).  We did not observe Dialister in our study and therefore 
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cannot comment on whether it is associated with HLA-B27 carriage.  Tito et al did not observe 

association of the gut microbiome with HLA-B27 carriage, but the sample size, particularly in healthy 

controls, was too small to exclude other than a large effect.  Wen et al used shotgun sequencing of 

stool samples from in 97 Chinese AS cases and 114 healthy controls, and reported significant dysbiosis 

in the AS cases (21).  Breban et al (22) used 16S rRNA profiling of the stool microbiome to study 87 +-

patients with axial spondyloarthritis (42 with AS), 69 healthy controls and 28 rheumatoid arthritis 

patients.  They also report evidence of intestinal dysbiosis in the spondyloarthritis patients, and report 

correlation of Ruminococcus gnavus carriage with BASDAI. Whilst we did not observe an association 

with the carriage of HLA-B27, Ruminococcus gnavus was noted to be enriched in the ileum of 

individuals carrying the HLA-DRB1 RA-risk alleles (Supplementary Table 3). In a comparison of HLA-

B27 positive and negative siblings (n=22 and 21 respectively), no difference in microbial composition 

was noted overall, but HLA-B27 positive siblings had increased carriage of the Microcaccaceae family 

(including the species Rothia mucilaginosa within it), several Blautia and Ruminococcus species, and 

of Egerthella lenta. They also observed a reduced carriage of Bifidobacterium and Odoribacter species.  

Of these we also see reduction in Blautia obeum.  Although we did not find dysbiotic changes that 

were shared with these specific taxa, we note the enrichment of genera within the Lachospiraceae-

Ruminococcaceae grouping in HLA-B27 carriers was a shared feature of our studies; Roseburia and 

Ruminococcus by Breban et al (22) and Roseburia, Blautia, Dorea and Oscillospira in our current study. 

These bacteria are known to be enriched within the intestinal mucosa  (57), and are plausibly more 

immunogenic as a result (58).  The differences observed between these studies may relate to 

analytical differences such as handling of covariates, disease definition, sample site studied, ethnicity 

and diet, and the different methods employed to profile the microbiome. Our study also confirms the 

significant effect of gender and BMI category on gut microbial profiles, suggesting that future studies 

should control for these covariates.   

 

HLA molecules affect susceptibility to many diseases, most of which are immunologically mediated. In 
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almost all instances, the mechanism that accounts for that predisposition is not known. The 

microbiome has now been implicated in a long list of diseases, many of which are immunologically 

mediated. Our studies suggest that HLA molecules could be important factors that contribute to the 

heterogeneity of the microbiome and operate at least partially through this mechanism in the 

pathogenesis of many different diseases, not just AS and RA.  Consistent with this hypothesis, in celiac 

disease carriage of HLA-DQ2 has been shown to influence the gut microbiome in infants as yet 

unaffected but at high risk through family history of the disease (59). 

 

The hypothesized metabolic changes imbued by dysbiosis in our current work are of interest in light 

of a recent study by our group in the HLA-B27 transgenic rat model of spondyloarthritis (60). We 

observe a number of HLA-B27 dependent metabolic changes in this model that include enrichment of 

bile acid metabolism, lysine metabolism, fatty acid metabolism and tryptophan metabolism. All of 

these pathways were predicted to be enriched in HLA-B27 positive individuals in our current study. 

Importantly, HLA-B27-dependent dysbiosis can be observed prior to the onset of disease in this model. 

Thus, our human and rat studies support the hypothesis that HLA-B27 dependent dysbiosis is a 

preceding event in AS pathogenesis and may not merely be secondary to disease.  

 

In conclusion, this study demonstrates that HLA-B27 and RA-associated HLA-DRB1 allele carriage in 

humans influences the gut microbiome.  In association with the replicated demonstration of intestinal 

changes in microbiome in AS, this is consistent with disease models in which HLA molecules interact 

with the gut microbiome to cause disease.   Different models as to how this may occur include effects 

of HLA-B27 to favour a more inflammatory gut microbiome, increased invasiveness of the gut mucosa 

in HLA-B27 carriers, and/or aberrant immunological responses to bacteria in HLA-B27 carriers.  Similar 

hypotheses may explain the role of HLA-DRB1 in driving the immunopathogenesis of RA.  Whichever 

of these models is correct, the data presented here support further research in this field, including 

into whether manipulation of the gut microbiome may be therapeutic in AS or RA, or even potentially 
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capable of preventing disease in at risk subjects. 
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