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Abstract:

The brain identifies potentially salient features within continuous information streams to
appropriately process external and internal temporal events. This requires the compression or
abstraction of information streams, for which no effective information principles are known.
Here, we propose conditional entropy minimization learning as the fundamental principle of such
temporal processing. We show that this learning rule resembles Hebbian learning with
backpropagating action potentials in dendritic neuron models. Moreover, networks of the
dendritic neurons can perform a surprisingly wide variety of complex unsupervised learning
tasks. Our model not only accounts for the mechanisms of chunking of temporal inputs in the
human brain but also accomplishes blind source separation of correlated mixed signals, which
cannot be solved by conventional machine learning methods, such as independent-component
analysis.

One Sentence Summary:

Neurons use soma-dendrite interactions to self-supervise the learning of characteristic features of
various temporal inputs.

Main Text:

Cognitive functions of the brain entail modeling of externally or internally driven dynamic
processes. For this modeling, the characteristic features of information streams must be identified
by the brain at each stage of the hierarchical computation. Chunking or bracketing in such
analyses underlies sensory, motor, and memory processing (/-5). However, the method by which
neural circuits in the brain autonomously learn temporal features remains largely unclear. Here,
we show that entropy minimization conditioned on a neuron’s own responses enables this
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learning in an unsupervised fashion. We demonstrate that networks of artificial dendritic neurons
can self-supervise the learning of spatiotemporal firing patterns that are repeatedly evoked in
upstream neurons. This model enables the learning of a surprisingly wide variety of tasks,
including the chunking of temporal inputs, the formation of orientation maps, and even the blind
source separation (BSS) of correlated mixed signals. Although BSS has been extensively studied
for independent signals (6-8), no effective methods except for semi-supervised methods are
known for the processing of correlated signals (9).

Our model entails the learning of temporal features of an input based on a novel learning rule,
which we term “self-conditioned entropy minimization (SCEM).” In short, SCEM categorizes
temporal inputs by minimizing variations in neuronal responses to a given set of external inputs.
The variation will be minimal when a neuron responds similarly to similar inputs. To achieve
this, SCEM learns to self-generate appropriate teaching signals. Figure 1A shows a biology-
inspired implementation of SCEM in a two-compartment spiking neuron model (see
Supplementary Materials for mathematical details). In short, activity in the dendritic
compartment, driven by external inputs, predicts somatic spike responses. This division of labor
between somatic and dendritic compartments has been explored in a neuron model for
supervised learning, with a teaching signal given to the soma (/0). Unlike the previous model,
our neuron model performs unsupervised learning by feeding the somatic response back to the
dendrite to train dendritic synapses. Although the underlying biological mechanisms require
further clarification, backpropagating action potentials may provide the feedback signal for this
self-supervision in cortical pyramidal neurons (//, [/2). Our learning rule (Eq. 19 in
Supplementary Materials) looks similar to the maximum likelihood estimation (/3), a well-
studied framework of supervised learning. However, there is a conceptual difference between
them. In the maximum likelihood estimation, the target data distribution (somatic activity) is
provided externally as teaching signals. By contrast, our model learns the simultaneous
distributions of input and output data without teaching signals. The consistency between the two
data sets constrains the self-supervised learning, thereby avoiding a redundant or an overly
simplistic categorization of temporal inputs. Although SCEM fits particularly well with dendritic
neurons, the principle is generic and applicable to a broad range of information processing
systems.

As shown in Fig. 1B (top), presynaptic spike trains intermittently repeated three fixed
spatiotemporal patterns with equal probabilities of occurrence. The learning of repeated temporal
input patterns is crucial for various cognitive functions such as language acquisition (/4, /5) and
motor sequence learning (/-3, 16). A single neuron learned to respond selectively to one of the
input patterns (Fig. 1B, bottom), with approximately equal probabilities for the patterns among
the trials, although it responded to more than one input pattern in some cases (Fig. S1). Cortical
neurons actually have the ability to discriminate simple temporal inputs (/7). Next, we
considered a competitive network of two-compartment model neurons receiving similar
presynaptic spike trains (Fig. 1C). Recurrent inhibitory connections among these neurons were
modifiable by inhibitory spike timing-dependent plasticity (iISTDP; Fig. S2A). The postsynaptic
neurons self-organized into three neuron ensembles, each detecting one of the input activity
patterns (Fig. S2B). iSTDP enabled mutual inhibition between the neural ensembles (Fig. S2C).
The strength of lateral inhibition required adjustment, as inhibition that was too strong (Fig. S3A,
B) or too weak (Fig. S3C, D) eliminated chunk-specific cell assemblies. These results may
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explain how humans can detect frozen noise patterns repeated within noisy auditory signals. The
regularization parameter y (see Materials and Methods) must also be in an appropriate range to
enable the unsupervised learning of chunk-specific cell assemblies, as values that are too large
suppress all neural responses and those that are too small do not generate selective responses to
chunks (Fig. S4).

The ability of the network model to learn was assessed with various types of biological noise.
Background presynaptic spikes degraded the performance as the signal-to-noise ratio decreased
(Fig. SSA), whereas learning was optimal at finite noise levels with synaptic transmission failure
(Fig. S5B) and with jitters in presynaptic spike timing (Fig. S5C). We speculate that this
disparity may reflect the different noise structures. Background spikes were not correlated with
the repeated input patterns and merely contaminated the signals, whereas the noise patterns from
transmission failures and timing jitters yielded noise that was correlated and thus enhanced the
sampling for learning. Although presynaptic noise may induce a regularization effect during
learning (18), this likely did not occur in our model network, as not all types of presynaptic noise
improved the learning.

The network model is capable of learning repeated patterns in various information streams. To
show this, we applied random sequences of three chunks comprising four characters each (Fig.
2A) to a network model with 10 output neurons and 1,000 input neurons. Each input neuron
generated a 30 ms 10 Hz burst in response to a randomly assigned preferred character (Fig. 2B).
This resulted in the formation of three neuron ensembles that selectively responded to the chunks
(Fig. 2C). We conducted a principal-component analysis to study the low-dimensional dynamics
of output neurons, which revealed the emergence of the three chunks after learning (Fig. 3D).
However, the word segmentation shown above is not difficult for other methods as well (/9).
Therefore, we next tested the same model with more complex input sequences generated by a
random walk on a graph with a community structure, where the connection of each node to the
other four occurred with an equal probability of 0.25 (Fig. 2E). The detection of this community
structure is easy for human subjects but difficult by construction for the conventional machine
learning methods that rely on surprise signals, such as those with nonuniform transition
probabilities (4). To our surprise, each output neuron easily learned to respond selectively to
members within its community (Fig. 2F).

The network model also learns the static features of input when they are repeatedly shown in a
temporal sequence. A random sequence of noisy images of oriented bars presented for 40 ms at
30 ms intervals was applied to the model (Fig. 3A). The output neurons, which initially had no
preferred orientation (Fig. 3B), developed well-defined preferences for specific orientations after
learning (Fig. 3C), resembling a visual orientation map (Fig. 3D) (20, 21). Because all sensory
features, either static or dynamic, arrive at the brain in sequence, temporal processing is
potentially important for the formation of feature detection maps from continuous sensory
streams.

These results demonstrate that the SCEM successfully chunks a variety of temporal inputs by
automatically identifying repeated temporal input patterns. The question then arises whether this
ability of the SCEM enables learning of other types of sequence processing tasks. Sequence
processing also involves the blind separation of signals within mixtures from multiple sources.


https://doi.org/10.1101/517888
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/517888; this version posted January 17, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

BSS is an extensively studied problem in auditory processing (6-8), but the various methods that
have been proposed are effective only if individual signals are independent. To our knowledge,
there are no effective methods for separating mixtures of dependent or correlated signals. We
applied SCEM to sound mixtures from two music instruments (Audio S1), i.e., a bassoon and a
clarinet (Bach10 Dataset (22); Audios S2 and S3), playing their respective parts of the same
score (Fig. 4A); thus the two sound sources are correlated. These mixtures of signals were
encoded as irregular spike trains (Fig. 4B), which in turn were applied to output neurons. After
training, these neurons self-organized into two subgroups, each responding to one of the true
sources (Fig. 4C). The original sounds were then decoded from the average firing rates of these
subgroups (Audios S4 and S5), though some high-frequency components were lost due to the
low-pass filtering effect corresponding to membrane dynamics (Fig. S6). By contrast, BSS was
poor via an independent-component analysis (Audio S6).

Mutual information maximization (MIM) has often been hypothesized to describe the transfer of
information between neurons (23), and Hebbian synaptic plasticity may approximately follow
MIM (24). However, the MIM principle ultimately implies that messages are faithfully copied at
all layers of hierarchical processing. Furthermore, MIM does not account for the compression or
abstraction of sensory input to the brain.

Our learning rule minimizes the entropy associated with the conditional probability of neuronal
output for a given input. The rule enabled mutually inhibiting dendritic neurons to learn the
repetition of spatiotemporal activity patterns on a slow timescale (typically, several tens to
several hundreds of milliseconds). While the aim of many previous methods for chunking is to
predict the input sequence (25, 26), our model entails a novel principle in which a neural system
learns to predict its own responses to input. To this end, the SCEM minimizes the conditional
entropy of output data to produce a predictable low-dimensional representation of high-
dimensional input data. This learning continues until there is agreement between the somatic
output and dendritic input regarding the low-dimensional features (i.e., chunks). We previously
used paired reservoir computing for chunking (but not for BSS), in which two recurrent networks
supervise each other to mimic the partner’s responses to a common temporal input (27). The
present model outperforms the previous one, but the two models share a fundamental
computational principle, namely, self-consistency between input and output data. The SCEM, on
the other hand, differs from autoencoders that compress input information in hidden layers. The
compression rate is much higher in our model than in autoencoders, because input sequences
cannot be faithfully reconstructed from chunked pieces. Despite resembling methods for learning
the probabilistic structure of input data (/0, /3) and the fact that the information bottleneck
compresses data while maintaining mutual information to some degree (28), the SCEM differs
from these and other methods aimed at learning the likelihood of the input data distribution.

In sum, our model not only performs chunking but also achieves BSS from mixtures of
correlated signals. It is surprising that simple neural networks with identical circuit structures can
perform these seemingly different tasks. Such a multifunctional model was previously unknown
in learning information streams.
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Fig. 1. Unsupervised learning in two-compartment neurons. (A) The model neuron consists
of somatic and dendritic compartments and undergoes SCEM learning. The dendritic component
receives Poisson spike trains, and the somatic membrane potential is given as an attenuated
version of the dendritic membrane potential. Output of the soma backpropagates to dendritic
synapses as a self-teaching signal. Learning stops when the dendrite minimizes the error between
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its prediction and the actual somatic firing rate. (B) Three frozen spatiotemporal patterns (red,
blue, and green) were repeated as irregular spike trains from 2,000 input neurons (top). Three
dendritic neurons selectively responded to one of the repeated patterns after learning (bottom).
(C) A competitive network used in all of the present tasks. The input layer consists of Poisson
spiking neurons, and the output layer comprises the dendritic neuron models. Ten output neurons
were connected with all-to-all inhibitory synapses modifiable by iSTDP.

Fig. 2. Segmentation and concatenation of various sequences. (A) Three chunks (a-b-c-d [red],
e-f-g-h [green], and i-j-k-1 [blue]) repeatedly appeared in the input sequence with equal
probabilities. (B) Each input neuron fired at 10 Hz to encode one of the chunks. Neurons were
sorted according to their preferred stimuli. (C) Typical normalized responses of three output
neurons are shown after learning. Colors indicate the epochs of the corresponding chunks. (D)
Responses of output neurons were projected onto the three leading principal-component (PC)
vectors before (left) and after (right) learning. Epochs of high normalized responses (f> 0.8 in all
neurons) are indicated in red. (E) The input sequence represented a random walk with uniform
transition probabilities on a graph with community structure (modified from reference 4). (F)
Normalized responses of three output neurons to input sequences defined in panel E are shown.

Fig. 3. Learning an orientation tuning map. (A) Examples of noisy images of oriented bars
used for the training. Each image was presented for 40 ms in a random order with intervals of 30
ms between images. (B and C) The feedforward synaptic weights before and after learning are
shown for the example stimuli shown in panel A. (D) The responses of all dendritic neurons
before (left) and after (right) learning are shown. The neurons were sorted according to the onset
times of responses to their preferred stimuli. See Supplementary Text for further details on the
simulations.

Fig. 4. BSS of dependent auditory streams. (A) Sound waveforms of a bassoon and a clarinet
(left) were linearly transformed to two mixture signals (right). The diagonal and off-diagonal
elements of the mixing matrix were 1 and 0.5, respectively. (B) Nonstationary Poisson spike
trains of 200 input neurons (out of the total 500) are shown. The instantaneous firing rates were
proportional to the amplitudes of the mixed signals normalized between 0 Hz and 10 Hz. Each
input neuron encodes either of the two mixed signals. (C) Separated waveforms (bottom) are
shown together with magnified versions (top, solid) and true sources (top, dashed). The
waveforms were averaged over 20 trials with different realizations of input spike trains and the
same initial weights. (D) Cross-correlations between the separated and true sources are compared
between our model and independent-component analysis (ICA) for independent (top) and
dependent (bottom) auditory signals (see Supplementary Materials). Error bars show SDs
(invisible).
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