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Tissue or cell subtype-specific and differentially-expressed genes (SDEGs) are defined 

as being differentially expressed in a particular tissue or cell subtype among multiple 

subtypes. Detecting SDEGs plays a critical rolse in molecularly characterizing and 

identifying tissue or cell subtypes, and facilitating supervised deconvolution of complex 

tissues. Unfortunately, classic differential analysis assumes a  convenient null hypothesis 

and associated test statistic that is subtype-non-specific and thus, resulting in a high 

false positive rate and/or lower detection power with respect to particular subtypes. 

Here we introduce One-Versus-Everyone Fold Change (OVE-FC) test for detecting 

SDEGs. To assess the statistical significance of such test, we also propose the scaled test 

statistic OVE-sFC together with a mixture null distribution model and a tailored 

permutation scheme. Validated with realistic synthetic data sets on both type 1 error 

and detection power, OVE-FC/sFC test applied to two benchmark gene expression data 

sets detects many known and de novo SDEGs. Subsequent supervised deconvolution 

results, obtained using the SDEGs detected by OVE-FC/sFC test, showed superior 

performance in deconvolution accuracy when compared with popular peer methods.    

 

Molecular characterization (e.g. gene expression profile) of a complex biologic system often 

includes features that are ubiquitously expressed by all cell or tissue types in the system (e.g. 

housekeeping genes)1, and expressed features that are specific to one or more cell or tissue 

subtypes present in the system (marker genes or differentially-expressed genes)2-4. An 

important but frequently underappreciated issue is how a “cell or tissue subtype-specific 

expression pattern” is defined. Ideally, a specific expression pattern would be composed of 

individual features that are specifically and differentially expressed in the cognate cell or 

tissue subtype of interest in relation to every others – so-called subtype-specifc and 

differentially expressed genes (SDEGs)5-8.  

SDEGs play a critical role in molecularly characterizing and identifying tissue or cell 

subtypes, and facilitating the supervised deconvolution of complex tissues5,8,9. However, 

detecting SDEGs using tissue or cell-specific molecular expression profiles remains a 

challenging task10. For example, the most frequently used methods rely on an extension of 

ANOVA that identifies genes differentially expressed across any of the relevant cell or tissue 

subtypes. In this case, the null hypothesis is that samples in all subtypes are drawn from the 

same population, resulting in the selection of genes that may not conform to the SDEG 

definition. One-Versus-Rest Fold Change (OVR-FC) is another popular method based on the 

ratio of the average expression in a particular subtype to that of the average expression in the 
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rest samples10-12, and OVR t-test is occasionally used to assess the statistical significance of 

detected genes13. However, a gene with low average expression in the rest is not necessarily 

expressed at a low level in every subtype in the rest. Expectedly, simulation studies show that 

Marker Gene Finder in Microarray data (MGFM) outperforms OVR t-test14. Alternative 

strategies include One-Versus-One (OVO) t-test and Multiple Comparisons with the Best 

(MCB)15 that use additional pairwise significance testing or the confidence intervals of OVO 

statistics2,16.  

To address the critical problem of the absence of a detection method explicitly 

matched to the definition of SDEGs, here we introduce One-Versus-Everyone Fold Change 

(OVE-FC) test to detect SDEGs among many subtypes. OVE-FC test has previously been 

proposed to detect SDEGs to improve multiclass classification, where the selection is based 

on whether the mean of one subtype is significantly higher or lower than the mean from each 

of the other subtypes5,6. To assess the statistical significance of such test, we also propose the 

scaled test statistic OVE-sFC together with a mixture null distribution model. Because the 

expression patterns of non-SDEGs can be highly complex, a tailored permutation scheme is 

used to estimate the corresponding distribution under the null hypothesis.     

We first validate the performance of OVE-sFC test on extensive simulation data, in 

terms of type 1 error rate and False Discovery Rate (FDR) control. We then demonstrate the 

detection power of the OVE-FC/sFC test over a comprehensive set of scenarios, in terms of 

partial area under the receiver operating characteristic curve (pAUC), and in comparison with 

top peer methods. We present the utility of OVE-FC/sFC test by applying it to benchmark 

public data, and assessing the performance by comparing with known SDEGs and by the 

accuracy of supervised deconvolution that uses the expression patterns of de novo SDEGs 

detected by OVE-FC/sFC test.   

 

Results  

Validation of OVE-sFC test on type 1 error using simulation data sets 

To test whether our OVE-sFC test can detect SDEGs at appropriate significance levels, we 

assessed the type 1 error using simulation studies under the null hypothesis (Methods). 

Accuracy of type 1 error is crucial for any hypothesis testing methods that detect SDEGs 

based on their p-values because if the type 1 error is either too conservative or too liberal, the 

p-value is inflated by either too many false positive or false negative estimates, loses its 

intended meaning, and becomes difficult to interpret.  
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The simulation data contain 10,000 genes whose baseline expression levels are 

sampled from the real benchmark microarray gene expression data with replicates of purified 

cell subtypes (GSE193808). Using realistic simulation data sets with various parameter 

settings, we show that in all scenarios the empirical type 1 error produced by OVE-sFC test 

closely approximates the expected type 1 error (Figure 1a, Figure S2, Figure 2a-b). The p-

values associated with OVE-sFC test statistics exhibit a uniform distribution as expected. 

Moreover, even with unbalanced sample sizes among the subtypes, the mixture null 

distribution estimated by our posterior-weighted permutation scheme produces the expected 

empirical type 1 error rate (Figure S2 and Figure 2a). In contrast, the empirical type 1 error 

produced by OVR t-test and OVO t-test either over-estimates or under-estimates the expected 

type 1 error. The p-values associated with OVR t-test and OVO t-test deviate from a uniform 

distribution (Figure 1b). We also evaluate the type 1 error associated with individual 

subtypes under high noise levels and small sample sizes. For each of the subtypes, 

experimental results show that the empirical type 1 error produced by OVE-sFC test closely 

matches the expected type 1 error (Figure 1b and Supplementary Information). 

 We conducted similar validation studies involving five subtypes over a wide range of 

simulation scenarios (Error! Reference source not found.). Experimental results again 

show that OVE-sFC test produces the empirical type 1 error rates that match the expected 

type 1 error rates. Furthermore, subtype-specific p-value estimates effectively balance the 

uneven type 1 error rates among the subtypes with different numbers of upregulated genes 

(Methods, Figure 2b, and Supplementary Information).  

Comparative assessment of OVE-FC/sFC test on power of detecting SDEGs using 

simulation data sets 

Using realistic simulation data sets, we simulated a comprehensive set of scenarios to 

compare the power of OVE-sFC test and peer methods in detecting SDEGs (Method and 

Supplementary Information). Simulation data are generated again by modifying the 

expression levels of real gene expression data, where a portion of the genes are designated as 

SDEGs that are upregulated specifically in one of the participating subtypes, with fold change 

drawn in certain ranges (Supplementary Information). To recapitulate the characteristics of 

real expression data, various parameter settings are considered including unbalanced sample 

sizes or diverse mixture null distribution cross subtypes, each with 20 replications. 

In large-scale multiple testing, False Discovery Rate (FDR) control is an important 

issue when assessing the detection power. For a well-designed significance test, the objective 
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is to maximize power while assuring FDR below an allowable level. To test whether the q-

value reflects the actual FDR, ‘fdrtool’ package is used to estimate the q-value for each 

gene17, where the empirical FDR with an estimated q-value of 0.05 is expected to be around 

0.05. Another informative criterion is the pAUC that emphasizes the leftmost partial area 

under the receiver operating characteristic curve, focusing on the sensitivity at lower False 

Positive Rates (FPR)18. 

Experimental results show that both overall and subtype-specific OVE-sFC test 

achieve a well-controlled FDR that matches the q-value cutoff (Figure S5-S6). In contrast, 

OVR t-test underestimates, while OVO t-test overestimates, the FDR (Supplementary 

Information). Moreover, subtype-specific OVE-sFC test exhibits a more balanced FPR for 

SDEGs across subtypes, while peer methods produce higher FPRs in the subtypes of small 

sample size. 

For pAUC, the OVE strategy in OVE-FC/sFC test achieved the highest power in 

detecting SDEGs (Figure 3, Figure S7-S8, Table S1-S3). More specifically, for more 

realistic SDEGs (with sufficiently large fold change), OVE-sFC test shows the best 

performance; for the ideal SDEGs (i.e., marker genes with significantly large fold change8,19), 

both OVE-FC and OVE-sFC achieve the best performance with slight outperformance by 

OVE-FC. In comparison with the peer methods, OVE-sFC test consistently outperforms 

OVO t-test in these challenging experiments involving more subtypes and using RNAseq 

data. More importantly, the outperformance of OVE-FC/sFC over the peer methods at a 

stringent FPR range in ROC analysis is significant, because the related FDR is problematic in 

many real-world applications where large scale multiple comparisons are involved.  In 

contrast, all three OVR methods exhibit lower detection power, and ANOVA has the lowest 

detection power (Supplementary Information). 

It is worth mentioning that when sample size is small, OVE-sFC test statistic borrows 

information across genes in estimating a priori variance via the limma method, thus 

stabilizing variance estimate for each gene. Furthermore, OVE-sFC test statistic estimates the 

parameters of the limma model from all subtypes, producing better results than that applying 

t-test independently with the limma model for each subtype pair. Indeed, for small sample 

size cases, our experimental results show that OVE-sFC test clearly outperforms OVO t-test 

(Figure 3, Figure 5c and Tables S2-S3). Note that when a large number of genes is 

involved, a more stringent multiple comparison correction or FPR/FDR control is applied.  
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Application of OVE-sFC test on two benchmark gene expression data sets detects 

SDEGs (human immune cells) 

We applied OVE-sFC test to two real microarray gene expression data sets, GSE28490 

(Roche) and GSE28491 (HUG), to detect SDEGs associated with human immune cells20. In 

these data sets, the constituent subtypes are composed of seven different human immune cells 

that were isolated from healthy human blood: B cells, CD4+ T cells, CD8+ T cells, NK cells, 

monocytes, neutrophils, and eosinophils. Because Roche and HUG used the same protocols 

for cell isolation and sample processing from two independent panels of donors, the derived 

gene expression profiles enable use of a cross-validation strategy. 

With an FDR control of q-value < 0.05 applied to both data sets, OVE-sFC test 

detects n=28 CD4+ T cell marker genes, n=7 CD8+ T cell marker genes, and multiple marker 

genes for other more distinctive cell types (Table S4-S6). Between the two data sets, we 

obtain a Jaccard index (intersection over union) of 36.8% for all SDEGs across all seven cell 

types. Overlap of monocyte and neutrophil marker genes detected from the two datasets is 

>40% (Figure 4). The number of SDEGs accounts for about one-third of all probesets 

(Roche: 39%, HUG: 34%). This result is expected because these subtypes are pure cell types 

and so more distinctive than would be seen with samples from multicellular complex 

tissues9,21,22. We also applied a Bonferroni multiple testing correction and a more stringent p-

value < 0.001; the number of SDEGs account for 10.7% and 2.7% of all probesets in Roche 

and HUG data sets, respectively (Table S4), with only one common CD4+ T cell marker 

gene (FHIT) and one common CD8+ T cell marker gene (CD8B). 

To present all kinds of combinatorial upregulation patterns among cell types occurred 

under the null hypothesis (Figure S9), probeset-wise posterior probabilities of component 

hypotheses in the null mixtures (Eq. 4) are accumulated and normalized to estimate the 

counterpart probabilities of the alternative hypotheses (Eq. S10), where the patterns of 

upregulation in B cells, monocytes, or neutrophils rank the top in both data sets, followed by 

upregulation in lymphoid cells (B cells, CD4+ T cells, CD8+ T cells, NK cells) and T cells 

(CD4+ T cells, CD8+ T cells) in the Roche dataset.  

Evaluation of ideal SDEGs detected by OVE-FC/sFC test via supervised deconvolution 

Accurate and reliable detection of ideal SDEGs has significant impact on the performance of 

many supervised deconvolution methods that use the expression patterns of ideal SDEGs to 

score constituent subtypes in heterogeneous samples21,23,24. We adopted a Convex Analysis of 

Mixtures (CAM) score calculated from ideal SDEGs-guided supervised deconvolution to 
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quantify the proportional aboundance of each subtype (Supplementary Information). The 

correlation coefficient between estimated scores and true proportions was used to assess the 

accuracy of various SDEGs selection methods. 

Both OVE-FC and OVE-sFC tests are applied to three independent data sets acquired 

from the purified subtype expression profiles (GSE28490 Roche), purified subtype RNAseq 

profiles (GSE60424), and classified single-cell RNAseq profiles (GSE72056), respectively. 

The idea SDEGs are detected by six different methods including OVE-FC, OVE-sFC, OVR-

FC, OVR t-stat, OVR t-test, and OVO t-test, and then used to supervise the deconvolution of 

realistically synthesized mixtures with ground truth.  

The proportions of constituent subtypes are estimated by the CAM scores derived 

from expression levels of top-ranked SDEGs for each subtype. Supervised deconvolution 

results show that OVE-sFC test, OVE-FC test and OVO t-test methods achieved the highest 

correlation coefficients between CAM score and true proportions when compared with the 

performance of other methods (Figure 5a, Figure S10). 

As a more biologically realistic case involving higher between-sample variations, we 

synthesize a set of n=50 in silico mixtures by combining the subtype expression profiles from 

bootstrapped samples in the RNAseq data set according to pre-determined proportions. 

Again, supervised deconvolution results show that the ideal SDEGs detected by OVE-FC test 

or OVE-sFC test or OVO t-test achieved superior deconvolution performance (Figure 5b, 

Figure S11). 

As a more challenging case of RNAseq data with lower signal-to-noise ratio and 

small sample size, we repeated the simulations where in silico mixtures were synthesized by 

combining subtype mean expressions (GSE28491 HUG) and ideal SDEGs were detected 

from downsampled RNAseq profiles (GSE60424, n=3). Three purified samples were 

randomly selected for each subtype and analyzed by the six methods.  The experimental 

results show that, in terms of ideal SDEG-guided deconvolution performance, OVE-sFC test 

strongly defeats OVO t-test. Moreover, OVE-sFC test outperforms OVE-FC test for 

phenotypically closer cell types (CD4+ T and CD8+ T cell types) (Figure 5c). 

Across the varying number of ideal SDEGs (5~200) being selected, Figure 5 shows 

the impact of SDEGs (both at a fixed number and the corresponding content) selected by 

different methods on the performance of supervised deconvolution. While different subtypes 

are expected to have different number of ideal SDEGs practically and biologically, e.g., B 

cell or monocyte versus CD4+ T cell or CD8+ T cell, the fundamental working principle of 

various tissue deconvolution methods is that there is a proper small number of ideal SDEGs 
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to be expressed exclusively in only one particular subtype. Thus applying a stringent OVE-

sFC test p-value threshold, e.g., < 0.001 after correction (Table S4) is a good option, because 

suitable number of ideal SDEGs for CD4+ or CD8+ T cell is 5~20, while B cells or 

monocytes often allows more ideal SDEGs to be used in supervised deconvolution.  

Discussions 

Interpreting an expression profile of complex tissues requires both the knowledge of the 

relative abundance of the different cell or tissue subtypes and their individual expression 

patterns. Understanding the relative contribution of individual cell or tissue subtypes in 

individual samples may illuminate pathophysiologic mechanisms, biologic responses to 

various stimuli, or transitions in tissue phenotype - especially when the cell-cell and cell-

matrix interactions in a complex system are necessary conditions for biological relevance. 

Expression patterns of SDEGs for the relevant cells or tissues can be used to support 

supervised deconvolution to estimate the relative prevalence of the contributing cell or tissue 

subtypes. Our present work is focused on SDEGs, i.e. restricted to the SDEG definition 

widely adopted7,8,19,25. Indeed, the work here is motivated by the need to obtain SDEGs for 

supervised in silico tissue deconvolution21 and/or tissue subtype characterization9, where the 

measured data are the mixtures of the expressions from multiple underlying subtypes and the 

SDEGs are used to estimate both the proportions of each subtype in individual heterogeneous 

samples as well as the averaged subtype-specific expression profiles.  

Though ideal SDEGs are defined as being exclusively and consistently expressed in a 

particular tissue or cell subtype across varying conditions, biological reality dictates a more 

relaxed definition that allows SDEGs of a particular tissue or cell subtype having low or 

insignificant expressions in all other subtypes. Experimental results show that SDEGs 

detected by OVE-FC/sFC test with high thresholds or small p-values can accurately estimate 

both subtype proportions and expression profiles, serving as effective molecular markers 

(Figure 5c, Figure S10 and S11). Accuracy of OVE-FC/sFC test based SDEG detection may 

be affected by batch effect, normalization, and outliers; and reliability of OVE-sFC would 

depend on the variance estimate particularly when sample size is small.  

OVE-sFC test makes a few assumptions and works best when all assumptions are 

valid. For example, while the proposed permutation scheme does not require the data to be 

normally distributed, under the null hypothesis, OVE-sFC test assumes that samples are 

drawn from the distribution of the same ‘shape’ for different genes, ensuring that the null 
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distributions across genes can be aggregated together with variance-based standardization. 

Practically, when data distributions deviate significantly from a common shape, the limma-

voom/vooma/voomaByGroup’s variance models can be used to accommodate unequal 

variances by appropriate observational-level weights26; when data distributions deviate 

significantly from normality, a permutational ANOVA can be used to estimate the null 

hypothesis components of the mixture distribution. Our experimental results show that with 

the mean-variance relationship estimated by limma-voom on RNASeq data, the OVE-sFC 

test can maintain the expected type 1 error rates or specified FDR (Figure S6). For outliers 

and drop-out zero values in RNAseq data, when needed, state-of-the-art two-group test 

methods designed specifically for RNAseq will be exploited and adopted, e.g. edgeR27, 

DESeq228. 

While OVE-FC is the simpler version of our OVE strategy and drives the newer 

OVE-sFC test, here we have demonstrated that OVE-FC is also an effective and robust 

method for detecting SDEGs particularly when sample size is small. On the other hand, 

OVE-sFC test is a critical complement to OVE-FC in twofold: (1) OVE-FC does not assess 

statistical significance (producing p-values) while OVE-sFC test specifically aims to provide 

a significance assessment and to potentially improve FDR control; (2) OVE-sFC test 

improves detection power in some of more challenging situations. Theoretically, detecting 

SDEGs by evaluating the significance with accurate p-values is an attractive feature of OVE-

sFC test that can help control FDR at the expected level. Indeed, our experimental results 

show that the OVE-sFC test outperforms OVE-FC in the more challenging cases involving 

nonideal SDEGs (Figure S8) or phenotypically closer cell types (Figure 5c). Nevertheless, 

OVE-sFC test may become unstable when the scaling factor is too small or inaccurately 

estimated, and OVE-FC will not work well when pre-exclusion of extremely lowly-expressed 

genes is not done properly.    

Though ANOVA has been the most commonly used method to test differences among 

the means of multiple subtypes, often in conjunction with a post-hoc Tukey HSD comparing 

all possible pairs of means29, it is not suitable for detecting SDEGs because the null 

hypothesis used by ANOVA does not truly enforce the definition of SDEGs. ANOVA detects 

differentially expressed genes rather than SDEGs and therefore produces too many false 

positives with respect to individual subtypes. 

In addition to the SDEGs discussed here (genes uniquely up-regulated in a particular 

subtype), the counterpart subtype-specific down-regulated genes (genes uniquely down-

regulated in a particular subtype) are also of biological interest5. OVE-FC/sFC test is 
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principally applicable to detecting down-regulated SDEGs by reversing the comparison rule 

5. There are certainly other alternative definitions of ‘informative genes’ for different 

analytical purposes, e.g., sample classification. In our earlier work on multiclass 

classification5,6, we have shown that upregulated SDEGs selected by OVE-FC are sufficient 

to achieve multiclass classification and can often improve classifier performance over 

alternative informative gene subsets of the same size. 

Lastly, when subtype-specific expression patterns are unknown, unsupervised 

deconvolution techniques (e.g., CAM21) are required. A theoretical advantage of 

unsupervised deconvolution is that it can identify both the cell/tissue subtype proportions and 

their specific expression patterns, albeit with possibly less fidelity than when neither is 

known a priori or measured from the same sample. 

 

Methods 

Basic OVE-FC test. Consider the measured expression level 𝑠𝑘(𝑖, 𝑗) of gene 𝑗 in sample 𝑖 

across 𝑘 = 1,… ,…𝐾 subtypes. We denote the mean and variance of the logarithmic 

expression levels log 𝑠𝑘(𝑖, 𝑗) of gene 𝑗 in subtype 𝑘 by 𝜇𝑘(𝑗) and  𝜎2(𝑗), respectively. 

Accordingly, OVE-FC test after logarithm for gene 𝑗 is defined as the gap between the 

highestly expressed subtype and the second highestly expressed subtype 5,14,   

𝑑𝑗 = min
𝑙≠(𝐾)

{𝜇(𝐾)(𝑗) − 𝜇𝑙(𝑗)} , (1) 

where subscript (𝐾) indicates the subtype with the maximum mean among all subtypes. Note 

that OVE-FC has previously been proposed for multiclass classification13, 14, and matches 

well the definition of SDEGs 5,8,19,25. Conceptually, the null hypothesis for non-SDEGs, and 

the alternative hypothesis for SDEGs, can be described as 

𝐻non-SDEG:  𝑑𝑗 = 0;

𝐻SDEG:  𝑑𝑗 > 0.
(2) 

It is worth reiterating that the ideal SDEGs detected by OVE strategy with a stringent 

threshold are also termed the marker genes for supervised deconvolution8,19, and are 

principally similar to what detected by the Convex Analysis of Mixtures (CAM) method for 

fully unsupervised deconvolution9,21, i.e. the marker genes resided near the vertices of the 

scatter simplex. 
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OVE-sFC test statistic and null distribution modeling. To assess statistical significance 

of OVE-FC and to cross-fertilize the information among genes, we assume that 

log 𝑠𝑘(𝑖, 𝑗)~𝑁(𝜇𝑘(𝑗), 𝜎
2(𝑗) ), and further define the scaled test statistic OVE-sFC as 

𝑡𝑗 = min
𝑙≠(𝐾)

{
 
 

 
 

𝜇(𝐾)(𝑗) − 𝜇𝑙(𝑗)

𝜎(𝑗)√
1
𝑁(𝐾)

+
1
𝑁𝑙}
 
 

 
 

, (3) 

where 𝑁(𝐾) and 𝑁𝑙 are the numbers of samples in subtypes (𝐾) and 𝑙, respectively. However, 

for more than two subtypes 𝐾 ≥ 3, modeling the distribution of 𝑡𝑗 under the null hypothesis 

is challenging because the expression patterns of non-SDEGs are highly complex, i.e., non-

SDEGs include both housekeeping genes and various combinatorial forms of differentially-

expressed genes among the subtypes. 

 We propose the following mixture distribution of OVE-sFC test statistic 𝑡 under the 

null hypothesis (Figure 6) 

𝑓{𝑡|𝐻non-SDEG} = ∑ 𝑓{𝑡|𝐻non-SDEG, 𝑚}𝑃{𝐻non-SDEG, 𝑚|𝐻non-SDEG}

𝐾−2

𝑚=0

, (4) 

where 𝐻non-SDEG, 𝑚 is the mth component of the mixture null hypothesis 𝐻non-SDEG. We design 

a novel nested permutation scheme that approximates the complex null distribution and is 

consistent with the definition of SDEGs. Principally, 𝐻non-SDEG, 𝑚 is constructed by permuting 

the samples in the top (𝐾 − 𝑚) subtypes with higher mean expressions; that is, the samples 

in the bottom 𝑚 subtypes with lower mean expressions are removed from the permutation. 

Note that 𝐻non-SDEG, 0 corresponds to the same null distribution used in ANOVA where all 

samples participate in the permutation. 

This mixture null distribution model is proposed to model unknown yet potentially 

complex expression patterns of non-SDEGs under the null hypothesis. Accordingly, the 

specifically-designed permutation scheme(s) estimates such a mixture null distribution. The 

main advantage of the proposed permutation scheme(s) is its flexibility and 

comprehensiveness, which well match the mixture null distribution of various types and 

combinations. With varying the proportions of different non-SDEG types, OVE-sFC test is 

able to maintain the type 1 error rate close to the expected level with the help of the proposed 

permutation scheme(s) and the conditional probability of each non-SDEG type (Figure S2, 

Supplementary Information). 
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Note that 𝐻non-SDEG,𝑚 , 𝑚 = 0,… , 𝐾 − 2 represents (𝐾 − 1) different null hypotheses, 

each with an individualized null distribution that can be estimated by specific permutation 

scheme(s), e.g., permuting samples in the top (𝐾 −𝑚) subtypes. Collectively, a mixture of 

null distribution is constructed via combinations of different null hypotheses in various 

proportions. In contrast, without conditioning on 𝐻non-SDEG,𝑚 , all null distributions are 

aggregated equally into the mixture null distribution in the same proportion. Consequently, 

this simpler permutation scheme produces an equal-weight mixture model that cannot 

represent the complexity of the null distribution. Thus, the null distribution of the OVE-sFC 

test statistic could become distorted, e.g., a uniform distribution of p-values in null data is not 

guaranteed, and the observed False Discovery Rate may not match the expected level. 

Specifically, the null distribution of OVESEG-test statistics under 𝐻non-SDEG, 𝑚 is 

estimated from permuted samples and aggregated from different genes with weights. Let 

𝒔(𝑗) = [𝑠(1, 𝑗), … , 𝑠(𝑁, 𝑗)] denote the measured expression vector of gene 𝑗 across samples, 

where 𝑁 is the total number of samples. These weights are the posterior probabilities of a 

component null hypothesis given the observation Pr{𝐻non-SDEG, 𝑚|𝒔(𝑗)}, estimated by the 

local FDR fdrnon-SDEG, 𝑚(𝑗) 
30, given by 

𝑤non-SDEG, 0(𝑗) = Pr{𝐻non-SDEG, 0|𝒔(𝑗)} = fdrnon-SDEG, 0(𝑗), (5𝑎)

𝑤non-SDEG, 𝑚(𝑗) = Pr{𝐻non-SDEG, 𝑚|𝒔(𝑗)}

= {1 − ∑ 𝑤non-SDEG, 𝑛(𝑗)

𝑚−1

𝑛=0

} fdrnon-SDEG, 𝑚(𝑗), 0 < 𝑚 < 𝐾 − 2, (5𝑏)

 

where fdrnon-SDEG, 0(𝑗) is the local FDR associated with ANOVA on all subtypes, and 

fdrnon-SDEG, 𝑚(𝑗) is the local FDR associated with ANOVA on the top (𝐾 −𝑚) subtypes, 

estimated using R package “fdrtool” 17 (Supplementary Information).   

Assessing statistical significance of candidate SDEGs. The p-values of candidate SDEGs are 

estimated using the learned ‘mixture’ null distribution  

𝑝-𝑣𝑎𝑙𝑢𝑒 = Pr{𝑇 > 𝑡𝑜𝑏𝑠|𝐻non-SDEG} = ∑ Pr{𝑇 > 𝑡𝑜𝑏𝑠|𝐻non-SDEG, 𝑚}𝑃{𝐻non-SDEG, 𝑚|𝐻non-SDEG}

𝐾−2

𝑚=0

, (6) 
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where 𝑡𝑜𝑏𝑠 is the observed OVE-sFC test statistic, and 𝑇 is the continuous dummy random 

variable. Specifically, Pr{𝑇 > 𝑡𝑜𝑏𝑠|𝐻non-SDEG, 𝑚} is calculated by the weighted permutation 

scores 

Pr{𝑇 > 𝑡𝑜𝑏𝑠|𝐻non-SDEG, 𝑚} =
∑ ∑ 𝑤non-SDEG, 𝑚(𝑗)𝐼(𝑇𝑗,𝑝 > 𝑡𝑜𝑏𝑠) 𝐽

𝑗=1
𝑃
𝑝=1

𝑃∑ 𝑤non-SDEG, 𝑚(𝑗) 
𝐽
𝑗=1

, (7) 

where P is the number of permutations, J is the number of participating genes, 𝐼(. ) is the 

indicator function, and 𝑇𝑗,𝑝 is the OVE-sFC test statistic in the 𝑝th permutation on 𝑗th gene. 

Furthermore, the component weight in the mixture null distribution is estimated by the 

membership expectation of the posterior probabilities over all genes 

𝑃{𝐻non-SDEG, 𝑚|𝐻non-SDEG} =
∑ 𝑤non-SDEG, 𝑚(𝑗)
𝐽
𝑗=1

∑ ∑ 𝑤non-SDEG, 𝑛(𝑗)
𝐾−2
𝑛=0

𝐽
𝑗=1

. (8) 

Lastly, substituting (7) and (8) into (6), the p-value associated with gene j is calculated by:  

𝑝-𝑣𝑎𝑙𝑢𝑒 =
∑ ∑ ∑ 𝑤non-SDEG, 𝑚(𝑗)𝐼(𝑇𝑗,𝑝 > 𝑡𝑜𝑏𝑠) 𝐽

𝑗=1
𝑃
𝑝=1

𝐾−2
𝑚=0

𝑃∑ ∑ 𝑤non-SDEG, 𝑚(𝑗)
𝐽
𝑗=1

𝐾−2
𝑚=0

, (9) 

with a lower bound of min
𝑗
{∑ 𝑤non-SDEG, 𝑚(𝑗)

𝐾−2
𝑚=0 } /𝑃 ∑ ∑ 𝑤non-SDEG, 𝑚(𝑗)

𝐽
𝑗=1

𝐾−2
𝑚=0 . 

Supplementary Information provides more details on the deviation of OVE-sFC test p-values 

when considering all subtypes together (Eq. 9) and when considering one subtype specifically 

(Eq. S7-S8). 

Empirical Bayes moderated variance estimator of within-subtype expressions. The 

importance of an accurate estimator on pooled within-subtype variance 𝜎2(𝑗)  is twofold - 

calculating the OVE-sFC test statistic 𝑡𝑗  and determining the local false discovery rate 

fdrnon-SDEG, 𝑚(𝑗), particularly with small sample size. We assume a scaled inverse chi-square 

prior distribution 𝜎2(𝑗)~𝜈0𝜎0
2/𝒳𝜈0

2 , where 𝜈0 and 𝜎0
2 are the prior degrees of freedom and 

scaling parameter, respectively31. We then adopt the empirical Bayes moderated variance 

estimator �̃�2(𝑗) that leverages information across all genes, as used in limma and given by 

�̃�2(𝑗) =
𝜈0�̂�0

2 + (𝑁 − 𝐾)�̂�2(𝑗)

𝜈0 + 𝑁 − 𝐾
, (10) 
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where N is the total number of samples, and �̂�2(𝑗) is the pooled variance estimator, given by 

�̂�2(𝑗) =
∑ ∑ (log 𝑠𝑘(𝑖, 𝑗) − 𝜇𝑘(𝑗))

2𝑁𝑘
𝑖=1

𝐾
𝑘=1

𝑁 − 𝐾
. (11) 

The prior parameters 𝜈0 and 𝜎0
2 are estimated from the pooled variances. The moderated 

variances shrink the pooled variances towards the prior values depending on the prior degrees 

of freedom and the number of samples. Note that 𝑡-𝑠𝑡𝑎𝑡(𝑗) with moderated variance 

estimator �̃�2(𝑗) follows a t-distribution with 𝜈0 + 𝑁 − 𝐾 degrees of freedom (Supplementary 

Information).  

Brief review of the most relevant peer SDEG selection methods. The OVR-FC uses a 

simple test defined by  

OVR-FC𝑘(𝑗) =
�̅�𝑘(𝑗)

�̅�-𝑘(𝑗)
, (12) 

where �̅�𝑘(𝑗) and �̅�-𝑘(𝑗) are the geometric means of the 𝑗th gene expressions within subtype 𝑘 

and associated with the combined remaining subtypes, respectively. The OVR t-test uses a 

statistical test given by 

OVR t-stat𝑘(𝑗) =
�̂�𝑘(𝑗) − �̂�−𝑘(𝑗)

√
�̂�𝑘(𝑗)
𝑁𝑘

+
�̂�−𝑘(𝑗)
𝑁 − 𝑁𝑘

, (13)
 

where �̂�𝑘(𝑗) and �̂�−𝑘(𝑗) are the sample means of the 𝑗th gene expressions within subtype 𝑘 

and associated with the combined remaining subtypes, respectively; and �̂�𝑘(𝑗) and �̂�−𝑘(𝑗) are 

the sample variance of the 𝑗th gene expressions within subtype 𝑘  and associated with the 

combined remaining subtypes, respectively. The OVO t-test, conducts t-tests among all 

subtype pairs and selects genes upregulated in one subtype for all the involved tests, where the 

variances are estimated only from every pair of subtypes16 (Supplementary Information). In 

contrast, the OVE-sFC test exploits all subtypes in estimating the variances. The benefit of 

using all subtypes for modeling is significant in challenging cases with higher variance, smaller 

sample size, and more subtypes (Supplementary Information).  

Simulation study for validating OVE-sFC test statistics on type 1 error. Among the 

10,000 simulated genes, a portion are housekeeping genes that take the baseline expression 

levels across all subtypes under 𝐻non-SDEG, 0. Expression levels of the remaining genes are 

adjusted to exhibiting similar upregulations in at least two subtypes, mimicking all types of 
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participating null hypotheses. The upregulations are modeled by uniform distribution(s) in 

scatter space, with variance following an inverse chi-square distribution 𝜎2(𝑗)~𝜈0𝜎0
2/𝒳𝜈0

2 , 

where the prior degree of freedom 𝜈0 takes 5 or 40, and 𝜎0 takes 0.2, 0.5, or 0.8 

(Supplementary Information). 

Gene expression data of human immune cells (GSE28490 and GSE28491). In these data 

sets, each cell subtype consists of at least five samples, excluding few outliers (Table S7). 

Following preprocessing of the raw measurements, 12,022 probesets in Roche and 11,339 

probesets in HUG were retained and used in the analyses (Supplementary Information).  

Realistic synthetic data for supervised deconvolution. Five subtypes (B cell, CD4+ T cell, 

CD8+ T cell, NK cell, monocytes) were included in synthesizing n=50 in silico mixtures, 

where purified subtype mean expressions (GSE28491 HUG) were combined according to 

pre-determined proportions with additive noise, simulating heterogeneous biological samples 

(Supplementary Information). 

Availability of package and supporting data:  A Bioconductor approved R package of 

OVE-sFC test is freely available at http://bioconductor.org/packages/OVESEG. A detailed 

user’s manual and a vignette are provided within the package. In addition, public gene 

expression data analyzed in this paper are also available from the Gene Expression Omnibus 

Database under Accession Number GEO: GSE19380, GSE28490, GSE28491, GSE60424, 

and GSE72056. 
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FIGURE LEGENDS 

Figure 1. Assessment on Type 1 error rates and p-value distributions using simulated data 

sets under the null hypothesis, involving three subtypes with unbalanced sample sizes (𝑁1 =

3, 𝑁2 = 6,𝑁3 = 9). (a) Bar chart for the mean and 95% confidence interval of type I error 

rates with p-value cutoff at 0.05 over 30 simulated experiments, showing both overall and 

subtype-specific false-positive rates corresponding to different permutation schemes. (b) 

Histograms of p-value distributions associated with five SDEG detection methods, where 

simulation data consisted of 60% housekeeping genes, 𝜎0 = 0.5 and 𝜈0 = 40. Note that 

subtype-specific p-values can be higher than 1.0 after multiple testing correction and thus will 

be truncated (indicated by the blue circle; see Supplementary Information for details). 

Figure 2. Assessment on Type 1 error rates using simulated data sets involving five subtypes. 

The results are obtained using the p-value cutoff at 0.05 over 30 experiments. (a) Bar chart of 

the mean and 95% confidence interval of type I error rates with unbalanced sample sizes. (b) 

Bar chart of the mean and 95% confidence interval of type I error rates with unbalanced 

compositions of mixture null distribution. 

Figure 3. Assessment on detection power (partial ROC curves, FPR < 0.01) using real data 

derived simulations (data distribution is consistent with the base real dataset under null 

hypothesis; variances are sampled from real microarray data GSE28490 or RNAseq data 

GSE60424 with keeping mean-variance trend) involving seven unbalanced subtypes with 

various parameter settings. (a)(b) partial ROC curves across different FPR points on 

microarray-derived data. (c)(d) partial ROC curves across different FPR points on RNAseq-

derived data. (OVR-FC and OVR t-test are not shown here due to low pAUC; subtype-

specific OVE-sFC test’s performance is quite similar to OVE-sFC test; more complete ROC 

curves can be found in Figure S7.) 

Figure 4. Percentile overlap of cell-type specific SDEGs between Roche and HUG datasets, 

quantified by Jaccard index (intersection over union). SDEGs are detected by subtype-

specific OVE-sFC test with q-value < 0.05. 

Figure 5. Correlation coefficients between CAM scores and ground truth proportions in 

simulated heterogeneous samples of mixed subtype mRNA expression profiles or RNAseq 
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counts (a-c based on three different real gene expression datasets). CAM scores are estimated 

using the detected SDEGs from independent dataset and reflect the proportions of subtypes. 

The mean and 95% confidence interval are computed over 20 repeated experiments. (OVR t-

test results are not shown in (c) due to very poor performance.) 

Figure 6. Mixture null distribution of OVE-sFC test statistics for detecting SDEGs. The 

mixture distribution consists of (𝐾 − 1) null components, each estimated from permuting 

samples in the top (𝐾 −𝑚) subtypes of high mean expressions and weighted by the posterior 

probabilities of component null hypotheses. 
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