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Abstract 
Background: Genome-wide association studies (GWAS) are an important method for mapping 

genetic variation underlying complex traits and diseases. Tools to visualize, annotate and analyse 

results from these studies can be used to generate hypotheses about the molecular mechanisms 

underlying the associations.  

Findings: The Complex-Traits Genetics Virtual Lab (CTG-VL) integrates over a thousand publicly-

available GWAS summary statistics, a suite of analysis tools, visualization functions and diverse data 

sets for genomic annotations. CTG-VL also makes available results from gene, pathway and tissue-

based analyses from over 1,500 complex-traits allowing to assess pleiotropy not only at the genetic 

variant level but also at the gene, pathway and tissue levels. In this manuscript, we showcase the 

platform by analysing GWAS summary statistics of mood swings derived from UK Biobank. Using 

analysis tools in CTG-VL we highlight hippocampus as a potential tissue involved in mood swings, and 

that pathways including neuron apoptotic process may underlie the genetic associations. Further, 

we report a negative genetic correlation with educational attainment rG = -0.41 ± 0.018 and a 

potential causal effect of BMI on mood swings OR = 1.01 (95% CI = 1.00–1.02). Using CTG-VL’s 

database, we show that pathways and tissues associated with mood swings are also associated with 

neurological traits including reaction time and neuroticism, as well as traits such age at menopause 

and age at first live birth.  

Conclusions: CTG-VL is a platform with the most complete set of tools to carry out post-GWAS 

analyses. The CTG-VL is freely available at https://genoma.io as an online web application. 
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Background 

Genome-wide association studies (GWAS) have revolutionized the genetics research of complex 

traits and diseases over the last decade [1, 2]. As these studies become more common thanks to 

initiatives such as UK Biobank [3] and international genetics research consortia, there is growing 

need for improved data sharing and more accessible large-scale collaborative genomic analyses tools 

for users across different technical backgrounds.    

To this end, we present the first release of the Complex-Traits Genetics Virtual Lab (CTG-VL), a web 

platform to annotate, analyse and share GWAS and post-GWAS results. The CTG-VL complements 

already widely used web applications including LD-Hub [4], FUMA-GWAS [5] and MR-Base [6] by 

incorporating functions available in these platforms in addition to many others.  In this manuscript, 

we introduce the first public release of the CTG-VL, compare it with other platforms and apply some 

of its functions to GWAS summary statistics of mood swings derived from UK Biobank.   

Findings 

Visualization and annotations 

The current release of the CTG-VL facilitates the visual inspection of GWAS results through 

LocusTrack (Figure 1A) [7] and Manhattan plots (Figure 1B). These visualizations are fully interactive 

and allow users to annotate and query results with a single click. Specifically, we incorporated 

epigenetic data from ENCODE [8] and Roadmap epigenomics projects [9], eQTL data from the GTEx 

project [10], GWAS catalogue [11] and polyphen [12] for annotation. An example of an annotated 

LocusTrack plot is shown in Figure 1A. Utilities such as obtaining the closest genes for a given genetic 

variant or CpG, obtaining gene information, SNPs in linkage disequilibrium (LD) and population 

frequencies are also actionable through a single click. The CTG-VL also provides other 

graphing/plotting functions, including heatmaps, karyograms and network visualizations (Figure 1C). 

For the network-visualization, we have incorporated functions to analyse the topology of networks 

including density, degree distribution, mean degree, number of edges of the giant component as 

well as functions to estimate shortest paths between nodes.  

Analysis tools 

The CTG-VL aims to facilitate downstream analyses of GWAS summary statistics. As such, we are 

actively integrating tools and data that will allow the research community to speed up their analyses. 

The current release of the platform (0.31-alpha) includes some of the newest and most commonly 

used analysis tools for downstream analyses of GWAS results. Briefly, we have integrated LD-score 

regression [13, 14] to estimate the heritability of traits and genetic correlation between traits using 

GWAS summary statistics. Additionally, the user can check genetic correlation against any of the 
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(over 1500) traits with publicly available GWAS summary statistics integrated in the platform. The 

platform also implements Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT) 

[15] that prioritizes the most likely causal genes at associated loci, and identifies enriched pathways 

and tissues/cell types that may underlie the associations. Another popular tool incorporated in CTG-

VL is MetaXcan [16] which obtains gene-trait association by testing if the predicted expression levels 

(based on predicting models derived from eQTL data of selected tissues) of particular genes underlie 

the associations. Similarly, we integrated fastBAT [17], a fast set-based association analysis that uses 

GWAS summary statistics and a linkage-disequilibrium reference to summarize genetic associations 

with a trait of interest at the gene level. Finally, we have included the Summary-data-based 

Mendelian Randomization (SMR) [18] to test the causal effect of the expression level of a gene on a 

trait of interest, and the Generalized Summary-data-based Mendelian Randomization (GSMR) [19] to 

test the causal relationship between two traits.  

Data 

The CTG-VL aims to function as an aggregator of GWAS summary statistics and post-GWAS analyses 

results. As such, it complements the recent release of GWAS-ATLAS [20], a titanic effort that 

integrates results from post-GWAS analyses (gene-based and gene-enrichment analyses results from 

MAGMA [21] as well as genetic correlations and heritability derived from LD-score and SumHer [22]) 

on over 3500 complex traits in a browsable platform. The CTG-VL has made available post-GWAS 

results (DEPICT and MetaXcan) of over 1,500 traits, and we are actively updating this. Furthermore, 

the CTG-VL allows users to upload their own GWAS summary statistics or to link the over 1,500 

publicly available GWAS summary statistics in the platform to their user profile where they can 

perform further analyses.  

Web applications ecosystem 

Comparing CTG-VL with currently available web platforms can be challenging as each web platform 

facilitates specific tasks and is optimized for particular pipelines/analysis methods. While all these 

web platforms are aggregators of GWAS summary statistics, their functions are largely segregated. 

CTG-VL is a great complement to web platforms already available, by integrating their key analysis 

methods into a single web platform. We briefly describe the differences and similarities between 

CTG-VL and some of these widely used web tools (i.e. FUMA-GWAS, LD-Hub and MR-Base) in Table 

1.  
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Table 1. Some of the differences and similarities between CTG-VL, FUMA-GWAS, LD-HUB and MR-

Base. 

 
Case study 

In this section, we present a series of analyses that can be performed in the CTG-VL. As an example, 

we extract the GWAS summary statistics for mood swings derived from UK Biobank [23]. This 

dataset (in addition to over 1500 others) is available in the CTG-VL. In this example, we visualize the 

GWAS results and estimate its genetic correlation with Neuroticism score and Educational 

Attainment [24]. We then identify candidate genes, pathways and tissues/cell types that are most 

likely to underlie the genetic associations and use the CTG-VL’s large database to identify what other 

complex-traits are also associated with those genes, pathways and tissues/cell types.  Finally, we 

assess the causal role of body mass index (BMI) in mood swings. A diagram showing the steps to 

 CTG-VL FUMA-GWAS LD-Hub MR-Base 

Aggregator of GWAS 

summary statistics 

Yes Yes Yes Yes 

Visualization All visualizations are 

interactive: 

 

Manhattan plot  

Regional plot  

Heatmaps 

Network plots 

Karyograms 

Manhattan plot 

Regional plot (interactive) 

Heatmap (only for gene 

expression) 

 

No No 

Data for annotation ENCODE 

Roadmap Epigenomics 

GTEx 

Polyphen 

ENCODE 

Roadmap Epigenomics 

GTEx 

Polyphen 

Multiple others 

(http://fuma.ctglab.nl/links) 

 

No No 

Heritability 

 

LD-score regression No LD-score regression No 

Genetic correlations LD-score regression 

 

The users choose traits 

of interest from 

available GWASs in the 

platform (over 1500 

complex traits) or their 

own GWAS dataset.  

 

No LD-score regression 

 

Automated to run 

against over 1000 

complex traits and 

diseases 

simultaneously. 

No 

Gene-based analysis MetaXcan, 

fastBAT, 

SMR, 

DEPIC gene-

prioritization 

MAGMA  No No 

Tissue specificity 

analysis 

DEPICT MAGMA No No 

Gene-enrichment 

analysis 

DEPICT MAGMA No No 

Mendelian 

Randomization 

GSMR, 

SMR 

No No Over 10 different statistical 

methods to perform Two-

sample mendelian 

randomization (excluding 

SMR and GSMR). 
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complete these tasks inside the CTG-VL is displayed in Figure 2. Supplementary Figure 1-8 display 

screen shots of each step. 

The first step is to obtain the GWAS summary statistics for mood swings, neuroticism score, 

educational attainment and BMI. To achieve this, we go into the platform, and after signing in we go 

to “Data -> Public data”. Here, we look for those traits and click “Add to my data”. We then go to 

“Visualization -> Manhattan plot”. The CTG-VL implements an interactive Manhattan plot that 

facilitates the annotation of the SNPs displayed by clicking on them. In addition, users can highlight 

all the SNPs that are in LD with the lead-SNP of each locus. Figure 3 shows the Manhattan plot of 

mood swings with 3 SNPs labelled.  

In the “Analysis” tab we then select LD-score, where we estimate the genetic correlation between 

mood swings and neuroticism score to be rG = 0.87 (s.e. = 0.009). Such high genetic correlation is not 

surprising since neuroticism score is calculated based on 12 questions that include whether an 

individual experiences mood swings. More interestingly, using the same steps, we estimate a 

negative genetic correlation between educational attainment and mood swings rG = -0.41 (s.e. = 

0.018). 

Thereafter, we run DEPICT under the tab “Analyses” to obtain the most likely tissues/cell types and 

biological pathways that may underlie the genetic associations. Tables 2 and 3 summarize the top 5 

results of each of these analyses. Supplementary Tables 1 and 2 show all biological pathways, other 

gene sets and tissues with an FDR < 5%. 

Table 2. Top 5 tissues and cell types likely to underlie the associations. 

Tissue Group P-value FDR<5% 

Hippocampus Nervous System 0.00000211 Yes 

Retina Sense Organs 0.00000378 Yes 

Limbic System Nervous System 0.00000884 Yes 

Cerebral Cortex Nervous System 0.0000136 Yes 

Cerebrum Nervous System 0.0000173 Yes 

 

Table 3. Top 5 pathways from Gene-Ontology likely to underlie the associations. 

Pathway ID Pathway Description P-value FDR<5% 

GO:0043523 regulation of neuron apoptotic process 0.0000125 Yes 

GO:0051402 neuron apoptotic process 0.0000173 Yes 

GO:0070997 neuron death 0.0000209 Yes 

GO:0017016 Ras GTPase binding 0.0000370 Yes 

GO:0008017 microtubule binding 0.0000565 Yes 
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By using the “check overlap” function in the platform and the big database of post-GWAS analyses 

(tissue, pathway and gene-based test) on over 1,500 complex traits we then assess in what other 

traits and diseases the associated tissues and pathways are also involved. We observe that 

tissues/cell types with an FDR < 5% for mood swings are also associated to traits such as neuroticism 

score, age at first birth, anxious feelings and reaction time (Supplementary Table 3). Similarly, 

biological pathways with an FDR < 5% for mood swings are also associated to neuroticism, reaction 

time, age at menopause and hand grip strength among many others (Supplementary Table 4). 

We then run MetaXcan and SMR analyses under the tab “Analysis” using gene-expression prediction 

models and eQTL data derived from the hippocampus (the strongest tissue association derived from 

DEPICT as shown in Table 2) to prioritize genes that are likely to be associated with mood swings. We 

examine 8440 genes through MetaXcan and 1161 through SMR. Top 5 results for MetaXcan and SMR 

are displayed in Tables 4 and 5 respectively. Supplementary Tables 5 and 6 show all genes that reach 

statistical significance based on Bonferroni correction (P < 6e-6 for MetaXcan and 4e-5 for SMR). 

Table 4. Top 5 results from MetaXcan using gene-expression prediction models for the 

hippocampus.  

Gene ID Gene Name Z-score P-value #SNPs used in model 

ENSG00000238083  LRRC37A2  -7.789 6.73e-15 38 

ENSG00000196628  TCF4  5.47 4.51e-8 8 

ENSG00000213619  NDUFS3  5.192 2.08e-7 17 

ENSG00000171044  XKR6  -5.152 2.57e-7 11 

ENSG00000205882  DEFB134  5.122 3.03e-7 4 

 

Table 5. Top 5 results from SMR using eQTL data from hippocampus. 

Gene ID Gene Name Stronger eQTL Beta P-value HEIDI  

P-value* 

SNPs in 

HEIDI test 

ENSG00000214425  LRRC37A4P  rs62063676 -0.01 1.10e-10   

ENSG00000214401  KANSL1-AS1  rs55974014 0.01 1.35e-10   

ENSG00000238083  LRRC37A2  rs2040845 0.01 7.47e-10   

ENSG00000263503  RP11-

707O23.5  

rs55974014 0.01 1.54e-9   

ENSG00000264070  DND1P1  rs55974014 0.01 1.94e-9 0.033 4 

*HEIDI (HEterogeneity In Depedent Instruments) test P-value. HEIDI test is only performed if the 

number of eQTLs for a specific gene is more than 3. 

 

Finally, using GSMR, we assess the causal role of BMI on the risk of mood swings. The results suggest 

a potential causal effect of BMI on mood swings, with each unit (kg/m2) higher in BMI leading to a 

higher risk of mood swings (OR = 1.01, s.e. = 0.006). However, the HEIDI-outlier test result (P-value = 
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0.053) suggests potential pleiotropic effects of the genetic variants used in the test on both exposure 

(BMI) and the outcome (mood swings). 

Future developments 

We update the CTG-VL on a weekly basis with new data, utilities and analysis tools. At this stage 

(CTG-VL version alpha-0.31), we are collecting feedback from the research community to improve 

the performance of the platform. In the suture, we aim to encapsulate a more stable version of the 

CTG-VL as Machine Image / Docker container to deploy in any cloud provider. 

Remarks and Conclusion 
We present the first release of the CTG-VL. This platform integrates the most comprehensive set of 

post-GWAS analysis tools available in other web-based applications such as LDHub [4] and FUMA-

GWAS [5] in addition to many others into a single platform, allowing users to test and derive novel 

hypothesis out of GWAS summary statistics.  A catalogue of GWAS and post-GWAS analysis results 

on over 1,500 complex traits in CTG-VL provides users the ability to explore the pleiotropy at gene-, 

pathway- and tissue- level as shown in our model of mood swings, which is currently not available in 

any other web platforms. This is of great utility for the interpretation of genetic correlations. For 

example, LD-score regression (also implemented in the platform) can be used to assess the extent to 

which two traits are affected by the same SNPs in the same (positive genetic correlation) or opposite 

(negative genetic correlation) direction. However, this analysis is unable to implicate the genes and 

biological pathways that may underlie the correlation. To aid this endeavor researchers can use the 

“check overlap” function in the platform to identify shared genes, tissues and pathways, leading to 

novel hypothesis and interpretation of the genetic correlations. 

This work was inspired by big efforts from multiple research groups making phenome-wide GWAS 

summary statistics available (i.e. Neale’s lab at the Broad Institute, GeneAtlas [20], and those GWAS 

summary statistics released along with the SAIGE software [25]) that await to be analyzed further, 

and more importantly, interpreted. 

The CTG-VL intends to be a user-friendly platform that will allow research teams with different 

expertise to perform common post-GWAS analyses and to aid in the interpretation of this huge 

amount of data. The CTG-VL aims to be a community-driven platform where novel analysis tools and 

data are regularly incorporated as these become available. As such, this report aims to gauge 

interest from the complex-traits genetics research community. 
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Methods 

Implementation 

The web interface and server are written in Angular 6 and Node.js respectively. Scripts to analyze 

networks were made with python (2.7) using NetworkX (1.8.1) and Igraph (0.7.1) libraries. Tabix [26] 

is used to index and query user GWAS data. Graphics were made with in-house d3.js v5 scripts. 

Genomic annotations and user data are stored at a server in the Queensland Research and 

Innovation Services Cloud. We use Google’s firebase for authentication and meta-data storage. All 

communications between the CTG-VL platform back- and front-end are encrypted through SSL 

(Secure Sockets Layer).  

Analysis software 

The CTG-VL uses PLINK [27] to clump and calculate LD between SNPs. These two functions are 

mainly used to obtain LD data for the regional plots (LocusTrack), identify SNPs in LD with lead SNPs 

(those with an association P-value <5e-8) and identify independent loci to be used by DEPICT.  

MetaXcan [16] is implemented in the platform with the default options along with gene expression 

prediction models from PredictDB [15] to carry out gene-based analyses. LD-score regression [13, 

14] is implemented along with LD-scores derived from 1000 Genomes [14] to estimate the 

heritability and genetic correlation based on GWAS summary statistics. Prior to LD-score analyses, 

GWAS summary statistics are run through the munge.py utility and merged to HapMap SNPs to 

ensure that alleles match between different datasets.  

DEPICT [15] is implemented to perform gene prioritization, gene-enrichment and identify the 

tissue/cell type most likely to underlie the associations. DEPICT takes as input independently 

associated SNPs below a user-specified P-value threshold. 

SMR [18] is implemented along with eQTL data for 48 cell types derived from GTEx and downloaded 

from the SMR website [28]. GSMR [19] is a function in GCTA [29] and is implemented with the 

default parameters.  

Each of the individual commands to run the analyses are included in the platform. 

Data 

Currently, genotypes from 1000 Genomes phase 3 [30] are used throughout the platform as a 

reference for LD. eQTL data from the GTEx Project [10] is used for annotation in regional plots, SMR 

and MetaXcan. Chromatin states [31] derived from ENCODE [8] and Roadmap Epigenomics Mapping 

Consortium [9] are used to annotate regional plots. Genes and SNPs position information is based on 
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the GRCh37 human genome assembly. Descriptions of genes are extracted from RefSeq [32] and 

UniProt [33]. 

GWAS summary statistics integrated within the CTG-VL platform are updated regularly, and both the 

references and links can be found in the platform [34]. GWAS summary statistics are integrated as 

published by the authors with exception to the summary statistics derived from Neale lab [23] 

where we removed SNPs with a MAF < 0.001 or Minor Allele Count < 25 in Cases (for case-control 

GWAS) as recommended in their documentation. 

Post-GWAS analyses in over 1500 traits 

We downloaded 3670 GWAS summary statistics from Neale Lab [23] and removed variants as 

described in the previous sections. We ran LD-score regression against each of these GWAS 

summary statistics. Those traits with a statistically significant heritability of P-value <0.05 (1,747) 

were selected to be analyzed with DEPICT and MetaXcan. As a heuristic, we ran MetaXcan using 

whole-blood gene-expression prediction models as these models were derived from a larger sample 

compared to other tissues. To run DEPICT, we clumped the summary statistics with the 

recommended parameters (LD-window 500Kb, and R^2 < 0.05) and used SNPs with the 

recommended P-value threshold of <1e-5. For traits with less than 10 independent loci, we relaxed 

the threshold to P-value <1e-4.  

Updates 

The CTG-VL is updated on a weekly basis, and this short report may not list/reference all the tools 

and data in the current version. However, this information can be found on the main page of the 

platform. 

Availability of supporting source code and requirements 
Project name: Complex-Traits Genetics Virtual Lab 

Project home page: https://genoma.io 

Operating system(s): Platform independent 

Programming language: JavaScript, Python, R, C 

Other requirements: Google Chrome version 65 or above; Firefox version 60 or above. 

License: The CTG-VL home page contain links to each analysis tool repository with license 

information. 
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Figure 1. Examples of the visualizations available in the CTG-VL. (A) An example of a LocusTrack 

plot that displays association results within a specified region (upper panel), along with eQTLs for a 

selected gene (PCDH17 in this example) (middle panel) and annotation tracks such as chromatin 

information for selected tissues (lower panel). Both, (A) LocusTrack and (B) Manhattan plots are fully 

interactive, allowing the user to annotate and query SNPs by simply clicking on them. (C) An example 

of a network visualization and its properties.  

 

Figure 2. Diagram of the steps to analyse the mood swings GWAS summary statistics. 
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Figure 3. Manhattan plot of mood swings. The CTG-VL enables the user to click on each of the SNPs 

to obtain the summary statistics, annotate and query the SNP. In addition, the user can highlight 

SNPs in LD with the lead SNP, as can be seen in red. 
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