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Abstract 

 

Pyrazinamide is one of four first-line antibiotics currently used to treat tuberculosis and has been 

included in newer treatment regimens undergoing clinical trials due to its unique sterilizing 

effects and synergy with newer drugs. However, phenotypic antibiotic susceptibility testing for 

pyrazinamide is problematic. Resistance to pyrazinamide is primarily driven by genetic variation 

in pncA, which encodes PncA, an enzyme that converts pyrazinamide into its active form. We 

curated a derivation dataset of 291 non-redundant, missense amino acid mutations in PncA with 

associated high-confidence phenotypes from studies of clinical isolates and in vitro/in vivo 

screening studies and then trained machine learning models to predict pyrazinamide resistance 

based on sequence- and structure-based features of each missense mutation. The clinical 

relevance of the models was tested by predicting the binary resistance phenotype of 2,292 

clinical isolates harboring missense mutations in PncA to pyrazinamide. The probabilities of 

resistance predicted by the model were also compared with in vitro pyrazinamide minimum 

inhibitory concentrations of 27 isolates to determine whether the machine learning model could 

predict the degree of resistance. Finally, we predicted the effect on pyrazinamide resistance of 

the remaining 814 possible missense mutations caused by single nucleotide polymorphisms in 

PncA that have not yet been observed in public databases. Overall, this work offers an 

approach to improve the sensitivity and specificity of pyrazinamide resistance prediction in 

genetics-based clinical microbiology workflows for tuberculosis, highlights novel mutations for 

future biochemical investigation, and is a proof of concept for using this approach in other drugs 

such as bedaquiline. 
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Introduction 

 Mycobacterium tuberculosis is an evolutionarily ancient human pathogen that is the 

leading cause of death by infectious disease worldwide1. In 2016, tuberculosis was responsible 

for 1.7 million deaths and 10.4 million new infections1. Tuberculosis control efforts have been 

hampered by the evolution of resistance to antibiotics, threatening the efficacy of the standard 

four drug antibiotic therapy consisting of rifampicin, isoniazid, ethambutol, and pyrazinamide1,2. 

Pyrazinamide plays a critical role in tuberculosis treatment through its specific action on slow-

growing, “persister” bacteria that often tolerate other drugs due to their reduced metabolism3–6. 

This unique activity has been instrumental in shortening the standard treatment duration to six 

months, substantially increasing the effectiveness of antibiotic therapy5,6. Numerous studies 

have also found that including pyrazinamide in treatment regimens increases sputum-

conversion rates in both pan-susceptible and multi-drug resistant (MDR, defined as resistant to 

rifampicin and isoniazid) tuberculosis populations7. Due to its unique sterilizing effect and its 

synergy with new tuberculosis drugs such as bedaquiline, pyrazinamide is also included in most 

new treatment regimens targeting drug-resistant tuberculosis8–13. Therefore, accurately and 

quickly determining whether a clinical isolate is resistant to pyrazinamide is critically important. 

 The majority of culture-based laboratory methods to determine pyrazinamide resistance 

are technically challenging, requiring highly-trained technicians. Even then, results are often not 

reproducible, meaning these methods are rarely employed in low-resource and/or high-burden 

clinical settings14. Even the current WHO-endorsed gold standard, the Mycobacteria Growth 

Indicator Tube (MGIT), which is relatively simple to use, suffers from low precision, with false-

resistance rates of up to 68% reported15–22. As the prevalence of multi-drug resistant (MDR) and 

extensively drug-resistant (XDR) TB increases, this lack of precision becomes more of a 

problem and hence the WHO has recommended moving toward genetics-based approaches for 

all first-line antibiotics.   
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 Despite pyrazinamide being used to treat tuberculosis since 1952, less is known about 

its genetic determinants of resistance compared to other first-line drugs5. Resistance to 

rifampicin or isoniazid is conferred in most isolates (90-95% and 50-97%, respectively) by a 

small number of highly-penetrant mutations in a small and well-delineated region of a single 

gene (rpoB and katG, respectively)4. Pyrazinamide is a pro-drug that is converted to its active 

form of pyranoic acid by the action of PncA, a pyrazinamidase/nicotinamidase encoded by the 

pncA gene24. While other genetic loci have been implicated in pyrazinamide resistance (notably 

rpsA, panD, and the putative efflux pumps Rv0191, Rv3756c, Rv3008, and Rv1667c), the 

majority (70-97%) of pyrazinamide-resistant clinical isolates harbor mutations in either the 

promoter region or coding sequence of the pncA gene25–33. In contrast to the well-delineated 

and relatively restricted “resistance-determining regions” found in rpoB (rifampicin, 27 codons) 

and katG (isoniazid, single codon), pyrazinamide-resistant mutations have been identified along 

the entire length of the pncA gene (Figure 1A) with no single mutation dominating. 

The consequence of this is that whilst line-probe assays have been successfully 

developed to predict resistance to rifampicin and isoniazid, and these are quicker and more 

reliably detect resistance than culture-based methods15,23, it is much challenging to develop a 

line probe assay targeting specific regions of pncA to predict pyrazinamide resistance. One 

instead is forced to consider whole-genome sequencing, however here the diversity of 

resistance-conferring mutations fundamentally limits the sensitivity and specificity of heuristic 

approaches that aim to predict the effectiveness of pyrazinamide based on a catalogue of 

previously-observed genetic variants4,14,30,31,34–36. 
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Dataset Phenotype Isolate Sources # Isolates # Unique Missense 
Mutations 

Exploratory R/S/F Ref 37 2,651 254  

Derivation R/S Ref 31,37–39 
1,792 

+ in vitro 
isolates39 

291  

Clinical R/S Ref 31,37,38 2,292 272  

Quantitative MIC EXIT-RIF Study 366 27  

Prevalence None European Nucleotide 
Archive and ref 37 25,986 376  

Table 1. Description of datasets employed in this study. (R=resistant to antibiotic, S=susceptible, F=test 

failed to return a result) 

 

An in depth analysis of the genetic variation reported in the initial exploratory dataset 

revealed 2,651 strains with mutations in the open reading frame of pncA, a substantial majority 

(2,400) of which only harbored a single mutation (Table 1)37. Of these, substitutions represented 

the majority (94.2%) of the genetic variation, with insertion, deletion, and frameshift mutations 

making up the remainder (5.8%). Insertions, deletions, and frameshift mutations, along with 

nonsense substitutions (present in 7.9% of the single mutation strains), were all associated with 

pyrazinamide resistance, consistent with their likely disruption of the PncA enzyme, thereby 

preventing pyrazinamide activation. Synonymous substitutions (present in 31.6% of the single 

mutation strains, Figure 1B) were not associated with resistance, suggesting that they can be 

inferred to not alter the pyrazinamide susceptibility of a particular strain. Thus, nonsynonymous 

substitution mutations (present in 60.5% of single mutation strains) represent the majority of the 

potential resistance-causing variation in M. tuberculosis.  
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A genetics-based clinical microbiology for tuberculosis depends on being able to predict 

or infer the effect of any likely observable pncA mutation on pyrazinamide susceptibility. Recent 

studies to identify pyrazinamide-resistance determining mutations have focused on either 

classifying mutations from previously observed clinical isolates or discovering novel mutations 

through in vitro/in vivo screening approaches31,37–39. However, these strategies are limited, 

respectively, by the relative paucity of sequenced clinical isolates and the lack of laboratory 

capacity to systematically generate and test mutants. A computational modelling approach 

could potentially predict the effect of a significant number of missense mutations before they are 

 

Figure 1. Distribution of pncA mutations from published datasets. (A) Barplot of the impact of 

possible missense mutations in PncA by amino acid position. High confidence resistant (red) and 

susceptible (blue) mutations are overlaid on the possible missense mutations whose effect on 

resistance is unknown (grey). (B) Distribution of the types of mutations reported by the CRyPTIC 

consortium et al37. (C) Missense mutations from the dataset plotted onto the PncA structure (PDB ID: 

3PL1) in dark grey. A pyrazinamide molecule (orange) has been modeled into the active site.  
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observed in clinical isolates, allowing clinicians to more rapidly make an informed decision in the 

face of emerging resistance patterns as well as focusing future fundamental in vitro studies on 

the most important mutations to investigate. 

In this paper we demonstrate that machine-learning models can robustly and accurately 

predict the effect of nonsynonymous substitutions in pncA on pyrazinamide susceptibility. The 

models were trained using a derivation dataset of 291 non-redundant, nonsynonymous PncA 

amino acid mutations collected from pooled MGIT phenotypic studies and a comprehensive in 

vitro/in vivo pyrazinamide-resistance screen (Methods, Table 1, S1)31,37–39. This dataset reflects 

the clinically observed distribution of mutations across the pncA gene (Figure 1A), as well as 

throughout the protein structure. Since the pncA gene is not essential, our hypothesis is that 

nonsynonymous substitutions mutation confer resistance by abrogating the folding, stability or 

function of the PncA protein. This led us to consider how each mutation perturbs the local 

chemistry and overall structure of the protein, Hence, information about the structural and 

chemical properties and evolutionary context of the wild type and mutant amino acids in 

question were used as inputs to several different machine-learning models (Methods). The 

predictions from the best performing model were then re-applied to an aggregated clinical 

dataset to examine their clinical relevance and also checked against a smaller quantitative 

dataset of in vitro pyrazinamide minimum inhibitory concentrations (MICs) to determine their 

capacity to predict the degree of resistance for specific mutations (Table 1). Finally, the model 

was used to make predictions for all (1105) nonsynonymous substitutions possible from single 

point mutations in pncA. These data were then used to predict the occurrence of pyrazinamide 

resistance in a prevalence dataset derived from public sequence repositories (Table 1). This 

study is a proof of principle for using computational approaches to model and predict antibiotic 

resistance in other drugs, such as bedaquiline, pretomanid/delamanid, isoniazid, and 

ethionamide, where some genes implicated in resistance pathways appear to be non-essential. 
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Results 

Structural and evolutionary traits correlate with mutational impact on pyrazinamide susceptibility 

 We built a preliminary set of 722 nonsynonymous substitutions in PncA that had either 

been observed multiple times in clinical isolates for which antibiotic susceptibility testing data 

was available or were generated in a high-precision laboratory screening study of pncA 

resistance variants (Methods). Discarding those mutations where there was uncertainty around 

whether they conferred resistance (or not) left us with a final derivation dataset of 291 

substitutions (Table 1). To understand the structural features that determine a mutation’s effect 

on pyrazinamide susceptibility, we mapped our derivation dataset onto the PncA structure. No 

obvious clustering was revealed, consistent with the previously observed distribution of resistant 

mutations across the gene sequence and protein structure (Figure 1A,C)14,30,31,35,39. 

Interestingly, there were a significant number of PncA codons where mutations associated with 

resistance and mutations consistent with susceptibility were seen, suggesting that the change in 

local chemistry introduced by the mutant amino acid is an important factor in determining 

resistance (Figure 1A). The amino acid positions with the highest mutational diversity in the 

dataset were all residues involved in active site formation or metal binding, suggesting that, 

consistent with our hypothesis, loss or alteration of these functions is a common mechanism for 

gaining pyrazinamide resistance. Indeed, previous studies have noted a negative correlation 

between a mutation’s distance from the active site and its tendency to cause resistance (Figure 

S1)31,39,40. 

Examining the PncA structure also suggested that resistant mutations were more likely 

to be buried in the protein core, consistent with findings from previous in vitro and in vivo 

screens (Figure 2A)31,39. Mutations in the hydrophobic core of a protein are likely to be 

destabilizing41–44. Indeed, some pyrazinamide-resistant mutations result in reduced production 

of functional PncA, perhaps due to impaired protein folding/stability39,45. To assess a mutation’s 

impact on the stability of PncA, we employed a meta-predictor that calculates the predicted 
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change in free energy of protein unfolding in silico46. This is a fast, heuristic method; although 

other more accurate methods exist, these require vastly more computational resource47. 

In addition to these chemical and structural properties, we also included information on 

the evolutionary variation at each position obtained from multiple sequence alignments of 

related orthologs (Methods). Unsurprisingly, increased conservation at a position was 

associated with a higher potential of a mutation at that position to confer resistance (Figure S1). 

Finally, we applied a recent computational method, called MAPP, that quantifies the 

evolutionary constraints imposed on a given position in a protein. MAPP does this by combining 

the range of physicochemical amino acid properties observed at a particular position in a 

multiple sequence alignment with weights generated from the branch lengths of a phylogenetic 

tree48. Resistant mutations had significantly higher MAPP scores, indicating that resistance-

conferring mutations in PncA are less conservative in amino acid chemistry and function 

(Figure 2B, S1). 

 

Machine-learning models accurately predict pyrazinamide resistance 

Univariable logistic regression over the derivation dataset revealed that most of the 

individual predictors were associated with resistant phenotypes (Table S2, Figure 2F). The 

MAPP score and solvent accessibility proved to be the most discriminatory individual features. 

As PncA can be inactivated through defects in protein folding, reduced stability, distortion of 

active site geometry, abrogation of metal binding, or some combination of these, we expected a 

machine-learning approach to be ideally suited to simultaneously consider all these possible 

mechanisms of PncA inactivation, and hence more accurately predict pyrazinamide 

resistance/susceptibility. 
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To evaluate the different models, we randomly divided our derivation dataset mutations 

(184 resistant, 107 susceptible) into a 70% training set and a 30% validation set, preserving the 

overall distribution of resistant and susceptible mutations. Models were then trained using 

repeated 10-fold cross validation (Methods). Since the models output a probability of resistance 

between 0 and 1, we defined three results; resistant (R, p<0.4), susceptible (S, p>0.6) and 

uncertain (U, 0.4≤p≤0.6) (Figure S2A). The models were able to call ~87-99% (183-190) of the 

mutations in the training set using these thresholds. As expected, drops in performance were 

observed for all models when applied to the independent validation set, however none were 

statistically significant (Figure 3, Table S3). The neural network (NN) model had the highest 

diagnostic odds ratio (119), followed by logistic regression (LR, 45) and then the support vector 

machine (SVM, 24, Figure 3). As the best performing model, the predictions from the neural 

network model were used for all further analyses. 

 

 

Figure 3: Machine learning models predict pyrazinamide resistance from structural features. 

Performance of (A) logistic regression (LR), (B) support vector machine with radial kernel (SVM) and (C) 

neural network (NN) models for prediction of pyrazinamide resistance. Dotted lines represent 95% 

confidence intervals from bootstrapping (n=10,000) and the area under the curve is reported for training and 

testing sets. Truth tables are shown for the combined training and test sets. 
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Analysis of model errors on the derivation set 

 Clinical diagnostic errors for antibiotic resistance are categorized into three classes: very 

major errors, which represent truly resistant isolates that are called susceptible, major errors 

(true susceptible cases called resistant), and minor errors, which are not called by the method 

being tested but are determined as resistant or susceptible by the reference method49. 

Collectively, the three models made 57 incorrect calls (28 very major errors and 29 major 

errors); however, only 14 of these were shared between all three models (8 very major errors 

and 6 major errors, Figure 4A, Table S4). The best performing model (neural network) had a 

sensitivity of 94% (89-97%), a specificity of 88% (81-94%), and a positive predictive value of 

93% (89-96%) (Table S3). 

 Although the mutations responsible for the very major errors (predicted susceptible, 

phenotypically resistant) of the neural network model were dispersed throughout the protein 

structure, most (10/11) were surface exposed (Figure 4B). All these mutations were predicted 

to either not affect or slightly increase the stability of PncA, suggesting these errors may be due 

to inaccuracies in the predicted free energy change of unfolding (Figure S2). Major errors 

(predicted resistant, phenotypically susceptible) were typically driven by overestimation of a 

mutation’s potential to effect PncA structure or function. Mapping the mutations responsible for 

these major errors onto the sequence and structure revealed one cluster near the active site 

and the coiled turn between the a-1 and a-2 helix (residues 15, 21, 23, 131, and 133) (Figure 

4B, C). Major errors appear to be caused in part by a combination of overestimation of the 

MAPP score at invariant positions that are near the active site or buried in the protein core. 

Interestingly, several major errors occurred in a region of the active site termed the 

“oxyanion hole” (residues 131-138) which coordinates the carbonyl group of pyrazinamide in the 

active site40. The effects of mutations that lie in this region could be over-estimated due to their 

proximity to the active site and relatively lower solvent exposure. As the interaction between the 

oxyanion hole and pyrazinamide is mediated by the peptide backbone, and is therefore 
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sidechain-independent, there is likely to be less stringent selection of the residues at these 

positions as long as the overall peptide backbone structure is maintained. Interestingly however, 

Gly132 and Ala134 are invariant in the alignment used to generate the MAPP score, which 

would suggest that these sites are however under strong selective pressures. It has been 

shown previously that specific residues are favored in the positions surrounding cis peptide 

bonds, so future work could attempt to model the mutations occurring in this functional region 

more specifically50. 

 

Figure 4. Very major errors are concentrated on the surface of PncA. 

(A) Major (ME) and very major (VME) errors shared between the models. Errors from logistic regression 

are shown in red, support vector machines in blue, and neural network in green (B) PncA with major 

(pink) and very major (magenta) errors shown as spheres. (C) Major (pink) and very major (magenta) 

errors mapped onto the pncA primary sequence. 
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Minor errors are cases where the model could not confidently call a mutation resistant or 

susceptible and represented 34% of errors made by all three models collectively. The model 

features for mutations that were called U tended to be intermediate compared to those of 

resistant and susceptible isolates, which raises the intriguing possibility that these are mutations 

with an intermediate effect on protein stability and/or enzyme activity (Figure S2). 

As the neural network model does not clearly indicate which PncA features drive its 

predictions, we used logistic regression with backwards elimination (Methods) on the derivation 

dataset to gain further insight into the complex interplay between these factors. This analysis 

revealed that solvent accessibility, distance to the active site, the evolutionary conservation of 

the wild type amino acid, the number of hydrogen bonds formed by the wild type residue, 

significant changes in protein stability (measured as a change in free energy of protein unfolding 

of >2 kcal/mol), and the MAPP score were all independent explanatory factors. In addition, the 

interactions between both the MAPP score and number of hydrogen bonds were found to 

moderate the effect of the distance to the active site. A higher MAPP score increased the 

deleterious effect of a mutation near the active site, while the importance of the number of 

hydrogen bonds a residue was involved in decreased further from the active site. This may be 

due to the requirement of hydrogen bonding interactions for proper active site geometry. There 

was weak evidence for two other interactions (between protein destabilization and either the 

number of hydrogen bonds or solvent accessibility, p=0.073 and p=0.054 respectively). These 

results suggest that interactions between model features are important for prediction of 

resistance, which may be why the neural network model outperforms logistic regression in 

classifying mutations. 
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Neural network predictions generalize to a large clinical dataset 

 To assess the generalizability of our best model, the neural network, we applied it to a 

clinical dataset of 2,292 pncA gene sequences with MGIT antibiotic susceptibility results (Table 

1), each representing a unique isolate collated from published studies of clinical isolates31,37–39. 

In addition to the clinical isolates that were used in the derivation dataset, this dataset also 

included 500 isolates either where mutations were only seen once or isolates with mutations 

whose phenotype could not be called confidently. 1,196 isolates (52%) from the clinical dataset 

harboring mutations were not used in model training. Predicting resistance/susceptibility based 

on the mutation present, the model correctly predicted 74.1% (1,181/1,593) of MGIT-resistant 

isolates with pncA mutations; however, it performed more poorly for MGIT-susceptible isolates, 

predicting only 53.5% (374/699) of strains (Figure 5A). 68.1% (287/421) of U calls made by the 

 

Figure 5. Model predictions based on mutations generalize to MGIT phenotypes. (A) Truth table 

of the predictions’ performance on a dataset of M. tuberculosis strains tested by MGIT. Brackets 

denote predictions based on missense mutations not in the training set. (B) Truth table of model 

predictions versus average mutation phenotypes. “I” is defined as mutations that are not R or S in 

>75% of isolates tested (n≥4). Brackets denote phenotypes for mutations for which there was enough 

clinical evidence to be confident in the assigned phenotype (177/272, 65%, Methods). 
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model were associated with resistance, which suggests that clinically a U call could be 

interpreted as possible pyrazinamide resistance contingent upon further testing (Figure 5A). 

Intriguingly, 30 mutations (present in 385 strains, 16.8% of strains classified) had 

variable MGIT results (defined as having a resistant MGIT phenotype in 25-75% of cases with at 

least 4 observations). To understand our model performance with these possible “intermediate” 

mutations, we compared the model predictions with the average phenotypes of the 272 unique 

mutations found in these strains, which we classified as resistant (MGIT resistant in >75% of 

isolates with this mutation tested), susceptible (MGIT susceptible in >75% of isolates with this 

mutation tested) and intermediate (I), the remainder. The model classified 14 (47%) of these 

high-confidence “intermediate” mutations as resistant, leading to 76 strains (40% of major errors 

made by the model) with susceptible MGIT phenotypes being misclassified as resistant (Figure 

5B). While the model predicted U for 10 (33%) of the intermediate mutations, there was no clear 

relationship between U calls and intermediate mutations, which is consistent with the fact that 

the model was trained on binary data (Figure 5B). Overall, the model more accurately predicted 

the average phenotypes of mutations than the individual MGIT phenotypes of clinical isolates, 

with the exception of the 11 very major errors; however, some of these errors may be due to 

errors in MGIT antibiotic susceptibility testing. Alternatively, these errors could result from 

resistance that is determined by factors upstream of protein folding and function and is therefore 

outside the scope of our model. 

 

Model predictions are correlated with pyrazinamide minimum inhibitory concentrations in vitro 

 To test the model’s capacity to predict the degree of pyrazinamide resistance conferred 

by a particular mutation, we compared the calls and predicted probabilities of our model with the 

minimum inhibitory concentrations (MICs) of pyrazinamide for a set of M. tuberculosis isolates 

collected in South Africa (quantitative dataset, Table 1, Methods). Overall, our model correctly 

predicted the binary (R/S) phenotype for 25 of 27 single missense pncA mutations observed in 
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these isolates (Figure S3, Table S6). One of these errors is likely due to a MGIT testing error, 

as the same mutation (Gly97Asp) is observed in another resistant isolate and has been 

classified as conferring resistance in other studies. We also compared the predicted 

probabilities of our model with the MICs to determine if our model was also informative about 

the relative degree of resistance conferred by a particular mutation. The predicted probabilities 

were moderately negatively correlated (r = -0.49). In future work we will test more isolates over 

a greater range of pyrazinamide MICs to investigate whether our model can also predict the 

degree of resistance at the upper end of the resistance spectrum. In addition, several samples 

with large deletions in pncA were also observed; these strains had extremely high (>900 µg/mL) 

MICs, which is consistent with the loss of functional PncA protein (Table S6). These data taken 

together with the results for isolates harboring insertions/deletions in the study by CRyPTIC 

Consortium et al37 confirm it is reasonable to assume all large insertion/deletion mutations and 

frameshifts in pncA confer resistance to pyrazinamide. 

 

Predicting the effect of all possible nonsynonymous pncA mutations on pyrazinamide 

susceptibility 

 Since trained machine learning models require very little computational resource, we 

applied our model to every possible nonsynonymous SNP in pncA (coding for 1,105 unique 

amino acid changes, 814 previously unobserved missense mutations), thereby estimating the 

probability that each mutation confers pyrazinamide resistance (Table S5). Overall, 22% (244) 

of missense mutations were predicted to confer resistance, while 63% (691) were predicted to 

have no effect on the action of pyrazinamide and the remaining 14% (158) were predicted to 

have an uncertain effect. Interestingly, the proportion of predicted resistant mutations was much 

lower than that in the derivation set (22% versus 63% respectively). This may be due to an 

increased likelihood of sequencing pyrazinamide-resistant clinical isolates, leading to an over-

representation of resistance-conferring mutations in our derivation dataset as opposed to 
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susceptible ones. As more unselected studies of whole genome sequencing are conducted, we 

expect this bias to unwind and consequently more susceptible mutations will be found than 

perhaps expected for most established drugs. Alternatively, it could be caused by a global 

underestimation of resistance by our model, which underpredicted resistance by ~10% in the 

clinical dataset. Finally, this difference could represent the fact that phenotypically intermediate 

mutations classified as U/I by our model are classified as resistant in the catalogs/screens used 

to develop the dataset.  

 In order to understand how these predictions improve our capacity to identify resistant 

mutations in pncA, we queried a bacterial index of the European Nucleotide Archive (ENA) to 

identify all missense SNPs in the M. tuberculosis pncA coding sequence (Table S5)51. We found 

~15,777 pncA sequences classified as originating from M. tuberculosis, with 4,504 strains 

harboring missense mutations in pncA. We supplemented this ENA dataset with the pncA 

sequences collected by CRyPTIC et al37 as these sequences were not deposited when the 

index of the ENA was built, bringing the total number of strains with missense mutations to 

7,107 (prevalence dataset, Table 1). Out of the 376 unique missense mutations observed in the 

prevalence dataset, 13 were frequent (>100 sequences) and 11 of these were associated with 

resistance (Table S5). 236 (63%) mutations were observed 10 or fewer times and 69 (18%) 

only once, highlighting the need for approaches capable of predicting the effect of rare 

missense mutations. We classified the prevalence dataset using a published heuristic catalog52, 

supplemented with our resistant and susceptible model predictions, to quantify how much our 

machine learning model improves our capacity to screen for potential pyrazinamide resistance 

using whole genome sequencing. While the heuristic catalog alone was able to classify 5,321 

strains (75%, 291 mutations), our model classified an additional 1,147 strains (16%, 47 

mutations), allowing us to provisionally classify 91% of the strains with missense mutations in 

the prevalence dataset. 
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Of the 4,504 strains with pncA missense mutations obtained from the ENA, 77% (3,458 

strains) were predicted to be resistant, 14% (640 strains) were predicted susceptible, and 9% 

(406 strains) were called uncertain. Interestingly, the predicted prevalence of resistance 

amongst strains harboring missense mutations in pncA in the ENA (77%) was higher than the 

prevalence observed in clinical isolates from CRyPTIC et al (70%) and substantially higher than 

the predicted overall prevalence possible for pncA (22%). This may be due to a historic 

sampling bias that preferentially selects resistant isolates for sequencing; alternatively, it could 

represent a bona fide enrichment of resistant isolates driven by the selective pressure of 

antibiotic treatment.  

 

Discussion 

 De novo prediction of 814 mutations’ effects on pyrazinamide resistance constitutes a 

significant step forward in our ability to predict pyrazinamide resistance from genetics and a 

proof of concept for using structural approaches to infer the effects of missense mutations on 

pyrazinamide resistance. While improvements to the model are necessary to achieve the 

sensitivity and specificity required for routine clinical use, this work increases our ability to 

identify rare resistance mutations, thereby potentially increasing the capability of whole-genome 

sequencing based diagnostic susceptibility testing to respond to emerging and rare resistance 

patterns, as well as prioritizing rare resistance mutations for in vitro validation. Additionally, 

improving the classification of susceptible pncA mutations will allow us to begin to disentangle 

the involvement of other genes in pyrazinamide resistance, including determining the effect of 

mutations in non-standard pyrazinamide resistance-associated genes such as panD and rpsA. 

 A principal limitation of this approach is that it can only make predictions for missense 

mutations in the coding sequence of pncA. While we have shown that these represent most 

(60.5%) of the possible resistant genetic variants in pncA, insertions/deletions and nonsense 

mutations (7.9%) must also be considered, as they are generally associated with resistance. 
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Likewise, promoter mutations that result in reduced transcription of pncA will likely also lead to 

resistance. While no synonymous mutation has yet been observed to cause pyrazinamide 

resistance to date, the possibility remains that a synonymous mutation could have an effect on 

mRNA stability, ribosomal stalling, or codon usage and confer resistance. The model also does 

not take into account the introduction of protease cleavage sites or other processing 

abnormalities. Finally, while most pyrazinamide resistance is caused by mutations in pncA, 

recent studies have also implicated other genes, notably rpsA, panD, and the putative efflux 

pumps Rv0191, Rv3756c, Rv3008, and Rv1667c in pyrazinamide resistance4,25-32. Further 

research is needed to determine if mutations in these genes can be reliably inferred to confer 

pyrazinamide resistance. 

 Several predictive features used in the model could be improved upon in future work. 

The MAPP score relies on the maintenance of function between diverse homologs to determine 

the evolutionary constraints on each position in a protein. While we selected sequences that 

contained the residues involved in active site formation and metal binding, we did not 

experimentally confirm pyrazinamide conversion by each homolog. Additionally, the in silico 

method that we employed to estimate each mutation’s effect on protein stability could be 

improved by comparison and calibration with in vitro biochemical data. Finally, as the active site 

of PncA is formed in part by a cis peptide bond between Ile133 and Ala134, more detailed 

modeling of the evolutionary constraints at this site could more accurately assess the functional 

impact of a mutation at these positions. Despite the fact that most features we investigated were 

associated with pyrazinamide resistance, not all were retained as independent predictors in our 

final logistic regression model. The change in hydropathy and sidechain volume as well as the 

Rogov score are all likely encapsulated by the MAPP score, as this takes into account the wild 

type and mutant amino acids in its calculation. 

 The accuracy of model predictions based on structural features suggests that the 

underlying hypothesis of predicting pyrazinamide resistance based on predicted PncA function 
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is valid. Mapping the potential of each position to harbor a predicted or bona fide resistance 

mutation onto the structure reveals that many resistance-prone positions are associated with the 

active site or metal binding, as noted previously (Figure 1C). Interestingly, however, most of the 

other resistance-prone positions are involved in packing interactions between secondary 

structure elements in PncA, supporting the assertion that a major mechanism of pyrazinamide 

resistance is loss of protein stability. All susceptibility-prone positions are highly solvent-

exposed and many are on flexible loops, consistent with our expectation that these regions 

experience lower selective pressures and have a lower/negligible effect on PncA stability and 

function. The effect of perturbing the protein core appears to be more dependent on the specific 

amino acid chemistries involved, as many codons harbor nearly equal amounts of resistant and 

susceptible mutations, which is consistent with the ability of a conservative, hydrophobic 

mutation to be tolerated in a region that relies on non-specific, volume-mediated packing driven 

by the hydrophobic effect. 

One major question that remains is whether the mutations not called by the model (U) 

represent inaccuracies in the calculation of model features, breakdowns in the model, or 

mutations with an intermediate effect on protein stability and/or enzyme activity. Most of the un-

called mutations have intermediate features that lie in between the resistant and susceptible 

distributions (Figure S2). The MAPP score has been shown to be capable of delineating 

between mutations that have mild and severely deleterious effects in other genes, suggesting 

that mutations with intermediate MAPP scores may indeed be intermediate in effect48. In 

addition, some of the mutations that are called U appear to not be reproducible when 

experimentally tested using the gold-standard culture-based method, MGIT, supporting the 

possibility of an intermediate class (Figure 5B). One previous study has shown associations 

between reductions in PncA stability/function in vitro and outcomes in infected mice, but more 

work is necessary to fully understand whether this relationship extends to clinical outcomes in 

patients39. While mutations have historically been classified using a binary system, this study 
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supports the view of mutations as conferring a spectrum of resistance. Future approaches could 

examine either probabilistic modelling or multi-class classification to attempt to encapsulate the 

uncertainty in phenotype associated with certain pncA mutations. 

Predictions made by this model could provide clinicians with an initial estimate of 

pyrazinamide susceptibility after a novel mutation is observed but before traditional phenotypic 

testing has been completed. Given the latter can take weeks or even months, this could help 

guide initial therapy and further antibiotic susceptibility testing. In addition, the putative 

classification of additional pncA mutations potentially enables genetic variants conferring 

pyrazinamide resistance that do not involve the pncA gene to be discovered. The identification 

of pyrazinamide-susceptible mutations is also crucial, as it has been suggested that any 

nonsynonymous mutation in pncA that is not cataloged as susceptible confers resistance, an 

incorrect assumption that would lead to overprediction of pyrazinamide resistance53. 

This study constitutes a proof-of-concept for the computational prediction of 

pyrazinamide resistance, a critically important drug in the treatment of tuberculosis. However, 

this approach is not limited to pncA but should in theory be extensible to any prodrug system 

where the converting enzyme is non-essential, such as delaminid, protaminid, or ethionamide 

as well as to prodrug systems outside of M. tuberculosis. Interestingly, a recent study has 

highlighted similar trends in the features used in this study for resistance-conferring mutations in 

katG (isoniazid), rpoB (rifampicin), and alr (D-cycloserine), suggesting that this approach may 

even be applicable to non-prodrug systems54. One promising area for future work is in the 

tuberculosis drug bedaquiline, where resistance is caused in part by mutations in a 

transcriptional repressor (Rv0678) that cause loss of DNA binding and upregulation of efflux 

pumps55,56. Rv0678 has shown a high degree of mutational promiscuity in published sequencing 

studies, which would highlight the value of a computational approach57–61. The ability of this 

approach to identify the major mechanisms of resistance to pyrazinamide highlights the need for 

continued basic research to determine the structures of other bacterial proteins implicated in 
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antibiotic resistance. Additionally, the efficacy of this approach highlights the value of including 

evolutionary constraints for prediction of mutational effects. Further understanding of the effect 

of pncA mutations also increases the ability of whole-genome sequencing approaches to move 

to the forefront of global tuberculosis control efforts. 
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Methods 

 Mutations included in the derivation (training and testing) dataset were selected from 

four large studies/reviews that included phenotypic diagnostic susceptibility testing of clinical 

isolates for pyrazinamide and one in vitro/in vivo phenotypic screening study31,37–39,52. Briefly, 

phenotypes for strains with single missense mutations in pncA from the four studies of clinical 

isolates were aggregated by mutation, tallying the results of the phenotypic testing. Mutations 

that were resistant or susceptible at least 75% of the time and that had been phenotyped at 

least 4 times were included as derivation phenotypes. Additionally, mutations that had been 

phenotyped at least twice with no discrepancies were also included. These mutations were then 

cross-referenced and supplemented with mutations from Yadon et al. that were either enriched 

(resistant) or depleted (susceptible) in both the in vitro and in vivo screens performed in that 

study39. Mutations that had conflicting clinical and laboratory phenotypes (n=2) were removed 

from the derivation dataset. Mutations that were only present in either clinical isolates or in vitro 

isolates but that met the criteria for inclusion from that set were included. This led to a final total 

of 291 mutations with high-confidence phenotypes of which 184 were resistant and 107 were 

susceptible to pyrazinamide. 

 The change in mass, volume, charge, hydrophobicity, distance from the Fe2+ atom and 

pyrazinamide molecule, solvent accessibility, MAPP score, Rogov score, degree of hydrogen 
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bonding, and predicted change in the free energy of protein unfolding were determined for each 

mutation. Hydrophobicity was estimated using the Kyte-Doolittle scale. Distances were 

calculated as the minimum distance between each residue and the Fe2+ atom or pyrazinamide 

molecule using UCSF Chimera. Solvent accessibility and predicted number of hydrogen bonds 

were calculated in UCSF Chimera. In silico calculation of the change in free energy of protein 

unfolding was calculated using a meta-predictor as described in Broom et al46. The MAPP score 

was calculated using software available at 

(http://mendel.stanford.edu/SidowLab/downloads/MAPP/index.html) using related orthologs. 

The PncA amino acid sequence alignment used to generate the MAPP score can be found in 

the Supplementary Material. 

 Logistic regression, support vector machines with radial kernels, and multi-layer 

perceptron neural networks were implemented using the R caret package (Supplemental Code 

1). Briefly, 70% of the derivation dataset was randomly selected (maintaining the ratio of 

resistant to susceptible phenotypes) as a training set and 30% was reserved as a test set. All 

three model types were trained using repeated (n=10) using 10-fold cross validation with class 

weights to compensate for the class imbalance. Performance was then estimated on the test 

set. In order to select the variables used for logistic regression, backwards stepwise elimination 

(exit p=0.15) was performed on the entire derivation dataset to select the main effects and then 

interactions between the significant terms were manually investigated, retaining any with 

heterogeneity p<0.01. Two additional weak interactions (between the protein destabilization 

factor and either number of hydrogen bonds (p=0.073) or solvent accessibility (p=0.054)) were 

not included in the final model. The final logistic regression model was trained using the 

identified main effects with the two significant interactions on the training set using 10-fold cross 

validation to select hyperparameters before being applied to the test set. 

All isolates in the quantitative MIC test set were collected in South Africa. Of the 366 

Mycobacterium tuberculosis clinical isolates, 333 were collected as part of a prospective cohort 
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study (“EXIT-RIF”) aimed at comparing the outcome of patients diagnosed with rifampicin 

resistant tuberculosis by MTBDRplus (Hain LifeSciences) or Xpert MTB/RIF between November 

2012 and December 2013 in three South African provinces (Free State, Eastern Cape and 

Gauteng). A Mycobacterium tuberculosis databank housed at the SAMRC Centre for 

Tuberculosis Research, consisting of ~45,000 drug resistant isolates collected in the Western 

Cape province since 2001, was queried to identify isolates containing both PZA MIC data and 

pncA genotypic data, this produced the remaining 33 Mycobacterium tuberculosis clinical 

isolates. 27 isolates were selected from this set that harbored single amino acid mutations in 

PncA. 

All MICs were determined using the non-radiometric BACTEC MGIT 960 method (BD 

Diagnostic Systems, NJ, USA) with manufactured supplied pyrazinamide medium/supplement 

as previously described62. This system makes use of modified test media which supports the 

growth of mycobacteria at a pH of 5.9. The MICs were determined at 900, 600 and 300 µg/ml 

for the large deletion isolates and 100, 75, 50, 25 µg/ml for the rest. A fully susceptible MTB 

laboratory strain H37Rv (ATCC 27294) was included as a control. 
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Supplemental Figures 

 

Figure S1. Distributions of structural features vary with resistance. 

Resistant (red) and susceptible (blue) features are shown with a p-value calculated by a Mann-

Whitney U test. 
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Figure S2. Models effectively predict resistant and susceptible PncA mutations 

(A) Distributions of model predictions on the training sets. Samples where p<0.4 were defined 

as resistant, whilst any sample with p>0.6 was defined as susceptible. (B) Distributions of major 

errors (pink), minor errors (grey), very major errors (purple), resistant (red), and susceptible 

(blue) mutations for the neural network model. 
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Figure S3. The predicted probabilities of susceptibility are negatively correlated with 
pyrazinamide MIC.
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