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Abstract

Adverse drug reactions (ADRs) induced from high-order drug-drug interactions (DDIs) due to polypharmacy - simul-
taneous use of multiple drugs - represent a significant public health problem. Unfortunately, computational efforts to
facilitate decision making for safe polypharmacy, particularly to assist safe multi-drug prescribing, are lacking. We
formally formulate the to-avoid and safe drug recommendation problems for multi-drug prescriptions. We investigate
preliminary computational approaches to tackling these problems, utilizing a minimum set of available prescription
data from a large population, and demonstrate their potentials in assisting safe-polypharmacy decision making once
richer data (e.g., electronic medical records, omics data and pathology data) are available. We develop a joint model
with a recommendation component and an ADR label prediction component to conduct to-avoid and safe drug recom-
mendation. We also develop real drug-drug interaction datasets and corresponding evaluation protocols to facilitate
future computational research on safe polypharmacy.

Introduction
Adverse drug reactions (ADRs) induced from high-order drug-drug interactions (DDIs) due to polypharmacy - simul-
taneous use of multiple drugs - represent a significant public health problem. ADRs refer to undesired or harmful
reactions due to drug administration. One of the major causes for ADRs is DDIs that happen when the pharmacolog-
ical effects of a drug are altered by the actions of other drugs, leading to unpredictable clinical consequences. The
increasing popularity of polypharmacy continues to expose a significant and growing portion of the population to
unknown or poorly understood DDIs and associated ADRs. The National Health and Nutrition Examination Survey1

reports that more than 76% of the elderly Americans take two or more drugs every day. Another study2 estimates that
about 29.4% of elderly American patients take six or more drugs every day.

Current research on DDIs and their associated ADRs is primarily focused on mining and detecting DDIs for knowl-
edge discovery2, 3. Applying the knowledge in practice for preventive, proactive and person-centered healthcare also
requires predictive power to deal with unknown DDIs, and to provide evidence-based suggestions to facilitate fu-
ture drug prescribing. As wet-lab based experimental validation scheme for DDI study still falls behind due to its low
throughput and lack of scalability, but meanwhile huge amounts of electronic medical record data become increasingly
available, data-driven computational methodologies appear very appealing to tackle DDI and ADR problems. Unfor-
tunately, computational efforts to facilitate future polypharmacy, particularly to assist safe multi-drug prescribing, are
still in their infancy. In this manuscript, we present a computational approach toward the goal of facilitating future safe
multi-drug prescribing. Here we use the term “prescription” to represent a set of drugs that have been taken together,
even though there could be non-prescription drugs. Thus, we tackle the following to-avoid drug recommendation
problem and safe drug recommendation problem.

Definition 1. To-Avoid Drug Recommendation: given the multiple drugs in a prescription, recommend a short, ranked
list of drugs that should be avoided taking together with the prescription in order to avoid a particular ADR.

Definition 2. Safe Drug Recommendation: given the multiple drugs in a prescription, recommend a short, ranked list
of safe drugs that, if taken together with the prescription, are not likely to induce a particular ADR.

We need to clarify and emphasize the following three aspects related to the recommendation problems and our ap-
proaches. First, in this pilot study, we only consider one ADR and thus drug safety is only considered with respect
to that particular ADR. The one-ADR condition is over-simplified compared to the real scenarios, in which very of-
ten multiple ADRs will occur simultaneously. However, this simplification can enable well-calibrated comparison
and evaluation of the prospective approaches that will be developed, and also can serve as a baseline upon which
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multi-ADR cases can be more easily tackled (e.g., as combinations of multiple, single ADRs, with correlation well
addressed). Second, in this pilot study, we only use drug prescription data (i.e., which drugs are prescribed together)
and their associated, single ADR, which is calculated based on a large population, in computational models. To truly
enable precision medicine and safe polypharmacy, more and comprehensive data, such as electronic medical records,
omics data, pathology data, etc., should be all integrated and utilized. However, our methods do not aim to fully solve
the safe-polypharmacy problem, which is highly non-trivial and also requires close collaborations from clinicians,
pharmacists, biologists, pathologists, etc. Instead, we aim to pioneer the development and test of computing power
that can be leveraged to better solve the problem. Particularly, our methods use prescription data from a large popu-
lation, which could be the most common, easy-to-access data type, and thus do not necessarily limit their potentials
in real applications. In the end, our methods recommend individual drugs, although sorted, that should be avoided or
safe with respect to an ADR. This is also likely that multiple drugs should be recommended as a composite, and/or
the recommendations should take into considerations other factors such as efficacies and costs of the new drugs, etc.,
and thus multi-criteria recommendation. We cannot claim that our methods can satisfy all requirements in real prac-
tice. However, our methods can serve as a baseline upon which other comprehensive models can be developed (e.g.,
multi-criteria recommendation can be decomposed into multiple, single-criterion recommendations). To the best of
our knowledge, this is still the first work to formally formulate the above problems and to provide a computational
solution framework.

The two recommendation problems are significant particularly for healthcare practice. They can enable evidence-
based suggestions to help polypharmacy decision making, and induce novel hypotheses on new high-order DDIs and
associated ADRs. Our contributions to solving the two new drug recommendation problems are summarized below.

• We formally define the drug recommendation problems.
• We developed a joint sparse linear recommendation and logistic regression model (SLR), with a drug recommen-

dation component and an ADR label prediction component (Section Joint SLIM and LogR Model: SLR ) to solve
the problems. The recommendation component captures drug co-prescription patterns among ADR and non-ADR
inducing prescriptions, respectively, and uses such patterns to recommend drugs. The ADR label prediction com-
ponent learns and predicts the ADR probabilities from drugs in prescriptions. These two components are learned
concurrently in SLR so that the recommended drugs are more likely to introduce expected ADR labels.
• We developed a protocol to mine high-order DDIs and their associated ADRs, and provided a DDI dataset to the

public (will be publicly available upon the acceptance of this manuscript) (Section Materials).
• We developed new evaluation protocols and evaluation metrics to evaluate the performance of drug recommendation

(will be publicly available upon the acceptance of this manuscript) (Section Materials).
• We conducted comprehensive experiments to evaluate SLR, and provided case study on recommended drugs (Sec-

tion Experimental Results). Our experiments demonstrate promising performance of SLR.

Definitions and Notations In this manuscript, we use d to represent a drug, and a binary matrix A ∈ Rm×n to
represent prescription data. Each row of A, ai (i = 1, · · · ,m), represents a prescription, and each column of A
corresponds to a drug. Thus, If a prescription ai contains a drug dj , the j-th entry in ai (i.e., ai,j) will be 1, otherwise
0. When no ambiguity arises, the terms “a prescription” and “a binary vector a” are used exchangeably, and “a set
of prescriptions” and “a matrix A” are also used exchangeably. In addition, a label yi is assigned to ai to indicate
whether ai induces a certain ADR (denoted as yi = 1 or y+i ) or not (denoted as yi = −1 or y−i ).

Joint SLIM and LogR Model: SLR
Supplementary materials present the background on SLIM and LogR model, and related work on computational meth-
ods for DDI and ADR studies. Sparse Linear Method (SLIM)4 is an efficient and state-of-the-art algorithm for top-N
recommendation that was initially designed for e-commerce applications. In the drug recommendation problem, given
a drug prescription ai, SLIM models the score of how likely an additional drug dj should be co-prescribed with ai as
a sparse linear aggregation of the drugs in ai, that is, ãij = aiw

ᵀ
j , (1)

where ãij is the estimated score of dj in ai, and wᵀ
j is a sparse column vector of aggregation coefficients. Note that

aij = 0, that is, dj is not included ai originally. Drugs with high scores calculated as above will be recommended to
the prescription. Thus, the scores are referred to as recommendation scores, and a prescription composed of ai and a
recommended drug dj is referred to as a new prescription with respect to ai, denoted as ai ∪ {dj}.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/518415doi: bioRxiv preprint 

https://doi.org/10.1101/518415
http://creativecommons.org/licenses/by-nc-nd/4.0/


We propose a new model to conduct to-avoid and safe drug recommendation to existing prescriptions. The model
recommends a set of additional to-avoid drugs to an existing prescription such that each of the recommended drugs
should not be taken together with the prescription in order to avoid ADRs. The model also recommends safe drugs
that can be taken together with the prescription. This novel model consists of a drug recommendation component and
an ADR prediction component. The recommendation component is instantiated from SLIM and the ADR prediction
component uses logistic regression LogR. This model is referred to as joint sparse linear recommendation and logistic
regression model and denoted as SLR. SLR learns the SLIM and LogR components jointly through solving the following
optimization problem:

min
W+,W−, x, c

SLIM(A+;W+, α, λ) + SLIM(A−;W−, α, λ) + ω{LogR(y+|Ã+;x, c, β, γ) + LogR(y−|Ã−;x, c, β, γ)}

subject to Ã+ = A+W+, Ã− = A−W−,W+ ≥ 0,W− ≥ 0, diag(W+) = 0, diag(W−) = 0.
(2)

In SLR,A+/A− is a set of training prescriptions known to induce ADRs/not to induce ADRs, respectively, and Ã+/Ã−

is the respective estimation from a SLIMmodel (Equation 1), that is, Ã+ = A+W+ and Ã− = A−W−, whereW+ and
W− are the SLIM parameters. The optimization algorithm for problem 2 is presented in the supplementary materials5.

Learning Co-Prescription Patterns SLR learns drug co-prescription patterns using its SLIM component (i.e.,
ã = aW , or explicitly, ãi,j =

∑
k,k 6=j ai,kWk,j), that is, whether a drug should be included in a prescription is

modeled as a linear function of other drugs that are included in the prescription. This modeling scheme is motivated
by the existence of strong co-prescription drug pairs as we observe from real data (Section Co-Prescription Patterns on
page 8).Meanwhile, linearity is a simplistic relation to model the co-prescription patterns, in which larger coefficients
represent stronger co-prescription relations. Note that the zero-diagonal constraint on the coefficient matrixW in SLIM
(i.e., diag(W+) = 0, diag(W−) = 0 in Equation 2) excludes the possibility that a drug is co-prescribed with itself.
The non-negativity constraint onW (i.e.,W+ ≥ 0,W− ≥ 0 in Equation 2) ensures that the learned relation is on drug
co-appearance. The regularization term ‖W‖`1 induces sparsity in W because not all the drugs are co-prescribed.

In SLR, the patterns in ADR inducing and non-ADR inducing prescriptions are modeled using two SLIM models (i.e.,
Ã+ = A+W+ and Ã− = A−W−) because it is expected these two patterns are different, and thus the prospectively
learned W+ and W− will present different patterns. The pattern difference is indicated during the data pre-processing
(Section Materials on page 5, Table 1). The W coefficients in the SLIM component are learned by minimizing the
difference between A and Ã estimated from SLIM. Note that A is a binary matrix but Ã can have floating values rather
than 0 and 1. Once the linear aggregation parameter W is learned, it can be used to recommend additional drugs that
are likely to be co-prescribed with an existing prescription.

Table 1: Data Statistics6

AFAERS A∗
A− A+ A− A+

A−
− A−

0 A+
0 A+

+ A−
− A−

0 A+
0 A+

+

#{a} 621,449 1,264 8,986 27,387 2,200 1,264 2,464 1,000
#{d} 1,209 417 881 1,201 562 417 692 679

avgOrd 6.100 2.351 3.588 7.096 2.678 2.351 3.809 7.615
avgFrq 1.761 225.317 13.730 1.402 42.082 225.317 20.565 5.520
avgOR - 0.546 16.343 - - 0.546 31.998 -

In this table, “#{a}” and “#{d}” represent the number of prescriptions
and the number of involved drugs, respectively. In each set of prescrip-
tions, “avgOrd”/“avgFrq”/“avgOR” is the average number of drugs/average fre-
quency/average OR of all prescriptions.

Predicting ADR Labels SLR uses its LogR compo-
nent (i.e., p(yi|ãi;x, c) = (1+ exp(−yi(ãixᵀ + c)))−1)
to predict whether a prescription will induce ADRs or
not. LogR produces a probability of ADR induction from
a linear combination of drugs in a prescription (Equa-
tion 3). Note that the estimated prescriptions Ã from
SLIM rather than A is used to train LogR. This connects
SLIM and LogR to further enforce that the SLIM compo-
nent learns co-prescription patterns that better correlate
with their ADR induction labels (i.e., y in Equation 2). Meanwhile, the use of Ã also generalizes the ability of LogR
to predict for new prescriptions, as Ã will have new drugs compared to A.

SLR Drug Recommendation SLR recommends drugs for each existing prescription a following a five-step proce-
dure, resulting in four different recommendation methods. We will discuss these steps and the corresponding recom-
mendation methods in detail later in this section. Note that in SLR, each recommended drug is considered individually
together with the prescription a. It is also possible in real practice that multiple drugs all together should be avoided
as they, together with the prescription, may induce ADRs. However, this problem is significantly more difficult as the
combinatorial synergy of high-order drug combinations is highly non-trivial to estimate. This problem will be tackled
in our future research.
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testing prescription a: d1 d2 d4

Top-5 recommendations from

SLIM component

LogR component

common drug indications

d18 d8 d19 d7 d5

d9 d16 d11 d17 d10

d12 d15 d14 d6 d13

Final top-5 recommendations

SLR-sd18 d8 d19 d7 d5

SLR-sld18 d8 d19 d9 d16

SLR-sid18 d8 d19 d12 d15

SLR-slid18 d8 d19 d9 d12

New prescriptions

d1 d2 d4 d18 d1 d2 d4 d7 d1 d2 d4 d5

d1 d2 d4 d18 d1 d2 d4 d9 d1 d2 d4 d16

d1 d2 d4 d18 d1 d2 d4 d12 d1 d2 d4 d15

d1 d2 d4 d18 d1 d2 d4 d9 d1 d2 d4 d12

Figure 1: SLR recommendation methods
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Figure 2: Testing set generation
Step 1: Recommendation from SLIM component Given a prescription a, the recommendation scores of all drugs
with respect to a are calculated as ã+ = aW+ and ã− = aW−, that is, ã+/ã−, the scores of being potential
to-avoid/safe drugs, are calculated from W+/W−. Based on ã+ and ã−, the top-N scored drugs that are not in
prescription a will be selected as to-avoid and safe drug candidates for a, respectively. This set of N drugs is denoted
as {dri}SLIM (i = 1 · · ·N ). The recommendation process in this step is identical to that in the original SLIM method4.
However, the SLIM component is learned from SLR (Equation 2). This recommendation method, together with the SLR
learning method, is referred to as SLR-s.

Step 2: Removing low-frequency recommendations The drugs in {dri}SLIM (i.e., the recommendation from the SLIM
component in SLR) are removed if their co-prescription frequency with a is lower than a threshold η. Specifically, for
each drug dri and each drug d ∈ a, we count how many times both of them are prescribed together within a prescription
and sum up the counts over all the drugs in a as the co-prescription frequency for drug dri . The intuition underlying
the low-frequency drug removal is to explicitly follow the co-prescription patterns that have been often observed in
standard of care. The reduced drug recommendation list is denoted as {dri}SLIMη .

Step 3: Recommendation from LogR component For a prescription a, each of all possible drugs that are not in a is
first combined with a to form a new prescription. Then the LogR component is applied on the new prescription to
calculate its probability of inducing ADRs (Equation 3). The drugs that lead to the top-N highest/lowest predicted
probabilities are recommended as the to-avoid/safe drugs. Note that the LogR component is learned from SLR. The
generated recommendation list is denoted as {drj}LogR.

Step 4: Recommendation based on drug indications In addition to recommendations from SLIM and LogR compo-
nents, we recommend another list of drugs based on drug indications. The intuition is that drugs that have similar
indications tend to be prescribed together. The supplementary materials5 presents some examples of co-prescribed
drugs with similar indications. For each drug d /∈ a and each drug di ∈ a, we first calculate the number of common
indications between d and di, and sum up all such numbers over di as the number of common indications for d with a.
The drugs which have the top-N most common indications with a form a recommendation list, denoted as {drk}ind.
The drug indication information is extracted from the Side Effect Resource (SIDER; http://sideeffects.embl.de/).

Step 5: Combining recommendations To recommend top-N to-avoid/safe drugs, we combine drugs from the list
generated by different components, leading to the following four methods. Figure 1 demonstrates the methods.

• SLR-s: use the recommendation list {dri}SLIM generated from Step 1 as the final recommendation list;
• SLR-sl: use the top-N drugs from the concatenation of {dri}SLIMη and {drj}LogR as the final recommendation list.
• SLR-si: use the top-N drugs from the concatenation of {dri}SLIMη and {drk}ind as the final recommendation list.
• SLR-sli: use the top-N drugs from the concatenation of {dri}SLIMη , the top {drj}LogR and the top {drj}ind as the

final recommendation list.

Comparison Methods
Random Method (Rand) In the first comparison method, we fully randomly recommend drugs for each prescription
as to-avoid drugs and safe drugs, respectively. This method is referred to as random method and denoted as Rand.
Rand serves as a baseline in which no learning is involved.

Logistic Regression Only (LogR) In this comparison method, only a LogR model is learned to predict ADR labels.
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Prescriptions that induce ADRs are used as positive training data, and prescriptions that do not induce ADRs are used
as negative training data. No SLIM models are learned in this method. The recommendation in this baseline method is
the same as the procedure to generate a LogR recommendation list in SLR (Section Joint SLIM and LogR Model: SLR
on page 4). This method is referred to as logistic regression only and denoted as LogR.

Sparse Linear Method Only (SLIM) In this method, a SLIM+ model is learned on ADR inducing prescriptions, and
a separate SLIM− model is learned on non-ADR inducing prescriptions. No LogR is learned. For a prescription, the
top drugs recommended from SLIM+ are considered as to-avoid drugs, and the top drugs recommended from SLIM−

are considered as safe drugs. This method is referred to as SLIM only and denoted as SLIM.

Separate Models (S+LR) In this method, a SLIM and a LogR model are learned separately, and used together for
recommendation. Specifically, a SLIM+ and a SLIM− as in SLIM are learned first. Meanwhile, a LogR model as
in LogR is also learned independently. The top recommendations are then generated by combining recommendations
from SLIM+/SLIM− and LogR model in an identical way as in SLR-sl. The difference is that SLIM and LogR are learned
independently, not jointly as in SLR. This method is referred to as separate SLIM-LogR model and denoted as S+LR.

Materials
Training Data Generation We use the prescription dataset AFAERS that we generated from FDA Adverse Event
Reporting System (FAERS) 1 in our previous research6 and consider myopathy as the particular ADR of interest in
this work. Detailed description of dataset generation protocol is available in section 5.1 of6. Table 1 summarizes the
dataset. Specifically, AFAERS consists of four subsets of prescriptions: 1). A+

0 has all the prescriptions that are reported
both with myopathy (case events) among some patients and without myopathy (control events) among other patients,
and the Odds Ratio (OR) between these two cases is above 1, indicating that more possibly these prescriptions will
induce myopathy; 2). A−0 has all the prescriptions that are also reported both with and without myopathy as those in
A+

0 , but the OR is below 1, indicating that more possibly these prescriptions will not induce myopathy; 3). A+
+ consists

of prescriptions that only have reports of myopathy (i.e., only in case events); and 4). A−− consists of prescriptions
that only have reports of non-myopathy (i.e., only in control events). The set of prescriptions in case events is denoted
as A+ (i.e., A+ = A+

+ ∪ A+
0 ) and is used as the positive set in AFAERS. The set of prescriptions in control events is

denoted as A− (i.e., A− = A−− ∪A−0 ) and is used as the negative set in AFAERS.

To use more frequent and more confident prescriptions for model training, we further generated a prescription dataset
from AFAERS. The detailed generation protocol is presented in section 5.2 in6. This dataset is denoted as A∗ and
summarized in Table 1. Note that A∗ is the set of labeled prescriptions that are used for model training.

Evaluation Protocols and Metrics Five-Fold Cross Validation The performance of different methods is evalu-
ated via five-fold cross validation. The dataset A∗ is randomly split into five folds of equal size. Four folds are used
for model training and the rest fold is used for testing. The corresponding training set is denoted as Atrn

∗ . In the fold
for testing, each prescription of order k (k = 2, 3, · · · ) is first duplicated into k copies. Then each of the k drugs
is excluded from each of the k duplicates, respectively, to generate a testing prescription of order k-1. We further
unify these testing prescriptions and exclude those testing prescriptions that appear in Atrn

∗ . The remaining testing
prescriptions constitute the testing set, denoted as Atst

∗ . Figure 2 demonstrates the testing set generation process. The
drug recommendation will be conducted and evaluated on Atst

∗ prescriptions for five times, with one fold for testing
each time. The final result is the average of the five experiments.

Knowledge Pool Generation To evaluate the performance of various methods, we first define a knowledge pool of
labeled prescriptions, denoted as Apool, which the recommended new prescriptions can be searched from and eval-
uated against. This knowledge pool serves as the entire knowledge space which is unknown during training. For a
training set Atrn

∗ , we consider AFAERS \Atrn
∗ as the knowledge pool Apool. Atrn

∗ is excluded from Apool because we can
always search testing prescriptions in Atrn

∗ , where prescriptions have known labels at the time of training, in order to
identify corresponding to-avoid prescriptions in Atrn

∗ , and therefore no recommendations will be needed. By exclud-
ing Atrn

∗ from Apool, we care about recommending particularly to-avoid/safe drugs to prescriptions such that the new
prescriptions have not been observed before. We believe this application is interesting and significant in real practice.

1https://www.fda.gov/drugs/informationondrugs/ucm135151.htm
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Evaluation Metrics Each of the methods will generate N recommended to-avoid/safe drugs for each testing pre-
scription. Given a knowledge pool Apool, the performance of these methods is evaluated using Normalized Recall on
Positives/Negatives, denoted as recP/recN, defined as follows,
recP = #TP/#P, recP = recP/max(recP), recN = #TN/#N, recN = recN/max(recN),
where #TP/#TN is the number of recommended to-avoid/safe prescriptions for Atst

∗ that have positive/negative la-
bels in Apool, #P/#N is the number of all possible ground-truth to-avoid/safe prescriptions for Atst

∗ that have pos-
itive/negative labels in Apool, and max(recP)/max(recN) is the maximum possible recP/recN value. In particu-
lar, max(recP)/max(recN) is achieved when all the top-N recommendations lead to true-positive/true-negative (to-
avoid/safe) prescriptions. Note that max(recP)/max(recN) can be smaller than 1. This is because for each testing
prescription, the number of recommended prescriptions is limited to N and can be smaller than the number of all its
possible ground-truth to-avoid/safe prescriptions in Apool. Thus, recP and recN measure how much each method can
achieve to its best. Higher recP and recN values indicate better performance. In particular, higher recP indicates
stronger performance on recommending to-avoid drugs, and higher recN indicates stronger performance on recom-
mending safe drugs. The maximum possible values of recP and recN (i.e., max(recP) and max(recN)) are presented
in Table S2 in the supplementary materials.

The third metric is the harmonic mean of recP and recN, that is, HMrec = 2× recP × recN/(recP + recN), and is
denoted as HMrec. Higher HMrec values indicate better performance. Note that we did not use conventional ranking-
based metrics such as average precision at k because we believe in clinical practice of multi-drug prescription, people
care whether all the to-avoid drugs can be correctly recommended (i.e., a notion of recall) much more than how the
to-avoid drugs are ranked.

Experimental Results
Overall Comparison We present the overall performance comparison of all the methods in Table 2. Note that
Table 2 presents the performance of different methods in terms of their best recP, best recN and HMrec, respectively,
and lists the corresponding values on the other two evaluation metrics when each respective best performance is
achieved. Optimal parameters are not presented in the tables due to space limit. Overall, recommendation-based
methods (i.e., SLIM, S+LR and SLR-based methods) substantially outperform LogR and Rand. LogR learns and predicts
the labels of prescriptions, but it does not learn or leverage the patterns among the drugs in prescriptions, even though
LogR learns the labels substantially better than random (Rand). In terms of best recP, SLIM, S+LR, SLR-s, SLR-sl,
SLR-si and SLR-sli are very comparable (all around 0.26), with S+LR (recP = 0.2662) slightly better than the others.
In terms of best recN, SLR-sl (recN = 0.3910), SLR-si and SLR-sli (recN = 0.3978) are comparable. SLR-si and
SLR-sli are 5.3% better than S+LR and 6.2% better than SLIM, where both of S+LR and SLIM learn a SLIM component
independently. In terms of best HMrec, SLR-sl (HMrec =0.3127) and SLR-sli (HMrec = 0.3136) are also comparable.
SLR-sli is 2.0% better than S+LR and 3.1% better than SLIM. Overall, SLR-sl and SLR-sli are very comparable, and
both are slightly better than SLR-s and SLR-si. SLR-based methods (i.e., SLR-s, SLR-sl, SLR-si and SLR-sli) outperform
SLIM, a strong baseline for top-N recommendation but learned without consideration of recommendation labels.
SLR-based methods also outperform S+LR, which considers recommendation labels but learns labels independently
of recommendations. These results demonstrate the strong potential of SLR methods in recommending to-avoid/safe
drugs for existing prescriptions. Detailed parameter study is presented in Section Parameter Study on page 3 and
Section Top-N Performance on page 4 in the supplementary materials5.

Table 2: Overall Performance Comparison on Atst
∗

mdl best recP best recN best HMrec
recP recN HMrec recP recN HMrec recP recN HMrec

Rand 0.0020 0.0003 0.0006 0.0020 0.0003 0.0006 0.0020 0.0003 0.0006
LogR 0.1621 0.2320 0.1908 0.1614 0.2397 0.1927 0.1614 0.2397 0.1927
SLIM 0.2564 0.3739 0.3041 0.2072 0.3747 0.2668 0.2564 0.3739 0.3041
S+LR 0.2662 0.3604 0.3061 0.2574 0.3777 0.3061 0.2649 0.3666 0.3074
SLR-s 0.2576 0.3739 0.3049 0.2468 0.3823 0.2999 0.2574 0.3755 0.3053
SLR-sl 0.2633 0.3381 0.2959 0.2608 0.3910 0.3127 0.2608 0.3910 0.3127
SLR-si 0.2583 0.3943 0.3121 0.2472 0.3978 0.3048 0.2583 0.3943 0.3121
SLR-sli 0.2654 0.3836 0.3136 0.2474 0.3978 0.3050 0.2654 0.3836 0.3136
The column “mdl” corresponds to models. The best overall performance is bold.

Table 3: Performance Comparison on Atst
∗+

mdl best recP best recN best HMrec
recP recN HMrec recP recN HMrec recP recN HMrec

Rand 0.0010 0.0003 0.0004 0.0010 0.0003 0.0004 0.0010 0.0003 0.0004
LogR 0.1964 0.1796 0.1875 0.1964 0.1796 0.1875 0.1964 0.1796 0.1875
SLIM 0.2519 0.4110 0.3123 0.2519 0.4110 0.3123 0.2519 0.4110 0.3123
S+LR 0.2528 0.4046 0.3111 0.2528 0.4046 0.3111 0.2528 0.4046 0.3111
SLR-s 0.2530 0.4111 0.3131 0.2486 0.4138 0.3104 0.2530 0.4111 0.3131
SLR-sl 0.2529 0.4119 0.3133 0.2493 0.4113 0.3104 0.2529 0.4119 0.3133
SLR-si 0.2528 0.4150 0.3141 0.2482 0.4179 0.3112 0.2528 0.4150 0.3141
SLR-sli 0.2530 0.4131 0.3137 0.2482 0.4179 0.3112 0.2530 0.4131 0.3137
The column “mdl” corresponds to models. The best overall performance is bold.

Comparison on Different Testing Subsets Among all the testing prescriptions in Atst
∗ , some prescriptions can be

found in AFAERS along with known ADR labels, while the others have unknown ADR labels. We separate Atst
∗ into the

following subsets according to their labels in AFAERS: (1). Atst
∗+: the set of prescriptions in Atst

∗ that have positive labels
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inAFAERS; (2). Atst
∗-: the set of prescriptions inAtst

∗ that have negative labels inAFAERS; (3). Atst
∗u: the set of prescriptions

in Atst
∗ that do not have labels in AFAERS. Thus, Atst

∗+ ⊂ AFAERS, Atst
∗- ⊂ AFAERS, Atst

∗u 6⊂ AFAERS, Atst
∗+ ∩ Atst

∗- = ∅ and
Atst
∗+ ∪ Atst

∗- ∪ Atst
∗u = Atst

∗ . Note that if a prescription with an unknown label contains only one drug and can be found
in DMyo (i.e., the set of drugs which induce myopathy on their own), we still categorize it as in Atst

∗+. Different subsets
here correspond to different concerns of interest. For Atst

∗+, we are more concerned with safe drug recommendations
(i.e., recN in evaluation) so as not to further increase the ADR risks of prescriptions. For Atst

∗-, we focus more on
to-avoid drug recommendation (i.e., recP in evaluation) so as not to introduce ADRs in prospective prescriptions. For
Atst
∗u, we are interested in both to-avoid and safe drug recommendations. Table 4 presents the statistics of different sets

of testing prescriptions. In particular, the column DMyo(%) in Table 4 presents the average percentage of the DMyo
drugs in a prescription. In specific, we first calculate the percentage of DMyo drugs in each prescription and take the
average. Atst

∗+, in which all the prescriptions are positive, contains the most DMyo drugs on average.

Table 4: Statistics on Differ-
ent Testing Subsets
Subset #{a} avgOrd DMyo (%)
Atst

∗+ 2,182 2.9 25.51
Atst

∗- 3,057 3.0 19.22
Atst

∗u 12,065 10.4 16.14
Atst

∗ 17,304 7.8 17.87

“ #{a}” represents the total number
of unique prescriptions; “avgOrd” is
the average order of prescriptions; and
“DMyo (%)” is the average percentage
ofDMyo drugs in prescriptions.

Performance Comparison on Atst
∗+ Table 3 presents the performance of different

methods on Atst
∗+. In terms of best recP, SLR-based methods and S+LR have simi-

lar performance (around 0.2528) and slightly better than SLIM. In terms of best recN,
SLR-based methods and SLIM have similar performance (around 0.4100), with SLR-si
and SLR-sli slightly better than the others. In terms of best HMrec, the SLR-based
methods are similar to SLIM. These results show that for Atst

∗+– the set of prescriptions
that induce ADRs, joint learning SLIM and LogR does not introduce additional bene-
fits on top of SLIM, although all these methods are significantly better than Rand and
LogR. However, comparing the best recN values in Table 3 and in Table 2, SLR-based
methods have better performance (best recN =0.4179) on Atst

∗+ than on Atst
∗ (best recN

=0.3978). This indicates that for ADR-inducing prescriptions, our methods are able to recommend safe drugs that
taken together with the ADR-inducing prescriptions would actually lead to no/less ADR effects.

Performance Comparison on Atst
∗- Table 5 presents the performance of different methods on Atst

∗-. The SLR-based
methods and SLIM have a similar performance in their best recP, recN and HMrec. However, comparing the results in
Table 5 with the results in Table 3 and Table 2, SLR-based methods can achieve even better recP values (recP =0.2847)
on Atst

∗- than those on Atst
∗+ (recP =0.2530 and Atst

∗ (recP =0.2662). As for Atst
∗-, we care more on recommending to-

avoid drugs. The better recP values on Atst
∗- indicate the capability of SLR-based methods in recommending to-avoid

drugs that taken together with the non ADR-inducing prescriptions would not induce ADRs. SLR-based methods also
have better performance on Atst

∗- in terms of recN and HMrec, compared to that on Atst
∗+ and Atst

∗ .
Table 5: Performance Comparison on Atst

∗-

mdl best recP best recN best HMrec
recP recN HMrec recP recN HMrec recP recN HMrec

Rand 0.0000 0.0004 0.0000 0.0000 0.0004 0.0000 0.0000 0.0004 0.0000
LogR 0.1423 0.1409 0.1414 0.1410 0.1461 0.1431 0.1412 0.1460 0.1432
SLIM 0.2804 0.4499 0.3454 0.2792 0.4508 0.3448 0.2804 0.4499 0.3454
S+LR 0.2808 0.3740 0.3208 0.2790 0.3745 0.3197 0.2808 0.3740 0.3208
SLR-s 0.2844 0.4525 0.3492 0.2844 0.4525 0.3492 0.2844 0.4525 0.3492
SLR-sl 0.2847 0.4525 0.3494 0.2847 0.4525 0.3494 0.2847 0.4525 0.3494
SLR-si 0.2842 0.4407 0.3455 0.2842 0.4407 0.3455 0.2842 0.4407 0.3455
SLR-sli 0.2847 0.4407 0.3459 0.2847 0.4407 0.3459 0.2847 0.4407 0.3459
The column “mdl” corresponds to models. The best overall performance is bold.

Table 6: Performance Comparison on Atst
∗u

mdl best recP best recN best HMrec
recP recN HMrec recP recN HMrec recP recN HMrec

Rand 0.0031 0.0026 0.0026 0.0031 0.0026 0.0026 0.0031 0.0026 0.0026
LogR 0.1470 0.2504 0.1852 0.1491 0.2468 0.1858 0.1491 0.2468 0.1858
SLIM 0.2512 0.3053 0.2754 0.2512 0.3053 0.2754 0.2512 0.3053 0.2754
S+LR 0.2745 0.2824 0.2782 0.2714 0.2689 0.2700 0.2714 0.2689 0.2700
SLR-s 0.2562 0.2251 0.2395 0.2471 0.3275 0.2817 0.2471 0.3275 0.2817
SLR-sl 0.2685 0.3263 0.2933 0.2615 0.3736 0.3071 0.2658 0.3661 0.3075
SLR-si 0.2566 0.3073 0.2795 0.2461 0.3527 0.2898 0.2476 0.3532 0.2909
SLR-sli 0.2700 0.3447 0.3025 0.2499 0.4025 0.3082 0.2541 0.4005 0.3107
The column “mdl” corresponds to models. The best overall performance is bold.

Performance Comparison on Atst
∗u Table 6 presents the performance of different methods on Atst

∗u. Different from the
performance on Atst

∗+ and Atst
∗-, on Atst

∗u, S+LR has the best performance in terms of recP (recP =0.2745) compared to
SLR-sli, the best performing SLR-based methods (recP =0.2700). SLIM is worse than SLR-based methods in terms of
recP. However, in terms of best recN, on Atst

∗u, SLR-sli and SLR-sl are significantly better than other methods, followed
by SLR-si and SLR-s, while SLIM and LogR do not perform comparably. A similar trend holds in terms of best HMrec.
The difference of the performance trends on Atst

∗u may be due to the different characteristics of Atst
∗u (Table 4). For

example, the larger size of drug combinations may allow LogR alone to better predict prescription labels, particularly
the positive labels. Overall, on Atst

∗u, SLR-based methods outperform SLIM and LogR on average. This indicates the
capability of SLR-based methods in recommending safe drugs when the testing prescriptions do not have ADR labels.

Recommendation Method Comparison Table 7 presents the contribution from various recommendation compo-
nents of SLR-sli (i.e., the SLIM component, the LogR component and the indication component as in Figure 1). In

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted March 24, 2019. ; https://doi.org/10.1101/518415doi: bioRxiv preprint 

https://doi.org/10.1101/518415
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 7, the average number of true positive prescriptions that are recommended by SLR-sli for Atst
∗+, Atst

∗- and Atst
∗u in

terms of best HMrec is 503.0, 249.0, and 901.8, respectively, and the corresponding average number of true negative
prescriptions are 1204.0, 1234.2, and 829.8, respectively. For Atst

∗+ and Atst
∗-, the recommended true positives are fewer

than the true negatives. This may be due to the fact that, as in Table 1, the knowledge pool AFAERS has more nega-
tive prescriptions, which leads to a higher probability of a recommended prescription being true negative in AFAERS.
However, for Atst

∗u, there are more recommended true positives than true negatives. The Atst
∗u testing prescriptions have

higher average order than theAtst
∗+ andAtst

∗- testing prescriptions as in Table 4. Such higher order leads to higher risks of
those Atst

∗u testing prescriptions on their own being true positives (as in Table 1, true positives tend to have higher order
than true negatives). The fact that SLR-sli recommends more true positives than true negatives for Atst

∗u demonstrates
its strong capability of identifying to-avoid drugs particularly when the existing prescriptions already have high risks
of ADRs.

Table 7: Recommendation Statistics from SLR-sli

subset Metric #TP #TN
total SLIM LogR Ind total SLIM LogR Ind

Atst
∗+

recP 503.0 503.0 0.0 0.0 1204.0 1126.8 0.0 77.2
recN 493.4 488.4 3.4 1.6 1218.0 1138.2 0.0 79.8

HMrec 503.0 503.0 0.0 0.0 1204.0 1126.8 0.0 77.2

Atst
∗-

recP 249.0 248.6 0.4 0.0 1234.2 1179.4 0.0 54.8
recN 249.0 248.6 0.4 0.0 1234.2 1179.4 0.0 54.8

HMrec 249.0 248.6 0.4 0.0 1234.2 1179.4 0.0 54.8

Atst
∗u

recP 958.0 828.8 88.0 41.2 714.4 180.6 0.0 533.8
recN 886.8 674.8 128.2 83.8 833.8 93.2 478.0 262.6

HMrec 901.8 757.2 95.2 49.4 829.8 145.6 452.6 231.6

Column “Metric” presents to the evaluation metric. Column
“#TP”/“#TN” presents TP/TN prescriptions. Column “total” presents the
average total number of TP/TN prescriptions. Column “SLIM”, “LogR” and
“Ind” present the average TP/TN prescriptions from SLIM, LogR and drug
indication component, respectively.

For Atst
∗+ and Atst

∗-, almost all the true positive and true negative
recommendations are from the SLIM component of SLR-sli.
However, for Atst

∗u, the recommendations are contributed from
all of the three components (e.g., 757.2, 95.2, and 49.4 true
positives from SLIM, LogR and indication component, re-
spectively). This indicates that for high-order prescriptions,
to-avoid/safe drug recommendation may require the collec-
tive consideration of various factors including the drug co-
prescription patterns and drug indications, etc. This also
demonstrates the capability of SLR-sli in leveraging the rec-
ommendation lists strategically from various recommendation
components in order to generate reliable to-avoid/safe drug
recommendations.

Table 8: Most Indicating Drugs from SLR-sli
Top-5 Bottom-5

x d x d
7.944 atorvastatin -10.783 warfarin
6.430 simvastatin -9.492 ibuprofen

- - -3.592 metformin
- - -1.761 quetiapine
- - -0.673 valproic acid

“x” is the entry value of drug in x; “d” corresponds to the
drug; and “Top-5” and “Bottom-5” correspond to the top-
5 largest and smallest values in x, respectively. Drugs in
SIDER to induce myopathy on their own are bold.

ADR-Relevant Drug Identification We analyze how SLR-sli can
identify ADR-relevant single drugs using x in the LogR component.
The x values represent how strong the association between the corre-
sponding drug and the ADR label is. The larger positive/negative value
of xi indicates higher possibility for drug di in inducing/not inducing
ADR. The top-5 largest positive and negative weights in the x from
SLR-sli and the corresponding drugs are presented in Table 8. Note
the largest positive/negative weights correspond to drugs that are most
predictive of ADR/non-ADR induction, and the SLR-sli corresponds to
the best HMrec performance on Atst

∗u as in Table 7, where LogR contributes most. In Table 8, it turns out only two x
values are positive, corresponding to drug atorvastatin and simvastatin. These two drugs have been reported in SIDER
as to induce myopathy, and 28.72% of the ADR inducing prescriptions have at least one of these two drugs. This
indicates that the LogR component in SLR-sli is able to identify single drugs that are most ADR relavant. Meanwhile,
the top-5 largest negative weights correspond to warfarin, ibuprofen, metformin, quetiapine, and valproic acid. In A∗,
the frequency of these 5 drugs in A+ is 119, 110, 176, 46, and 54, respectively, and much higher than the average
frequency 14.05 of all the drugs; the frequency of these 5 drugs in A− is 124, 86, 148, 102, and 95, respectively, and
also much higher than the average frequency 7.32 of all the drugs. This indicates that the LogR component in SLR-sli
is also able to identify single drugs that are most ADR safe.

Co-Prescription Patterns We analyze the co-prescription patterns using W+ and W−from SLR-sli of the best
HMrec performance. W+/W− captures the co-prescription patterns among drugs that often appear in ADR inducing/no-
ADR inducing prescriptions, respectively. The values inW+/W− can be considered as measurement of such patterns:
higher/lower values correspond to stronger/weaker co-prescription patterns. The top-10 largest values inW+ andW−

from the optimal SLR-sli model and the corresponding co-prescribed drug pairs on Atst
∗ are presented in Table 9.

In Table 9, the learned W+ has a density 10.89%, and its top-5 largest values correspond to the following drug
pairs: (ethinyl estradiol, etonogestrel), (hydrochlorothiazide, triamterene), (sulfamethoxazole, trimethoprim), (ac-
etaminophen, hydrocodone), and (fluticasone propionate, salmeterol). These drug pairs are frequently prescribed
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together in A+. The number of prescriptions in A+ that contain these drug pairs is 38, 32, 31, 133, and 44, respec-
tively (“freq” in Table 9), compared to the average number of A+ prescirptions of all possible drug pairs, which is
2.48. This demonstrates that SLR-sli is able to capture the co-prescription patterns among perscriptions. In addition,
many of the co-prescribed drugs share similar medical purposes. For example, ethinyl estradiol and etonogestrel are
often used for birth control, and acetaminophen and hydrocodone are often prescribed together to relieve moderate to
severe pains and treat fever.

In Table 9, the learned W− has a density 18.20%, and its top-5 largest values correspond to the following drug pairs:
(ethinyl estradiol, norelgestromin), (emtricitabine, tenofovir), (acetaminophen, hydrocodone), (fluticasone propionate,
salmeterol), and (lopinavir, ritonavir). These drug pairs are also frequently co-prescribed in A−. The number of A−

prescriptions that have these drugs pairs is 23, 35, 36, 35 and 36, respectively, compared to 2.07, the average number
of A− prescriptions that have all possible drug pairs. These drugs pairs also share similar medical purposes. For
example, emtricitabine and tenofovir, and lopinavir and ritonavir are commonly used in HIV cocktail therapy, and
fluticasone propionate and salmeterol are prescribed together for preventing difficulty in breathing.

Table 9: Co-Prescription Patterns from SLR-sli on Atst
∗

W+ W−

w d1 d2 freq w d1 d2 freq
0.7021 ethinyl estradiol etonogestrel 38 0.6275 ethinyl estradiol norelgestromin 23
0.5903 hydrochlorothiazide triamterene 32 0.5932 emtricitabine tenofovir 35
0.5874 sulfamethoxazole trimethoprim 31 0.5916 acetaminophen hydrocodone 36
0.5719 acetaminophen hydrocodone 133 0.5523 fluticasone propionate salmeterol 35
0.5302 fluticasone propionate salmeterol 44 0.5189 lopinavir ritonavir 36
0.5034 amoxicillin clavulanate 22 0.4668 budesonide formoterol 17
0.4967 carbidopa levodopa 17 0.4496 fluorouracil leucovorin 18
0.4595 acetaminophen codeine 27 0.4459 conjugated estrogens medroxyprogesterone 17
0.4492 emtricitabine tenofovir 22 0.4104 buprenorphine naloxone 9
0.4268 pamidronate zoledronate 42 0.3837 amphetamine dextroamphetamine 8

In this table, “w” is the value of the entry corresponding to the drug pairs in W+/W−; “d1” and “d2” are the two drugs
in the drug pair, and “freq” is the frequency of the corresponding drug pairs in training data A+ and A−. Drugs that are
reported in SIDER to induce myopathy on their own are bold.

It is also noted that in Ta-
ble 9, the learned W+ and
W− values are not nec-
essarily in order with the
drug pair frequencies. This
indicates that the SLR-sli
is able to discover pat-
terns related to ADRs that
are not simply represented
by prescription frequen-
cies. In addition, the two
lists of top-10 drug pairs
corresponding to W+ and W− values have 3 common pairs (e.g., (acetaminophen, hydrocodone), (fluticasone propi-
onate, salmeterol) and (emtricitabine, tenofovir)) and 7 different pairs, respectively. This may illustrate the common
practices in both ADR-inducing and non-ADR-inducing drug perscribing, but meanwhile the different distributions
of ADR-inducing and non-ADR inducting prescriptions. Co-prescription patterns corresponding to the best HMrec on
Atst
∗+, Atst

∗- and Atst
∗u are presented in Table S6, S7, and S8, respectively, in the supplementary materials5.

Case Study Table S9 in the supplementary materials5 presents some examples of testing prescriptions and their
recommended to-avoid drugs from SLR-sli such that the corresponding new prescriptions (i.e., testing prescriptions and
recommended drugs together) are ADR-inducing. When the testing prescriptions already induce ADRs (i.e., in Atst

∗+;
the first row block in Table S9), SLR-sli is able to identify additional single drugs such that when the recommended
drug is taken together with the testing prescription, the OR of the new prescription increases over that of the testing
prescription. For example, the testing prescription (fusidic acid, simvastatin) inAtst

∗+ is ADR inducing with OR =39.809
(p-value=1.281 × 10−14). SLR-sli recommends ramipril such that (fusidic acid, simvastatin, ramipril) also induces
ADR with an increased OR =159.2182 (p-value=1.8109× 10−9). Such examples also indicate that the increased OR is
due to the additional recommended drugs, and the potential directional interactions between the recommended drugs
and the testing prescriptions. This conclusion may hint on the research on directional drug-drug interactions7.

When the testing prescriptions do not induce ADRs (i.e., in Atst
∗-; the second row block in Table S9), SLR-sli is able

to recommend to-avoid drugs that will introduce ADRs to the corresponding new prescriptions. In particular, there
are examples in which the recommended to-avoid drugs themselves are not ADR-inducing. For example, the testing
prescription (dicyclomine, gabapentin, lansoprazole, lorazepam, pamidronate, zoledronate, zolpidem) is ADR nega-
tive and the recommended to-avoid drug ”oxycodone” is itself ADR negative as well. However, the corresponding
new prescription is ADR inducing (OR =34.116, p-value=7.007 × 10−4). Another example is for the testing pre-
scription (acetylsalicylic acid, amlodipine, atorvastatin, isosorbide mononitrate, lisinopril, olmesartan, omeprazole,
quinine). Although atorvastatin is ADR-positive, this prescription its own is ADR-negative. However, SLR-sli rec-
ommends another ADR-negative drug ”atenolol” that results in an ADR-positive prescription (acetylsalicylic acid,
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amlodipine, atorvastatin, isosorbide mononitrate, lisinopril, olmesartan, omeprazole, quinine, atenolol) (OR =13.646,
p-value=3.566×10−3). This demonstrates that the recommendations from SLR-sli are not trivial and do capture the
interaction patterns among multiple drugs in a prescription. The same conclusion can also be derived from the exam-
ples for testing prescriptions in Atst

∗u (i.e., the third row block in Table S9). For example, for the testing prescription
(acetylsalicylic acid, amlodipine, esomeprazole, hydrochlorothiazide, potassium chloride, sorafenib, triamterene) in
Atst
∗u, SLR-sli recommends ”furosemide” which, taken together with the testing prescription, will induce ADR, although

furosemide itself is ADR-negative. More examples on safe drug recommendation are available in Table S10 in the
supplementary materials5.

Discussions and Conclusions
In this manuscript, we formally formulated the to-avoid drug recommendation problem and the safe drug recommen-
dation problem. We developed a joint sparse linear recommendation and logistic regression model (SLR) to tackle the
recommendation problems, and developed real datasets and new evaluation protocols to evaluate the model. To the
best of our knowledge, this is the first time such problems are formally formulated and corresponding computational
solutions are proposed. Our experiments demonstrate strong performance of SLR compared to other methods. In par-
ticular, SLR is able to 1). recommend safe drugs that taken together with the ADR-inducing prescriptions would lead
to no/less ADR effects; 2). to recommend to-avoid drugs that taken together with the non ADR-inducing prescriptions
would not induce ADRs; 3). to recommend safe drugs when the testing prescriptions do not have an ADR labels; and
4). to leverage the recommendation lists strategically from various recommendation components in order to generate
reliable to-avoid/safe drug recommendations. In SLR, we use simplistic linear models. Non-linear models (for both
recommendation and label prediction) together may be able to better discover co-prescription patterns and predict
labels jointly. We will investigate non-linear models in the future work. In addition, SLR is learned on a population
level without personalization to each individual patient, because the ADR labels are generated over a population. With
patient data available, we may extend the methods to personalized drug recommendation.
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