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We formulated a spatially resolved model to estimate forces exerted by a polymerizing 

actin meshwork on an invagination of the plasma membrane during endocytosis in yeast 

cells. The model is a continuous approximation tightly constrained by experimental data. 

Simulations of the model produce forces that can overcome resistance of turgor pressure 

in yeast cells. Strong forces emerge due to the high density of polymerized actin in the 

vicinity of the invagination and because of entanglement of the meshwork due to its 

dendritic structure and crosslinking. The model predicts forces orthogonal to the 

invagination that would result in a flask shape that diminishes the net force due to turgor 

pressure. Simulations of the model with either two rings of nucleation promoting factors 

as in fission yeast or a single ring of nucleation promoting factors as in budding yeast 

produce enough force to elongate the invagination against the turgor pressure.  
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Introduction 

 

Assembly of actin filaments at sites of endocytosis is necessary for invagination of the plasma 

membrane in both budding and fission yeast (Aghamohammadzadeh and Ayscough, 2009; Basu 

et al., 2014). The transient accumulation of actin filaments around the invaginating plasma 

membrane is called an “actin patch.” Patches form in ~10 s, peak and disappear over ~10 s. 

Polymerizing actin is believed to produce the forces required to form a tubular invagination of 

the plasma membrane with a clathrin-coated hemisphere at the tip (Kaksonen and Roux, 2018). 

Force is required to overcome the very high turgor pressure in yeast cells, which is estimated to 

be on the order of 10 atm in fission yeast (Basu et al., 2014). This amounts to a force on the order 

of 3,000 pN on a typical endocytic tubule (Carlsson, 2018). Previous modeling studies concluded 

that actin polymerization alone is unlikely to generate such a force, and various additional 

mechanisms were proposed (Scher-Zagier and Carlsson, 2016; Lacy et al., 2018). 

 

We used simulations of mathematical models to estimate the forces exerted on an endocytic, 

plasma membrane tubule by a surrounding network of actin filaments. In our model, mechanics 
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of the filamentous meshwork is coupled to a detailed description of actin nucleation and 

polymerization (Berro et al., 2010). We assumed that nucleation-promoting factors (NPFs) reside 

on the membrane tubule and stimulate Arp2/3 complex to nucleate branched actin filaments. 

Simulations of the model constrained by experimental parameters yielded dense networks of 

actin filaments around the tubule in the vicinity of the NPFs. Entanglement of the branched 

filaments makes the network highly viscous, so that the energy released during the 

polymerization generates forces sufficient to work against the turgor pressure and elongate the 

nascent invagination.  

 

The elongating invaginations were simulated with either one or two narrow bands of NPFs 

around the membrane tubule. Fission yeast have two rings of NPFs, one that remains in the 

initial position at the base of the invagination, while the other moves with the tip of the tubule 

(Arasada and Pollard, 2011; Arasada et al., 2018). Budding yeast have one ring of NPFs that 

remains near the base of the invagination.  

 

Model  

 

1. Generalized description of the biochemistry and physics of the expanding actin filament 

network. The model of the actin filament network is formulated in a continuous approximation, 

such that the distribution of filaments in the patch is characterized by a continuous density of 

actin subunits ),( tx , which is a function of location x and time t . The peak number of ~6,500 

actin subunits per patch in fission yeast (Sirotkin et al., 2010) suffices for a continuous 

formulation to provide reasonably accurate results. This large number makes a discrete stochastic 

approach logistically burdensome, though such an approach would otherwise be appropriate, 

given submicron sizes of endocytic patches (Mund et al., 2018). Our model indicates that the 

large number of polymerized subunits confined in submicron volumes results in subdomains of 

highly concentrated actin filaments in the vicinity of one or two rings of nucleation promoting 

factors (see Results). 

 

We describe filamentous actin as a visco-active fluid (Kruse et al. 2005; Prost et al., 2015). In a 

viscosity-dominated environment, a balance between active and dissipative forces governs the 

mechanics of actin filament networks. The active repulsive stress, originating from the 

impingement of polymerizing subunits on existing filaments, is elastically stored in the 

meshwork, causing it to expand with velocities limited by dissipation due to viscosity of the 

meshwork. 

 

Mathematically, a force-balance equation requires that the divergence of the total stress tensor be 

zero everywhere in the fluid (Kruse et al. 2005): 0)ˆˆ( activeviscous  σσ . Here, the viscous stress 

tensor is viscousσ̂ ))(( T
vv  , where the viscosity coefficient   is a function of the local 
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densities   and local average length of actin filaments, L : ),( L   (Doi and Edwards, 

1998). Note that because  varies in space, actin velocities are not subjected in our model to the 

incompressibility condition. The density of actin subunits, however, has an upper limit due to 

excluded volume, as explained further in this section.  

 

The active stress tensor is approximated as isotropic: activeσ̂ Îaσ , where Î is the unit tensor 

and aσ , which is a function of  (Satcher and Dewey, Jr., 1996; MacKintosh et al., 1995; Gardel 

et al., 2003), can be interpreted as the energy per unit volume stored in the meshwork during 

polymerization. Hydrostatic pressure is not included in the force-balance equation in our model, 

because the mechanics of the actin filament network decouples from mechanics of the 

cytoplasm. Indeed, the viscous drag exerted on actin filaments by the cytoplasm is much weaker 

than the intrinsic viscous forces due to direct contacts of the filaments and can thus be ignored 

(Nickaeen et al., 2017). Technically, the repulsive active stress can be viewed as playing a role of 

pressure in our model. Overall, the equation governing ),( txv  is written as 

 

0)()))()(,((   a

TL vv .    (1) 

 

Eq (1) is coupled with the spatiotemporal dynamics of the molecules regulating actin filament 

assembly. In both types of yeast cells, proteins called nucleation promoting factors (NPFs) 

initiate the assembly of the actin filament networks by stimulating Arp2/3 complex to nucleate 

new actin filaments on the sides of existing filaments, forming a dendritic network. The model 

includes a spatial description of actin nucleation and polymerization that follows a kinetic model 

used by Berro et al. (Berro et al., 2010). The latter consists of rate equations detailing actin 

filament nucleation, polymerization and aging, as well as capping the polymerizing (barbed) 

filament ends and severing of aged filaments by cofilin. Simulations of the model using protein 

concentrations measured in cells (Berro et al., 2010) adequately describe experimentally 

measured time courses of the appearance and disappearance of patch proteins (Sirotkin et al., 

2010). The rate constants giving good fits of the simulations to the experimental data were larger 

than expected from biochemical measurements owing to excluded volume effects in cells. 

Utilizing rate constants and equations of Berro et al. integrates measurements of actin kinetics in 

our model. 

 

The actin density   is determined by concentrations of all of the species of actin in an actin 

patch. These species include newly polymerized ATP-bound subunits (‘FATP’), subunits aged 

by ATP hydrolysis and phosphate dissociation (‘FADP’), and subunits bound by cofilin 

(‘FCOF’) as shown in the reaction diagram in Fig. 1. In our model,  also includes 

concentrations of the filaments barbed-ends, both active and capped (‘BEa’ and ‘BEc’, 

respectively), and slowly depolymerizing pointed ends (‘PE’). Overall,  
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X

A Xn ][ ,  

 

where X  stands for FATP, FADP, FCOF, BEa, BEc, and PE, and ][X  is the concentration of 

molecule X  in M; the prefactor An  converts the concentration in M into the density 

expressed in molecules per m3 ( 602An m-3/M).  

 

All concentrations ][X , with the exception of [ActiveArp], are governed by reaction-transport 

equations of the following type, 

 

Xt RXX  )]([][ v ,    (2) 

 

where the first term in the right-hand side describes the flow of X with velocity v  and XR  is the 

sum of rates of all reactions affecting X . The next section describes the equations for 

[ActiveArp]. Functional forms of XR and parameters are from (Berro et al., 2010), except the on- 

and off- rate constant of polymerization, capping, and cofilin binding, which were modified by 

the factor 
 )/1( max  that accounts for the effect of excluded volume. This factor ensures that 

Figure 1. Reaction diagram corresponding to the kinetic model by Berro et al. (Berro et al., 2010), with added 
partitioning of species between membrane and cytosol. Directions of arrows towards or from reaction nodes 
(yellow squares) determine roles of species (green circles) in a particular reaction as reactants or products, and 
reactions without products describe disappearance of reactants from the patch. Species connected to 
reactions by dashed curves act as ‘catalysts’, i.e. they are not consumed in those reactions. 
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the abovementioned processes slow down as   approaches 
13

max )3/ 4(   , where  2.7 

nm is the subunit radius, so that   never exceeds max . The functional form used follows from 

the dependence of molecular diffusivities on the excluded volume (Novak et al., 2011). The 

parameters used in computations are  0.5 (Novak et al., 2009) and  Anmax 19.5 mM (see 

Methods in Supplemental Material).  

 

Reaction steps that lead to formation of ActiveArp occur on the surface of the membrane (Fig. 1) 

and involve the dimers WASp - G-actin ( WGD ), Arp2/3 ternary complexes consisting of Arp2/3 

bound to WGD (ArpTernCompl), and activated Arp2/3 ternary complexes (FArpTernCompl). 

These reactions are described by rate equations, 

 

     Yt RY  ][ ,       (3) 

 

where ][Y  is the surface density of a membrane-bound protein Y . Note that while these variables 

are governed by ordinary differential equations, they also depend on spatial coordinates, given 

that YR  are nonzero only at the locations of NPFs (see below) and plArpTernComR  is dependent on 

[FATP] and [FADP] near the plasma membrane. 

 

2. Coupling the expansion of the actin filament network to the membrane invagination. Eqs (1) 

and (2) are solved in a sufficiently large neighborhood of 

the invagination, denoted   in Fig. 2. The plasma 

membrane  includes the invagination. As mentioned 

above, Eqs (3) are solved on the parts of the invagination 

occupied by NPFs. Fission yeast assemble two rings 

containing different NPFs around the invagination of the 

plasma membrane (red bands in Fig. 2). Both zones start 

near the cell surface at the neck of the invagination. One 

ring is stationary, while the other moves with the tip of 

the invagination, where it is assumed to be attached to a 

hemisphere of the protein clathrin. Budding yeast has a 

single zone containing both types of NPFs, which 

remains at the base of the invagination. 

 

We assume that the actin patch assembly is preceded by 

formation of an initial invagination. We do not model this 

process, which involves formation of a coated pit of 

plasma membrane associated with clathrin molecules and 

adapter proteins (Arasada and Pollard, 2011; Chen and 

Pollard, 2013). For this study, we assume the existence of 

Figure 2. Computational domain, , 

and plasma membrane, , including 
invagination. Two rings of nucleation-
promoting factors are shown in red. 
When the invagination elongates, 

both and  change with time. 
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the initial invagination with a depth sufficient to accommodate two adjacent rings of NPFs. The 

next section describes the shape and size of the initial invagination used in simulations. 

 

Actin filaments polymerizing around the initial invagination are constrained by the plasma 

membrane, which is pressed against the stiff cell wall. This causes the actin filament network to 

expand inward from and laterally along the cell surface. The expanding meshwork exerts a drag 

on an initial invagination and moves the invagination further inward. It is believed that the drag 

occurs because of binding of actin filaments to the protein coat of the invagination (Lacy et al., 

2018), though little is known about the biochemistry of this binding. The connection between the 

actin meshwork and the plasma membrane is included in the model as a condition that the 

membrane and the adjacent actin filaments move with the same velocities: 0|)(  uv , where 

|u  are the velocities of the points of the membrane. This condition is consistent with the 

treatment of viscous fluids at interfaces with adjacent media in continuum mechanics (Landau 

and Lifshitz, 1987). Mathematically, it serves as a boundary condition for Eq (1) at  . The 

conditions at other boundaries of the computational domain were zero-stress, though they did not 

affect the solution significantly, since   was substantially larger than the size of the 

invagination (see Methods in Supplemental Material).  

 

The net force exerted on the endocytic invagination is obtained by evaluating an integral of the 

tangential force density, nσσe  )ˆˆ( activeviscousz  over the surface of the invagination S : 

  

 
S

zz dsf nσσe )ˆˆ( activeviscous ,    (4) 

 

where n  is the outward normal vector to  (directed from  towards the interior of ) , ze  is 

the unit vector orthogonal to the cell wall and ds is the infenitesimal surface element (Landau 

and Lifshitz, 1987). The Results section considers in detail the rheological data for actin 

networks that are critically important for the constitutive dependences )( aa   and 

),( L   used in Eq (1). 

 

Eq (2) is subject to zero-flux boundary conditions at   for all X , except for ActiveArp, for 

which there is an incoming flux from the rings that describes the detachment from the membrane 

of active filament-bound ternary complex (‘FArpTernCompl’), see Fig. 1. The magnitude of the 

corresponding flux density is equal to the detachment rate, 
rings

|ActiveArpmpl-FArpTernCo R , where 
rings

denotes the zones of   occupied by the rings (see Fig. 2 and Methods in Supplemental 

Material). The existence of a nonzero influx of ActiveArp requires modification of the transport 

term in Eq (2) for this variable. Indeed, given the boundary condition for v , pure advection is 

generally  incompatible with a nonzero influx, resulting in unphysical Dirac-delta singularities. 

The inconsistency is resolved by taking into account that the detachment of the ternary complex 
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from the membrane inherently involves diffusion. Adding the diffusive term restricted to the 

vicinity of the rings, we arrive at: 

 

    ActiveArp])ActiveArp[]ActiveArp([)(]ActiveArp[ RDt  vx  

 

and a corresponding boundary condition, ,0|)])ActiveArp([)((
ringsActiveArpmpl-FArpTernCo   RD x

where )(xD  is nonzero only in the vicinity of the rings (see Methods in Supplemental Material).  

 

At all the other boundaries of the computational domain, Eq (2) was subject to the outflow 

boundary conditions. As we have noted in the context of Eq (1), the type of these boundary 

conditions does not really matter, because so long as the size of   is sufficiently large, they do 

not affect the solution in any significant way (see Methods in Supplemental Material). 

 

3. Simulations of the models. Eqs (1-3) coupled with respective boundary conditions were solved 

numerically. Importantly, when the membrane elongates,   and in Fig. 2 are changing:  

increases and  decreases, so the model must be solved in a domain with a moving boundary 

(see Methods in Supplemental Material). Note that the concentrations of molecules with names 

followed by zero in Fig. 1 are constants and the surface density of the nucleation-promoting 

factors, WASp0, is uniform within the rings and varies over time as a bell-shape curve (Sirotkin 

et al., 2010; Berro et al. 2010). The initial values of all other concentrations and )0,(xv were set 

to zero, except for [FADP], [BEa], and [PE], which were assigned small initial values, 

corresponding to a small number of seed filaments (Chen and Pollard, 2013).  

 

The geometry of the initial invagination was a cylinder with radius 30 nm capped with a 

hemisphere of the same radius. The initial length of the cylindrical part was 40 nm, 

accommodating two 20-nm wide rings positioned next to each other. It was assumed, for 

simplicity, that during elongation, the invagination preserves its (sphero)cylindrical shape and is 

infinitely rigid i.e. that all points of the tubular membrane have the same instantaneous velocities 

collinear with the axis of the cylinder. Realistically, the invaginations are not infinitely rigid. 

Indeed, electron micrographs showed the endocytic invaginations of budding yeast are of flask 

shape (Kukulski et al., 2012). Our model yields forces orthogonal to the tubule distributed in a 

way that would produce such a shape (see Fig. 6).  

 

We computed the time-dependent magnitude of these velocities assuming a linear force-velocity 

relationship (Peskin et al., 1993), 
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where )(tf z is the force exerted on the invagination at time t , defined by Eq (4), cf  is the 

critical force due to turgor pressure, and   is a given mobility coefficient (see Methods in 

Supplemental Material and Results). 

 

Results 

 

1. Parameterization of Eq (1) and salient properties of the model.  

We begin with a description of constitutive relations for active stress and viscosity of actin 

meshwork in the absence of branching and crosslinking. Measurements of the viscoelasticity of 

filaments of purified actin can explain how the active stress and viscosity of the meshwork 

depend on its density and the properties of the filaments. Rheological data usually include 

information about dynamic (i.e. frequency-dependent) ‘storage’ and ‘loss’ moduli, denoted as 

)(G and )(G  , respectively (Wirtz, 2009). The active stress, aσ , which is determined by the 

energy released during polymerization and elastically stored in the meshwork, should be 

proportional to G . For overlapping actin filaments, )(G  scales with actin density  as 
2  

for any   (Gardel et al., 2003). We therefore assume 
2

activeaσ , where the proportionality 

coefficient active  depends on the extent of branching and crosslinking. 

 

Obtaining a constitutive relation for viscosity   is not as straightforward. Based on polymer 

physics, it is expected to be of the form, 
 L , where L  is the polymer length and 

exponents  and   depend on whether the polymer is flexible or rigid and whether the solution 

is dilute or concentrated (Doi and Edwards, 1998). For concentrated solutions of certain flexible 

chemical polymers, measurements yielded  = 4-5 and  3.5, in agreement with theoretical 

results. Note that the same theory predicts that the viscosity of a polymer solution is always 

proportional to viscosity of a solvent; this is based on the assumption that the cross-sectional area 

of a polymer is vanishingly small. While this assumption is adequate for chemical polymers, it 

does not apply to a biopolymer meshwork, where the viscosity originates from direct interactions 

between filaments and is essentially independent of viscosity of the medium. It is intuitive to 

assume that viscosity of overlapping actin filaments increases as a function of the number of 

contacts made by the filaments and how long these contacts ‘slide’ along the filaments. The 

average number of contacts a given filament makes with its neighbors can be estimated as the 

average number of subunits per volume occupied by a filament, i.e. 
3~ N , where N is the 

average number of subunits per filament and  is the radius of the actin subunit, as defined 

earlier. The contact density is then obtained as a product of the number of contacts per filament 

and the number of filaments per unit volume. The latter is N/ , so that the density of contacts 
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is 
32~  . Assuming further that for the rod-like filaments, the ‘lifetime’ of a contact is 

proportional to the number of subunits in a filament N , we arrive at LN 2232~   , or  

 

L22

visc   ,       (6) 

 

where the proportionality coefficient visc  can depend on the structural properties of an actin 

meshwork, such as branching or crosslinking.  

 

We corroborated the constitutive relation of Eq (6) by estimating   from rheological data for 

filaments of purified actin. The estimation of   is complicated by the fact that solutions of actin 

filaments are non-Newtonian fluids with viscosities depending on the shear rates (Buxbaum et 

al., 1987). This was approximated by deriving visc , treated as a constant, from )(G  and )(G   

with   close to the shear rates in actin patches, which are ~ 1 Hz (see the end of this subsection 

for more details). It is also important to note that the shear viscosity of the meshwork differs 

from  /)()( G   (Cox and Merz, 1958; Wirtz, 2009). The effective shear viscosity is often 

well approximated by an empirical Cox-Merz rule 2/1221 ))()((  GG   , with   being 

identified with the shear rate (Cox and Merz, 1958). In what follows, values of   were computed 

by applying the Cox-Merz formula to the moduli measured at  = 1 Hz.  

 

The length dependence in Eq (6) is close to 
7.0L as proposed by Zaner and Stossel (Zaner and 

Stossel, 1983), who measured dynamic moduli of solutions of overlapping actin filaments with 

controlled lengths and applied the Cox-Merz rule to compute  . More recent data by Kasza et al. 

points to a linear dependence, L  (Kasza et 

al., 2010). These authors measured )(G  and 

)(G   of overlapping actin filament networks 

prepared with a fixed actin concentration and 

varying filament lengths and concentrations of 

linkers. Extrapolation of the data of (Kasza et al., 

2010) to a zero cross-linker concentration gives 

the filament length dependence of   without 

crosslinking. Specifically, the data points of 

Figure 4c in (Kasza et al., 2010), corresponding 

to  = 1 Hz, were extrapolated to the linker-to-

actin concentration ratio R 0 by approximating 

the increase in viscosity due to cross-linking as 


2)(RL  (McFadden et al., 2017). Fig. 3, which includes data for R 0 of Figure 4a in (Kasza et 

Figure 3. Viscosity of actin filament meshwork as a 

function of mean filament length at  /nA = 12 µM. 
Extrapolated from data of (Kasza et al., 2010). 
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al., 2010), shows the dependence of   on filament length in the absence of crosslinking or 

branching.  

 

To confirm the quadratic  dependence of Eq (6), one would need rheological data for actin 

filament samples with a fixed filament length and a range of actin concentrations. The data 

closest to these requirements are for )(G  and )(G   of pure actin filaments without branching 

or crosslinking at concentrations of 1 mg/mL and 0.3 mg/mL (Gardel et al., 2003). 

Measurements at  = 1 Hz yielded 
  with  1.98. Eq (6) also yields plausible average 

filament lengths, 15 m and 12 m, based on the data for pure actin filaments reported in (Sato 

et al., 1987) and (Mullins et al., 1998), respectively. These values were obtained using visc  for 

pure actin filaments that was estimated by applying Eq (6) to data points in Figure 4a of (Kasza 

et al., 2010) corresponding to R 0 (open and filled triangles) and  = 1 Hz. In this experiment, 

L 15 m,  AnF /][ tot   0.5 mg/mL=12 M, and the respective viscosity  , computed by the 

Cox-Merz rule, is 1.32 Pa∙s, yielding Anvisc 0.14 Pa∙s/M. 

 

Note that Eq (6) holds only for overlapping filaments, i.e. for dense actin networks of sufficiently 

long filaments, such that 1)( 3/12 N  (Doi and Edwards, 1998). This condition is most 

certainly violated at early stages of patch assembly, when only few short filaments are present. In 

this limit,   is expected to be a multiple of solvent viscosity and  . Because noticeable 

stresses and shear rates are generated only after filaments begin to overlap, the two regimes were 

bridged in our computations by using a simple ‘interpolation’ formula, that crosses over to Eq (6) 

when the condition for the filament overlapping is met, 

 

)/1( 2

visc LN   .  

 

In this formula, the number of subunits per filament N was computed as BEc])[BEa]/([][ tot F , 

where BEc][BEa][  is equivalent to local filament number density, and the filament length is 

NL  , as above. 

 

Substituting the constitutive relations 
2

active)(  aσ  and LL 22

visc),(   in Eq (1) yields    

   0)))((( 2

active

22

visc   TL vv , 

from which it follows that both actin densities ),( tx  and velocities ),( txv  are controlled by the 

ratio 
viscactive / , rather than separately by 

active  and 
visc  (as defined earlier, here and below 

vectors x  denote spatial coordinates of a location in the cell). We confirmed, by solving the 

model numerically with varying 
active  and 

visc , that ),( txv  did not change beyond numerical 

error, when both coefficients were varied proportionally. Also in agreement with the prediction, 
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we found that 
viscactive /  controls a maximum number of polymerized subunits in a patch 

maxn ))((max tn
t

, where 
patch

3),()(


 xx dttn  is the number of subunits at time t  in the 

volume 
patch  occupied by the invagination and surrounding network of actin filaments. 

Modeling an elongating cylindrical invagination with varying 
viscactive /  (see Dynamics of the 

invagination during elongation), we found that the ratios viscactive / 0.9
1

An  Hz/mM result in 

maxn  close to the experimental numbers. For example, the ratio viscactive / 0.91
1

An  Hz/mM 

yields the maximum number of 6450 subunits inside a cylinder 
patch  of radius 0.16 m and 

length 0.32 m enveloping the endocytic tubule. The ratio 
viscactive /  constrained by the 

experimental maxn , in turn, determines actin velocities ),( txv  and the corresponding shear rates, 

which are found to be ~ 1 Hz (see below). 

 

Fig. 4 depicts a snapshot of a solution of the model with viscactive /  0.9
1

An  Hz/mM showing 

distributions of actin density (pseudo-colors) and 

actin velocities (white arrows) for an r - z section ( r  

and z are cylindrical coordinates) at a time when the 

rings on an elongating invagination have separated. 

The solution yields two zones of actin filaments, 

which are particularly dense in the vicinity of the 

rings. Note that even though the two rings were 

identical in size and density of nucleation-promoting 

factors, the actin filament density is higher near the 

plasma membrane, owing to the inhomogeneity of 

active barbed ends whose transport is restricted by 

the rigid cell wall surrounding the plasma 

membrane. The gradient of actin density then 

results, as expected, in a net tangential force directed 

towards the tip of the invagination. Note that radial 

and tangential components of actin velocities in the 

vicinity of the invagination are ~0.02 m/s, yielding 

patch diameters of ~100-200 nm, consistent with 

experimental data (Berro et al., 2010; Arasada et al., 

2018). The solution also indicates (data not shown) 

that tangential components of actin velocity vary 

significantly in the normal direction over distances ~0.02 m from the membrane, yielding shear 

rates of ~1 Hz, as mentioned above. 

 

Figure 4. A snapshot from a simulation of an 
elongating endocytic invagination shown for r-
z cross-section of 3D geometry. The 
extracellular space is white. The false color 
shows the density distribution of actin 
filaments, and the arrows show the local 
velocities of their movements at the peak of 
actin assembly. See Fig. 7C for snapshots at 
other time points.   
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Control of the shear rates and actin densities by viscactive /  has another consequence: for a given 

maxn , the force exerted on the invagination depends on visc  (or alternatively on active , given 

that viscactive /  is fixed). Mathematically, this is seen upon substitution of the constitutive 

relations in Eq (4). Qualitatively, the tangential force exerted on the invagination, which largely 

originates from the viscous stress, is locally defined by a product of viscosity and shear rates. 

Since the latter are fixed by the known maxn , this leaves the tangential force to be directly 

proportional to visc . We confirmed this assertion computationally by solving the model with 

constant viscactive /  over a range of visc .  

  

2. Patch assembly can generate pushing forces comparable to turgor pressure in fission yeast.  

We use the model with viscactive / 0.9
1

An  Hz/mM to determine the visc  required to generate 

forces sufficient to exceed the turgor pressure. For this, we solved the model in a fixed geometry 

with a shape of the initial invagination with a radius of 30 nm. Supplemental Figure 1 shows the 

density distributions and velocities of the actin filament network. A tangential force of ~2500 pN 

is sufficient for such an invagination to withstand turgor pressure of about 8.75 atm after ~10 s of 

patch assembly. This force requires 
1

visc 4.2  An  Pa∙s/M, which is ~17-fold larger than 

1

visc 14.0  An  Pa∙s/M of actin filaments alone.  

 

Two factors in patches contribute to a higher viscosity than actin filaments alone. First, the 

meshwork is highly entangled due to the high density of branching. For example, the viscosity of 

24 M of actin filaments at a shear rate of  1 Hz was more than 7-fold higher when 

polymerized with 0.12 M of Arp2/3 complex according to Figure 3 in (Tseng and Wirtz, 2004). 

The molar ratio of Arp2/3 complex-to-actin in these experiments, Arp2/3R 0.005, was 

significantly lower than the range of 0.035 and 0.06 observed in actin patches (Berro et al., 

2010). Such high ratios Arp2/3R  increase the viscosity by at least a factor of 2.5 according to 

rheological measurements of actin filaments with a range of concentrations of Arp2/3 complex 

(Mullins et al., 1998). Even without crosslinking the 15-fold higher viscosity results in 
1

visc 1.2  An  Pa∙s/M and a pushing force of 2166 pN, enough to withstand 7.7 atm of turgor 

pressure. Second, actin patches accumulate a very high concentration of the crosslinking protein 

fimbrin (Berro and Pollard, 2014), which increases the viscosity. Rheological data indicate that 

the viscosity of actin networks cross-linked by soft (muscle alpha-actinin, filamin) and rigid 

(avidin-biotin) linkers ranges from few fold to an order of magnitude higher than actin filaments 

alone without Arp2/3 complex (Wachsstock et al. 1994, Kasza et al. 2010). The properties of 

actin filaments cross-linked by fimbrin are likely to be in the same range.  
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Our simulations of patch formation and force generation must satisfy several constraints. For a 

fixed viscactive / , the increase of visc  implies a similar increase of active  and hence the 

corresponding increase of aσ . The latter is limited by free energy released during a 

polymerization step )/ln( crit0 GGTkB , where 0G  is the concentration of actin monomers and the 

critical concentration tionPolymerizazationDepolymericrit /  kkG  (Footer et al., 2007). For the parameter 

values used in our model, the upper bound for the stored energy is 6.9 TkB and the corresponding 

stalling force is estimated to be, stallf 6.9 /TkB  10.5 pN, consistent with published 

estimates of tallsf  (Lacy et al., 2018). Based on the simulated actin densities ),( tx , the maximum 

energy stored in the patch per subunit is ])/),(1([max 5.0

max

3

3
4

,
max

patch




ta
t

x
r




, where 

),(2

active tσa x (see the previous subsection), and the corresponding maximum force 

generated by a polymerizing subunit is maxf ])/),(1()),(([(max 5.0

max

2

active3
4

, patch




tt
t

xx
r




. 

Applying these formulae to the abovementioned solution in the fixed geometry, we find that it 

satisfies the constraints: max 4.9 TkB < 6.9 TkB  and maxf 7.5 pN < tallsf . 

 

The ability of a filament to sustain generated forces is another constraint on the system; the force 

per filament should not exceed the buckling threshold, 
22

crit )2/( LEIf   (Broedersz and 

MacKintosh, 2014). In this formula, E 1 GPa is Young’s modulus of the actin filament 

4/4aI   is the rotational inertia of the filament, where a =3.5 nm is the radius of the filament 

cross-section; and L  is the filament length. To satisfy the constraint, the force per filament in the 

vicinity of the invagination must be less than the critical load critf . Using the solution of the 

model, we first determine the number of filaments in the vicinity of the invagination by 

integrating the density of barbed ends ),(BE tr  BEc])[BEa]([ An  in a shell with thickness 

equal to the shortest filament length (recall that filament lengths are calculated as NL  , where 

),(/),( BE ttN rr  ). For the solution with the fixed geometry described above, at the time of 

the peak of actin assembly, the filament lengths in the vicinity of the endocytic tubule varied 

from 42 nm to 141 nm, which is consistent with previous estimates (Berro et al. 2010). 

Integrating ),(BE tr  in the shell with thickness 42 nm yields 106 filaments, so for this solution 

the average force per filament is 2541 pN/106 ≈ 24 pN. For roughly half of the filaments having 

lengths under 105 nm, the critical load is greater than 26 pN. Thus, as expected, the shorter 

filaments endure the generated force on their own. The longer filaments sustain their share of the 

load through crosslinking by fimbrin: because the critical load for a bundle of  filaments grows 

roughly as square of the number of bundles filaments, the buckling threshold for a bundle of just 

two filaments will be at least 100 pN.  
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We thus conclude that the forces generated during patch assembly can exceed the opposing 

forces from turgor pressure in fission yeast. 

 

3. Dynamics of the invagination during elongation. 

Once the force exerted on the invagination exceeds the turgor pressure threshold, the 

invagination will grow inward. The rate of the growth in our model is given by Eq (5): 

))(()( czz ftftu   . It may seem that the length the invagination can attain during patch 

assembly is controlled by the mobility coefficient  . However, solving the model in a dynamic 

geometry with varying   indicates that the final length of the endocytic tubule is virtually 

insensitive to . This is true, because the increase of   is mitigated by the drop in zf  that 

depends on the shear rates zrv , so that the elongation rate zu  does not change appreciably (in 

computations, we used  0.4 /pNsnm -1 ).  

 

The kinetic parameters of actin nucleation and polymerization govern the duration of patch 

assembly, so the time during which the patch elongates depends on how quickly zf  overcomes 

the critical threshold cf  from turgor pressure (Fig. 5A). The time before zf  exceeds cf  is 

shorter as visc  increases, but visc  has an upper bound. The reason is that active  must increase in 

proportion to visc  while the ratio viscactive /  is limited by a maximum number of subunits in a 

patch, and active  is limited by the energy constraints considered in the previous subsection.  

 

Figure 5. Simulation of the elongation of an endocytic tubule with a fixed threshold 
corresponding to the turgor pressure of 8 atm. Time zero is the peak of actin 
assembly. (A) Time course of net tangential force (solid line) and the speed of 
elongation (dashed line). (B) Tubule length over time.  
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Solving the model in a geometry allowing the invagination to lengthen freely yields a growing 

endocytic tubule (Supplemental Movie 1). Fig. 5 illustrates how )(tf z , )(tu z , and invagination 

length depend on time with cf  2262 pN, corresponding to a turgor pressure of 8 atm, and with 

the largest possible 
13

active 1016.3  An  Pa/(M)2 and visc =
136.3  An  Pa∙s/M. Note that the 

rate of increase of zf  drops sharply when the exerted force crosses the turgor-pressure threshold 

(Fig. 5A). Above this threshold, the surface area increases, but zf  plateaus below the values 

reached in fixed geometry with the same active  and visc , due to the drop of shear rates when the 

invagination starts to move.  

 

The model produces longer invaginations when taking into account the effects of the forces 

produced by actin polymerization on the shape of the plasma membrane invagination. The  

distribution of force density nσσe  )ˆˆ( activeviscousr  orthogonal to an invagination, shown in Fig.  

 

6A, for the fixed-geometry solution of the previous subsection, suggests that the forces normal to 

the membrane squeeze the invagination near the plasma membrane and stretch the middle of the 

invagination. If the tubule is not infinitely rigid, these forces will tend to distort the invagination 

into flask or ‘head-and-neck’ shape, Fig. 6B, as observed in electron micrographs of budding 

yeast actin patches (Kukulski et al., 2012).  

 

Figure 6. Simulations of the forces exerted by actin assembly normal to the endocytic tubule. (A) Distribution of 
forces at ≈ 5 s before peak on a tubule of fixed geometry. (B) Rough sketch of a plausible shape if the 
membrane lining the invagination is flexible. The vertical dashed lines show the area of the pore that 
determines the force produced by the turgor pressure. (C) Time course of the force normal to the tubule at its 
base. Time zero is the peak of actin assembly. 
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Because turgor pressure is isotropic, the net resistance force cf  it produces for the flask shape is 

proportional to the cross-sectional area of the opening of the invagination delineated in Fig. 6B 

by dashed lines. This resistance force decreases over time as the normal force from the 

expanding actin network (Fig. 6B) squeezes the neck of the invagination near the cell surface. 

The  model with the time-dependent threshold approximated as )(tfc

1

0

0 ))/exp((1(  ttfc , 

where 0

cf 2262 pN, 0t 13 s and  1 s, and other parameters as above, yielded a longer 

invagination than with a rigid tubule (Fig. 7D and Supplemental Movie 2).  

 

The lengths of modeled invaginations are similar to the distances that actin patch proteins moved 

from the cell surface in super-resolution movies, taking into account the size of the protein coat 

around the membrane (Arasada et al., 2018). To illustrate the qualitative agreement between the 

model and experiment, the simulation data were processed using the protocol adopted by 

Arasada and Pollard (see Methods in Supplemental Material for details), so that the results 

Figure 7. Simulation of endocytic tubule elongation with the force threshold from turgor pressure decreasing with time. 
Time zero is the peak of actin assembly. (A) Time course of the assumed decrease in force threshold due to turgor 
pressure, fc (dashed curve) and the simulated pushing force, fz (solid line). (B) Time course of the variation in the speed of 
invagination, which begins when fz is greater than fc. (C) Snapshots of r-z sections of the actin filament density around the 
endocytic tubule and its velocities (arrows); also see Supplemental Movie 2. (D) Comparison of the time courses of tubule 
elongation with decreasing force from turgor pressure (solid line) with that with a fixed threshold due to turgor pressure in 
Fig. 5B (dashed curve).  
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shown in Fig. 8 can be directly compared with the experimental data (compare Figure 3A-B in 

(Arasada et al. 2018).  

Figure 8. Simulation of elongating tubule with time-dependent force threshold is consistent with experimental data. 
(A) Heat maps of simulated actin density (see Fig. 7 above) projected on plane of image and subjected to median 
filtering to mimic 35-nm resolution limit due to convolution with point-spread function, are shown for selected time 
points. See Methods for details of how simulation results were processed for this Figure; see Supplemental Fig. 2 for 
results before filtering. (B) Width and length distributions of actin density, obtained by integrating results of panel 
(A) over time, are consistent with experimental data of Arasada and Pollard (Arasada et al., 2018).  

Figure 9. Comparison of the results of simulations of models with three different locations of nucleation promoting factors: 
solid lines, two-ring model with NPFs at the base and tip of the invagination; dashed line, one ring model where all NPFs stay 
at base of invagination; and grey dashed line, one ring model with all NFPs at the tip. Time zero is the peak of actin assembly 
in the two-ring model. Time dependencies for pushing force (left), elongation speed (middle), and tubule length (right) are 
shown for rigid elongating invaginations with fixed threshold corresponding to turgor pressure 8 atm.   
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We compared the solution of the two-ring model with a fixed threshold cf  with the 

corresponding solutions of the models, in which all of the NPFs remained at the base or moved 

together with the tip of the tubule (Fig. 9). For all three versions of the model we used 

invaginations with the same widths and total numbers of nucleation-promoting factors and ran 

the simulations with the same initial conditions. The model with the NPFs remaining at the base 

slightly over-performs the two-ring model. In contrast, the model with the NPFs moving together 

with the tip generates significantly weaker forces, resulting in a slower movement and much 

shorter invagination than the two-ring model. These results highlight the importance of the cell 

wall in supporting the actin meshwork to generate traction forces. The partial absence of such 

support in the two-ring model is mitigated almost entirely by the repulsion of the two zones of 

polymerizing actin. 

 

Discussion 

 

Endocytosis in fission and budding yeast depends on forces produced by the assembly of 

expanding networks of actin filaments, which drive invagination of the plasma membrane 

against the high internal turgor pressure. However, it was unclear whether actin assembly 

generates forces sufficient to overcome the turgor pressure.  

 

We formulated a mathematical model of the forces based on principles of polymer physics that 

integrates the kinetics of the biochemical reactions (actin filament nucleation, elongation, 

capping, and severing), the rheological properties of actin filament networks and the time course 

of numbers of participating proteins. Certain modeling assumptions and approximations used in 

this study are similar to those adopted in other models of endocytosis in yeast (Carlsson and 

Bayly, 2014; Carlsson, 2018; Lacy et al., 2018; Mund et al., 2018). In particular, as in previous 

studies, we assume that movement is transmitted from a growing actin patch to the endocytic 

invagination via connections of actin filaments to the plasma membrane. As assumed previously 

(Carlsson and Bayly, 2014), our model approximates a network of actin filaments as a 

continuous medium, though Carlsson and coworkers (as well as the authors of a discrete model 

in (Mund et al. 2018)) approximate the actin patch as a growing elastic solid. Taking into 

account the turnover of actin in the patch, largely due to severing of the filaments by cofilin, we 

interpret the mechanics of endocytic actin meshwork as that of a viscoelastic fluid, with 

parameters constrained by measured rheological properties of overlapping filaments. This has 

yielded forces sufficient to withstand turgor pressure in fission yeast. Simulations of the model 

also reproduce the temporal and spatial distributions of actin at sites of endocytosis and explain 

the flask-shaped invaginations of the plasma membrane observed by electron microscopy 

(Kukulski et al., 2012). 

 

Our model allows for different assumptions about the location of the nucleation-promoting 

factors that activate Arp2/3 complex to drive the assembly of the actin filament networks. We 
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compared a two-ring hypothesis proposed for fission yeast (Arasada and Pollard, 2011; Arasada 

et al., 2018), a model proposed for budding yeast (Picco et al., 2015; Sun et al., 2017; Mund et 

al., 2018) where all NPFs remain at the base of the invagination, and a hypothetical model where 

the NPFs move with the tip of the invagination. 

 

Simulations of the two-ring model produced two interacting zones of actin filaments with high 

densities near the rings. The internal repulsive stress generated by actin polymerization causes 

the entire patch to expand. Constraints imposed by the plasma membrane and cell wall result in 

expansion of the network inward and laterally, exerting drag on an initial invagination and thus 

pulling it inward. Given the known number of polymerized actin subunits and viscosity of the 

actin meshwork, we estimate the magnitude of this drag. The dendritic structure of the meshwork 

produces entanglement that enhances viscosity to levels sufficient to produce forces in the range 

of 2,200-3,000 pN, which, for invaginations with typical diameters, would overcome turgor 

pressure ~ 8-10 atm. The estimates are within the energy and critical load constraints, with the 

buckling threshold being met, in part, with the aid of crosslinking by fimbrin. 

 

Simulations of the one-zone models with the numbers of nucleation-promoting factors and initial 

conditions used for the two-zone model also produced drag on the invagination. The budding 

yeast model with the NPFs remaining at the base of the invagination generated forces close to the 

two-ring model. This result underscores the importance of the cell wall to provide support for the 

actin filament network to generate a traction force. In the two-ring model mutual repulsion of the 

two zones of actin filaments compensates for the partial loss of support from the cell wall. The 

model with the NPFs moving at the tip generated significantly weaker forces, resulting in a much 

shorter invagination than the two other models. 

 

The general model allowed us to simulate the forces required to elongate an endocytic tubule, 

although we used the simplifying assumption that the invagination is a (sphero)cylinder with a 

fixed radius. We also assumed that once the generated force overcomes the turgor threshold, all 

the points on the invagination move with the same (but time-dependent) speed 

))(()( push cftftu   . Somewhat counterintuitively, the speed and the length attained by the 

invagination is virtually insensitive to the mobility coefficient  , but rather depends on how 

early during patch assembly the force produced by actin assembly )(push tf  overcomes the 

opposing force from turgor pressure cf . For cf  corresponding to the 8-atm turgor pressure, the 

simulations yielded a maximum tubule length somewhat shorter than experimental patch sizes. 

 

We discovered that expansion of the actin filament network produces radial forces normal to the 

tubule. The distribution of these radial forces along the tubule will squeeze the invagination near 

its opening and stretch the middle, producing a shape like a flask as observed by electron 

microscopy in budding yeast (Kukulski et al., 2012). Without reliable information about elastic 
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properties of endocytic invaginations we could not solve for shape of the invagination. However, 

a small pore between the exterior and the lumen of the invagination reduces cf  as actin 

assembles. We approximated the effect of this shape change with a model with a decreasing 

threshold )(tfc  over time to show that reducing the size of the pore favors the formation of 

longer tubules.  
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SUPPLEMENTAL MATERIAL 

 

Supplemental figures 

 

 

  

Supplemental Figure 1. Simulation of a single ring model of actin patch assembly around a tubule 
with fixed geometry. Actin densities (pseudo-color) and velocities (arrows) are shown for r-z 
sections of 3D geometry and selected time points. Two rings of nucleation-promoting factors, not 
shown explicitly, were positioned next to each other at the base of the invagination adjacent to the 
horizontal portion of the plasma membrane.  

Supplemental Figure 2. Results of simulating an elongating tubule with time-dependent force threshold, 
before applying median filter. (A) Heat maps of actin density (see Fig. 7C of main text) projected on plane of 
image are shown for selected time points. (B) Width and length distribution of actin density were obtained 
by integrating results of panel (A) over time. The trough of the width distribution reflects the existence of 
the space inside the invagination that is void of actin. No such troughs were observed experimentally, likely 
because the spatial resolution was comparable to the invagination width. 
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Supplemental movies 

 

Supplemental Movie 1.  Simulation of elongating invagination with fixed resisting force. 
Results are shown for turgor pressure 8 atm. Left panel: 3D distribution of actin density (pseudo-color) in the 
vicinity of the tubule. Middle panel: actin density and its velocities (arrows) are shown for r-z sections of 3D 
geometry. Right panel: deformable computational mesh used in simulation; deformations of mesh conform to 
moving invagination. Note that the movie was made with a color code built in COMSOL, which is slightly different 
from that used in the Figures. 
 
 

Supplemental Movie 2.  Simulation of elongating invagination with force threshold decreasing with time. 
Left panel: 3D distribution of actin density (pseudo-color) in the vicinity of the tubule. Middle panel: actin density 
and its velocities (arrows) are shown for r-z sections of 3D geometry. Right panel: deformable computational mesh 
used in simulation; deformations of mesh conform to moving invagination. Note that the movie was made with a 
color code built in COMSOL, which is slightly different from that used in the Figures. 

 

Supplemental text 

 

Methods  

 

M.1 Governing Equations 

 

M1.1 Computational Domain 

Based on the assumptions described in Model, the computational domain depicted in Figure 1 of 

the main text remains axisymmetric throughout the elongation process. Because the localization 

of membrane-bound species and the corresponding fluxes are also axisymmetric, solutions of the 

model will have the same symmetry. Therefore, the problem reduces to solving an equivalent 2D 

model in cylindrical coordinates 𝒙 = (𝑟, 𝑧) in the domain   shown in Figure M1, where 
i ( i

1, …, 5) are the corresponding boundaries. Note that the full 3D geometry is restored by revolving 

  around the axis of symmetry 𝑟 =  0 (red dash-dotted line in Figure M1).  
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Figure M1. Equivalent 2D axisymmetric computational domain ( ) and boundaries (
1 ,

2 ,
3 ,

4 ,
5 ). 

 

The domain extensions (0.5 μm. in each coordinate direction) were chosen to be sufficiently large 

to ensure that numerical solutions are essentially independent from boundary conditions at 2 and 

3 (see the following subsections). The cylindrical and hemispherical parts of the invagination 

degenerate in the 2D model into a line and a quarter of a circle, respectively. The initial length of 

the cylindrical part is 40 nm, as it accommodates two rings of nucleation promoting factors (NPFs), 

each being 20 nm wide (Arasada and Pollard, 2011). The radius of the endocytic invagination 

is 𝑟0 = 30 nm.  

 

M1.2 Transport and Reaction Equations 

Spatiotemporal dynamics of proteins involved in patch assembly are governed by conservation of 

mass, which in our model has the following form,  

 

 𝜕𝑡[𝑋] = −𝛻 ⋅ ([𝑋]𝒗) + 𝑅𝑋              in   𝛺                        (M1) 

 

for all cytosolic species, except ActiveArp (the equation for ActiveArp is discussed below). In Eq 

(M1), ][X  is the concentration of protein X in M, 𝑅𝑋 is the sum of rates of all reactions affecting 

𝑋, 𝐯 is actin velocity, and 𝛺 is the computational domain. In what follows, the density of actin 

network is defined as 
X

A Xn ][ , where the sum is taken over all cytosolic species, except for 

FArp and ActiveArp, and 602An  molecules m-3/M.  

 

Functional forms of XR and parameters are taken from (Berro et al., 2010), with the exception of 

the on- and off- rate constant of polymerization, capping, and cofilin binding. The latter were 

modified by the factor 
 )/1( max  that accounts for the effect of excluded volume. This factor 

ensures that the abovementioned processes slow down as   approaches 
max , so that   never 

exceeds 
13

max )3/ 4(   , where  2.7 nm is the subunit radius. The functional form used 

follows from the dependence of molecular diffusivities on the excluded volume (Novak et al., 

2011). The parameters used in computations are  0.5 (Novak et al., 2009) and  Anmax 19.5 

mM. The equations describing spatiotemporal dynamics of each species are listed below: 

 

𝜕𝑡[FArp] = −∇ ⋅ (𝐯[FArp]) + 𝑘Polymerisation
+  G0[ActiveArp] − 𝑘Chop[FCOF][FArp]     (M2.1) 

 

∂t[BEa] = −∇ ⋅ (𝐯[BEa]) + 𝑘Polymerisation
+  G0[ActiveArp] + 𝑘Cap 

− [BEc]  

−(𝑘Cap
+ C0 + 𝑘Chop[FCOF])[BEa]                                                                              (M2.2) 

 

∂t[BEc] = −∇ ⋅ (𝐯[BEc]) + 𝑘Cap 
+ C0[BEa]  

− (𝑘Cap
− + 𝑘Chop[FCOF] + 𝑘Depolymerization 

− [PE]/[Ftot])[BEc]                        (M2.3) 

 

∂t[PE] = −∇ ⋅ (𝐯[PE]) −  (𝑘Chop[FCOF] + 𝑘Depolymerization 
− [BEc]/[Ftot])[PE]             (M2.4)  

 

∂t[FATP] = −∇ ⋅ (𝐯[FATP]) + 𝑘Polymerisation
+  G0[BEa]  
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− (𝑘Hydrolysis + 𝑘Chop[FCOF] + 𝑘Depolymerization 
− [PE]/[Ftot])[FATP]      (M2.5) 

 

∂t[FADP] = −∇ ⋅ (𝐯[FADP]) + 𝑘Hydrolysis[FATP] + 𝑘COFBinding
−  [FCOF]  

− (𝑘COFBinding
+ COF0 + 𝑘Chop[FCOF] + 𝑘Depolymerization 

− [PE]/[Ftot])[FADP]      (M2.6) 

 

∂t[FCOF] = −∇ ⋅ (𝐯[FCOF]) + 𝑘COFBinding
+  COF0[FADP]  

− (𝑘COFBinding
− + 𝑘Chop[FCOF] + 𝑘Depolymerization 

− [PE]/[Ftot])[FCOF]     (M2.7)  

 

In Equations (M2.1) – (M2.7), Ftot = [FADP] + [FATP] + [FCOF] + [PE] + [BEa] + [BEc], and 

subscript ′0′ denotes a constant. Values of reaction rate constants and constant concentrations are 

taken from Table 1 and Table 2 of (Berro et al., 2010). Equations (M2.1) – (M2.7) are subject to 

zero-flux boundary conditions at the membrane, 𝛤mem =  𝛤1 ∪ 𝛤5, as well as at the boundary 

passing along the axis of symmetry 𝛤4 in Figure M1. Outflow boundary conditions were enforced 

at 𝛤2 and 𝛤3  . Note that for solving equations (M2.1) – (M2.7), which are of the hyperbolic type, 

boundary conditions need not be specified on all 
i  (Ferziger and Perić, 2002). However, for 

technical reasons discussed in subsection Finite Element Implementation of the Model, a diffusion 

term with a very small diffusion coefficient was added to all equations. The resulting parabolic 

equations require boundary conditions on all boundaries of the domain. 

  

We now describe the equation for ActiveArp. Active Arp2/3 complexes appear in the cytosol due 

to the flux of FArpTernCompl that only exists at the NPF rings (Figure 1 of the main text). The 

corresponding flux density is 𝑘ArpActivation
+ [FArpTernCompl]/ 𝑛𝐴, where [FArpTernCompl] is 

in molecules/m2. Because the detachment of FArpTernCompl from the membrane involves 

diffusion, a consistent description of [ActiveArp] near the rings should include a diffusion term. 

Therefore, the dynamics of [ActiveArp]  is described by a diffusion-advection-reaction equation, 

 

𝜕𝑡[ActiveArp] = ∇ ⋅ (𝐷(𝒙)∇([ActiveArp]) − 𝐯[ActiveArp]) + 𝑘Polymerisation
+  G0[ActiveArp]       

(M2.8) 
and a corresponding boundary condition, 

 

(𝐷(𝒙)∇([ActiveArp]) + 𝑘ArpActivation
+ [FArpTernCompl]/ 𝑛𝐴)|𝛾rings = 0, 

 

where 𝛾rings are the fragments of 𝛤mem occupied by the rings. The diffusion term is restricted to 

the vicinity of the rings, by using a diffusion coefficient that is non-zero only along the cylindrical 

part of the tubule ( 𝛤5 in Figure M1) and decays exponentially in the radial direction, 

𝐷(𝒙) = 𝐷AA exp (−
|𝑟 − 𝑟0|

𝜉
). 

The parameter values used in the solutions were 𝜉 = 3 nm and 𝐷AA = 0.001 μm2/s, though 

changing the diffusion constant 𝐷AA by several orders of magnitude did not change the outcome 

in any significant way. At all other boundaries, the conditions for [ActiveArp] were the same as 

for the other cytosolic species. 

 

As in (Berro et al., 2010), adapter proteins that recruit and activate NPFs are not included in our 

model. Instead, a temporal wave of NPFs with a Gaussian shape drives actin assembly near the 
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rings. Therefore, the surface densities of the membrane-bound proteins are governed by ordinary 

differential equations (ODEs) based on the rates of corresponding biochemical reactions: 

 

𝑑[WGD]

𝑑𝑡
= 𝑘WASpGBinding

+ G0WASp0𝑒
(t−TimePeak)𝟐

𝝈   

+𝑘ArpComplexFormation
− [ArpTernaryComplex]                            

− (𝑘WASpGBinding
− + 𝑘ArpComplexFormation

+ Arp0)[WGD]               (M3.1) 

 
𝑑[ArpTernCompl]

𝑑𝑡
= 𝑘ArpComplexFormation

+ Arp0[WGD]  

− (𝑘ArpComplexFormation
− + 𝑘WASpGBinding

+ ([FATP] + [FADP]))[ArpTernCompl]    (M3.2) 

 
𝑑[FArpTernCompl]

𝑑𝑡
=  𝑘ArpGWBindingF

+ ([FATP] + [FADP])[ArpTernCompl]  

−𝑘ArpActivation
+ [FArpTernCompl]   (M3.3) 

The densities of the membrane-bound species are in 
molecules

μm2 . The reaction rates, initial conditions 

and other constants are taken from Table 1 and Table 2 of (Berro et al., 2010); note that the value 

of WASP0 was converted from μM to 
molecules

μm2 . 

 

M1.3 Actin Meshwork Mechanics Equations 

The actin meshwork is modeled as a compressible visco-active fluid. In a viscosity-dominated 

environment of the actin patch, forces due to the fluid’s inertia and acceleration are neglected, 

which leads to a quasistatic formulation of the meshwork velocities 𝐯 

 

∇ ⋅ ( 2𝜂(𝜌, 𝐿)∇S𝐯 ) − ∇𝜎𝑎(𝜌) = 0,               in     Ω,                (M4.1) 
 

where ∇S𝐯 = 1/2(∇𝐯 + (∇𝐯)𝑇) is the symmetrized velocity gradient tensor, 𝜂(𝜌, 𝐿) =
𝜅visc𝜌(1/𝑁 + 𝜌𝛿2𝐿) is the dynamic viscosity, and 𝜎𝑎 = 𝜅active𝜌2 is the active stress. See 

subsection Model for further details regarding the derivation of the functional forms of the 

viscosity and the active stress. 

  

Equations (M4.1) are elliptic in nature, similar to the Stokes equations of a Newtonian fluid, and 

hence require boundary conditions on all boundaries of the computational domain. No-slip 

boundary condition is applied where actin meshwork meets the membrane  

 

𝐯 = 𝐮                                            at    𝛤mem,                              (M4.2) 
 

where 𝐮 is the velocity of the membrane. All other boundaries are subject to zero-stress boundary 

conditions, 

 

(2𝜅visc𝜌(1/𝑁 + 𝜌𝛿2𝐿)∇S𝐯 − 𝜅active𝜌2 �̂�). 𝐧 = 0       at     𝛤2 ∪ 𝛤3,     (M4.3) 

 

where  �̂� is a unit tensor and 𝐧 is the outward normal vector to the boundary. 

 

M1.4 Boundary Conditions and Domain Size Effects 
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The simulations were first run in a domain with smaller extensions in each coordinate 

direction, 0.3 μm instead of 0.5 μm. To ensure that the boundary conditions applied at 𝛤2 and 𝛤3  

had no effect on the numerical results, we ran simulations with different types of boundary 

conditions and in larger domains. No significant changes in the solutions were observed. All the 

numerical results presented in the paper are from the simulations performed in the larger domains, 

0.5 µm in each coordinate direction. 

 

M2 Moving Boundaries Formulation 

 

M2.1 Modelling Tubule Movement 

Simulations of elongating invaginations involve additional assumptions. In particular, the shape 

of the invagination is assumed to remain (sphero)cylindrical during the elongation process, so that 

only the cylindrical part elongates. Furthermore, we assume for simplicity that the invagination is 

infinitely rigid, so that all material points move with a same instantaneous velocity, which changes 

linearly with the net viscous drag exerted by the actin network; the linear dependence on the 

pushing force is parameterized by a mobility coefficient, see Equation (5) in Model. 

 

From fluid mechanics, the viscous forces acting on the tubule are given by the integral of the total 

stress in the actin meshwork over the surface of the endocytic invagination, 

 

𝒇viscous(𝑡) = ∫ (�̂�viscous + �̂�active). 𝐧  𝑑𝑆(t),
𝑆(t)

                         (M5)   

  
In Eq (M5), integration is carried over the time-dependent boundary S(𝑡) = 𝛤5(𝑡) representing the 

invagination, and 𝐧 = (𝐧𝑟 , 𝐧𝑧)𝑇 is the outward unit normal vector to the boundary 𝛤5(𝑡) (directed 

from 𝛤5(𝑡) towards the interior of 𝛺(𝑡)). The velocity of the tubule at any given time is then 

obtained by Eq (5) of Model. The 𝑧-component of the viscous force is the drag force exerted on 

the invagination, 𝑓z(𝑡) = 𝒇viscous(𝑡) ⋅ 𝒏𝑧, and the force due to the turgor pressure 𝛱turgor, is 𝑓c =

𝜋𝑟0
2𝛱turgor, where 𝑟0 is the radius of the (sphero)cylindrical invagination (Figure M1); if the 

invagination is constricted by the surrounding meshwork, 𝑟0 is the radius of the pore between the 

exterior and the lumen of the invagination.   

 

M2.2 The ALE Framework 

The models of elongating invaginations were solved using an Arbitrary Lagrangian-Eulerian 

(ALE) method. The ALE method is described in numerous publications, see e.g. (Donea et al., 

2004). In an ALE simulation, the computational mesh moves with displacements/velocities 

prescribed at the boundaries of interest (normally loading and interface boundaries). At all other 

places in the domain, the mesh moves with a smooth arbitrary velocity such that mesh quality is 

maintained throughout the simulation, while mesh connectivity remains the same. The governing 

equations formulated in a Eulerian coordinate system should be reformulated based on the ALE 

framework. Following the notation used by (Formaggia and Nobile, 2004), a fixed reference frame 

�̃� and a mapping 𝒜𝑡 ∶ �̃� → 𝛺(𝑡) is defined to provide a one-to-one correspondence 𝒙 = 𝒜𝑡(�̃�), 

and �̃� = 𝒜𝑡
−1(𝒙) between the Eulerian coordinates 𝒙 = (𝑟, 𝑧) ∈ Ω(𝑡) and ALE coordinates �̃� =

(�̃�, �̃�) ∈ �̃�. It is straightforward to show that for any scalar function 𝑓(𝒙, 𝑡), the Eulerian and ALE 

time derivatives are related by the chain rule,  
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𝜕𝑓

𝜕𝑡
|

�̃�
=

𝜕𝑓

𝜕𝑡
|

𝒙
+

𝜕𝒙

𝜕𝑡
|

�̃�
⋅ ∇𝑓 =

𝜕𝑓

𝜕𝑡
|

𝒙
+ 𝐯𝑚 ⋅ ∇𝑓                   (M6),   

 

where 𝐯𝑚(𝒙, 𝑡) =
𝜕𝒙

𝜕𝑡
|

�̃�
(�̃�, 𝑡) is the local mesh velocity. The mesh velocity can be obtained by 

solving in the domain a mesh smoothing equation. See Finite Element Implementation of the Model 

for further details. 

 

Since domain 𝛺(𝑡) changes with time, it is generally not possible to discretize directly the Eulerian 

time derivatives in the transport-reaction equations. In fact, if 𝒙 ∈ 𝛺(𝑡) and Δ𝑡 > 0, the condition 

𝒙 ∈ 𝛺(𝑡 + Δ𝑡) may not be always satisfied (San Martín et al. 2009). Therefore, the Eulerian time 

derivatives 
𝜕𝑓

𝜕𝑡
|

𝒙
in the transport-reaction equations are substituted by the right-hand side of 

equation (M6). This introduces additional advection-like terms to the equations with the advection 

velocity being the local mesh velocity 𝐯𝑚. For example, the transport equation (M1) in the 

equivalent ALE formulation reads as 

 
𝜕𝑋

𝜕𝑡
|

�̃�
− 𝐯𝑚 ⋅ ∇𝑋 = −𝛻 ⋅ ([𝑋]𝒗) + 𝑅𝑋              in   𝛺(𝑡).          (M7) 

 

It should be noted that all space derivatives in Equation (M7) are taken with respect to the Eulerian 

coordinates 𝒙. This equation is subject to Rankine-Hugoniot boundary condition (zero-flux 

boundary condition) on the moving boundary 𝛤5(𝑡). Boundary conditions on all other non-moving 

boundaries remain unchanged.  

 

The equations for actin meshwork mechanics and their boundary conditions do not change in the 

ALE framework. This is because these equations are in quasistatic form and there are no history-

dependent rates in the definitions of viscous and active stresses (Donea et al., 2004). 

 

ODEs that govern membrane-bound species are not modified as a result of the movement, since 

these species are treated in the model as non-spatial. 

 

M2.3 Movement of the NPF Ring(s) 

According to the two-ring hypothesis (Arasada and Pollard, 2011), two NPF rings drive the actin 

assembly. One of the rings remains stationary near the horizontal membrane, 𝛤1 in Figure M1. The 

other ring moves with the tubule, keeping its proximity to the tip of the tubule. During the 

movement the width of the NPF rings and their radius remain constant. Therefore, it suffices to 

track the 𝑧-component of the position of the moving ring 𝑧ring described by 

 
𝑑𝑧ring

𝑑𝑡
= 𝑢𝑧(𝑡),                                (M8) 

 

where 𝑢𝑧(𝑡) is as in Eq (5) of Model. The movements of the rings were tracked similarly in the 

one-ring models described in Results. 
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M3 Finite Element Implementation of the Model 

We used a Galerkin finite-element method to solve numerically the governing equations for the 

transport and reaction of proteins, and the equation for velocities of the actin meshwork. These 

equations are implemented and solved in COMSOL Multiphysics (COMSOL, 2015) in a 2D 

axisymmetric domain (Figure M1), as described below. 

 

M3.1 Computational Mesh 

A computational mesh used for spatial discretization of the governing equations consisted of 33777 

quadrilateral elements (Figure M2(a)). To approximate the velocity gradients near the invagination 

with more precision, a boundary layer mesh was constructed. These gradients are important for 

calculating forces exerted on the tubule, and they affect the accuracy of the numerical solution 

overall. Figure M2(b) is a zoomed-in view of the vicinity of the invagination to show the boundary 

layer mesh. 

 

The mesh was designed so that as the tubule grew, the elements near the horizontal membrane and 

in the vicinity of the cylindrical part of the tubule were elongated in the 𝑧 direction. To maintain 

sufficiently fine elements even after they were stretched as a result of the elongation, a high initial 

mesh density was used in the vertical direction in these regions. For more details about the design 

of mesh movements and its implementation see subsection Mesh Smoothing Equations below. 

 

Classical mesh refinement was performed for simulations in fixed geometries and for one 

simulation of an elongating invagination to ensure that numerical results were grid-independent. 

The original mesh was refined by reducing the linear size of elements by approximately a factor 

of 2. This yielded 132884 quadrilateral elements, roughly four times the number of elements in 

the original mesh. The solutions obtained with refined meshes differed from the original mesh by 

less than 0.3%. 

Given the negligible differences, all subsequent moving geometry simulations were performed on 

the original mesh. 

 

 

 

(a) (b) 
Figure M2. The computational mesh(a), and a zoomed-in view near the invagination boundaries (b). 
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M3.2 Transport Equations of Cytosolic Species 

Eqs (M2.1-M2.8), governing the spatiotemporal dynamics of cytosolic species, were solved using 

COMSOL’s ‘Transport of Diluted Species’ module. For simulating moving domains, the module 

automatically adds to the transport equations advection-like terms of Eq (M7). Linear Lagrange 

finite elements were used to approximate the concentrations of these species.  

 

Solving Eqs (M2.1-M2.7) with the standard Galerkin finite-element method may result in spurious 

oscillations (Donea and Huerta, 2003). Treating advection terms with Petrov-Galerkin type 

methods available in COMSOL can suppress these unphysical oscillations. However, the 

effectiveness of these methods generally depends on values of auxiliary parameters, and some 

numerical oscillations may persist. We chose instead adding to the transport equations a diffusion 

term with a small diffusion coefficient, termed ‘technical diffusion’ with diffusivity 𝐷tech., and 

using standard discretization schemes for all terms. For consistency, 𝐷tech. was added also to 𝐷(𝒙) 

in Eq (M2.8) for [ActiveArp]. In all simulations, we used the value 𝐷tech. = 1 × 10−5μm2/𝑠. 

Decreasing 𝐷tech. further by an order of magnitude did not produce significant changes in the 

solution. While spurious oscillations can occur in solving diffusion-advection equations on meshes 

with high Peclet numbers, no such oscillations were observed after adding technical diffusion for 

the meshes used in our computations (see subsection M3.1). 

 

M3.3 ODEs for Membrane-bound Species  

Eqs (M3.1-M3.3) for membrane-bound species were solved on 𝛤5 (Figure M1) with the ‘Boundary 

ODEs and DAEs’ module of COMSOL. Positions of the rings of NPFs were accounted for by 

multiplying the first term in the right-hand side of Eq (M3.1) by a Boolean expression, which was 

evaluated to one at the locations of the rings and zero elsewhere. As the rings moved, the 

expression was updated accordingly. Although, membrane-bound species are non-zero only at the 

locations of the rings, the corresponding ODEs were solved everywhere on 𝛤5, allowing for a  

uniform application of the flux boundary condition for [ActiveArp], although the flux density was 

non-zero only at 𝛾rings. Constant discontinuous Lagrange finite elements were used for the 

membrane-bound species. 

  

M3.4 Velocity Equations 

Eqs (M4.1) for actin velocities were solved using the ‘Weak Form PDE’ module of COMSOL, 

which allows one to implement a method of weighted residuals solving equations in weak forms 

(Donea and Huerta, 2003). Let 𝓦 be the space of weighting (test) functions vanishing on the 

Dirichlet boundaries 𝛤mem, and let 𝒘(𝑤1, 𝑤2, 𝑤3) ∈ 𝓦 be the test functions for velocities in the 

cylindrical coordinates. The weighted residual form of equations in the moving domain 𝛺(𝑡) is 

then written as 

 

∫ 𝒘 [ ∇ ⋅ (2𝜂(𝑞, 𝐿)∇S𝒗 − 𝜅active𝑞2 �̂�) ]  𝑑𝒙
𝛺(𝑡)

= 𝟎               ∀𝒘 ∈ 𝓦,     (M9) 

 

where 𝑞 and 𝒗 are the weak solutions corresponding to the polymerized actin density 𝜌 and actin 

velocities 𝐯. The weak solution 𝒗 resides in a space of admissible functions satisfying the Dirichlet 

(no-slip) boundary condition (M4.2). Integrating by parts and applying Green’s formula (Donea 

and Huerta, 2003) then yields 
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∫ ∇𝒘 ∶ (2𝜂(𝑞, 𝐿)∇S𝒗 − 𝜅active𝑞2 �̂�)  𝑑𝒙
𝛺(𝑡)

  

− ∫ 𝒘 ⋅ (2𝜂(𝑞, 𝐿)∇S𝒗 − 𝜅active𝑞2 �̂�) ⋅ 𝒏  𝑑s
𝛤(𝑡)\𝛤mem

= 𝟎    ∀𝒘 ∈ 𝓦,       (M10) 

 
where ‘:’ denotes the double dot product of two tensors. The integrand in the second integral of 

equation (M10) is zero on 𝛤(𝑡)\𝛤mem due to the zero-stress boundary condition (M4.3), so the 

final weak form of the velocity equations reads 

 

∫ ∇𝒘 ∶ (2𝜂(𝑞, 𝐿)∇S𝒗 − 𝜅active𝑞2 �̂�)  𝑑𝒙
Ω(𝑡)

= 𝟎          ∀𝒘 ∈ 𝓦.       (M11) 

 

To derive equations for velocity components in weak form for the equivalent two-dimensional 

axisymmetric coordinate system, one should start with the full differential operators in cylindrical 

coordinates (𝑟, 𝜃, 𝑧), and then remove 𝜃-components and derivatives with respect to 𝜃. In a 

cylindrical coordinate system with orthonormal basis vectors �̅�, �̅�, �̅�, the velocity gradient operator 

and the symmetrized velocity gradient tensor applied to the weak solution 𝒗 = (𝑣1, 𝑣2, 𝑣3)𝑇 are 

defined as follows: 

 

∇𝒗 =
𝜕𝑣1

𝜕𝑟
�̅� �̅� +

𝜕𝑣2

𝜕𝑟
�̅��̅� +

𝜕𝑣3

𝜕𝑟
�̅��̅� +

1

𝑟
(

𝜕𝑣1

𝜕𝜃
− 𝑣2) �̅��̅� +

1

𝑟
(𝑣1 +

𝜕𝑣2

𝜕𝜃
) �̅��̅� +

1

𝑟

𝜕𝑣3

𝜕𝜃
�̅��̅� + ⋯ 

𝜕𝑣1

𝜕𝑧
�̅��̅� +

𝜕𝑣2

𝜕𝑧
�̅��̅� +

𝜕𝑣3

𝜕𝑧
�̅��̅�,                                                                              (M12) 

 

 ∇S𝒗 =
1

2
(∇𝒗 + (∇𝒗)𝑇) =

𝜕𝑣1

𝜕𝑟
�̅��̅� +

1

2
(

𝜕𝑣2

𝜕𝑟
+

1

𝑟
(

𝜕𝑣1

𝜕𝜃
− 𝑣2)) �̅��̅� +

1

2
(

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) �̅��̅� + ⋯ 

1

2
(

𝜕𝑣2

𝜕𝑟
+

1

𝑟
(

𝜕𝑣1

𝜕𝜃
− 𝑣2)) �̅��̅� +

1

𝑟
(𝑣1 +

𝜕𝑣2

𝜕𝜃
) �̅��̅� +

1

2
(

1

𝑟

𝜕𝑣3

𝜕𝜃
+

𝜕𝑣2

𝜕𝑧
) �̅��̅� + ⋯ 

1

2
(

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) �̅��̅� +

1

2
(

1

𝑟

𝜕𝑣3

𝜕𝜃
+

𝜕𝑣2

𝜕𝑧
) �̅��̅� +

𝜕𝑣3

𝜕𝑧
�̅��̅�.                                 (M13) 

 

A unit tensor is defined as �̂� = �̅� �̅� + �̅��̅� + �̅��̅�.  Using these definitions, the first term in the 

integrand of equation (M11),  ∇𝒘 ∶ (2𝜂(𝑞, 𝐿) ∇S𝒗), is  

 

∇𝒘 ∶ (2𝜂(𝑞, 𝐿) ∇S𝒗) = 2𝜂(𝑞, 𝐿) [
𝜕𝑤1

𝜕𝑟
 
𝜕𝑣1

𝜕𝑟
+

𝜕𝑤2

𝜕𝑟
 
1

2
(

𝜕𝑣2

𝜕𝑟
+

1

𝑟
(

𝜕𝑣1

𝜕𝜃
− 𝑣2))  

+
𝜕𝑤3

𝜕𝑟
 
1

2
(

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) +

1

𝑟
(

𝜕𝑤1

𝜕𝜃
− 𝑤2) 

1

2
(

𝜕𝑣2

𝜕𝑟
+

1

𝑟
(

𝜕𝑣1

𝜕𝜃
− 𝑣2)) +

1

𝑟
(𝑤1 +

𝜕𝑤2

𝜕𝜃
) 

1

𝑟
(𝑣1 +

𝜕𝑣2

𝜕𝜃
)  

+
1

𝑟

𝜕𝑤3

𝜕𝜃
 
1

2
(

1

𝑟

𝜕𝑣3

𝜕𝜃
+

𝜕𝑣2

𝜕𝑧
)+

𝜕𝑤1

𝜕𝑧
 
1

2
(

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) +

𝜕𝑤2

𝜕𝑧
 

1

2
(

1

𝑟

𝜕𝑣3

𝜕𝜃
+

𝜕𝑣2

𝜕𝑧
) +

𝜕𝑤3

𝜕𝑧
 
𝜕𝑣3

𝜕𝑧
]. 

 
The simplification due to axial symmetry yields the following weak form of the first term in Eq 

(M11): 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/518423doi: bioRxiv preprint 

https://doi.org/10.1101/518423
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
 

  
 

32 

∫ 2𝜋𝑟 ∇𝒘 ∶ (2𝜂(𝑞, 𝐿)∇S𝒗) 𝑑𝒙
𝛺(𝑡)

= ∫ 2𝜋𝑟 2𝜂(𝑞, 𝐿) [
𝜕𝑤1

𝜕𝑟
 
𝜕𝑣1

𝜕𝑟
+

1

2

𝜕𝑤3

𝜕𝑟
 (

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) +

𝑤1

𝑟
 
𝑣1

𝑟Ω(𝑡)

+
1

2

𝜕𝑤1

𝜕𝑧
 (

𝜕𝑣3

𝜕𝑟
+

𝜕𝑣1

𝜕𝑧
) +

𝜕𝑤3

𝜕𝑧
 
𝜕𝑣3

𝜕𝑧
]  𝑑𝒙        (M14) 

 

Similarly, the second term of the integrand in Eq (M11) yields 

 

−∇𝒘 ∶ (𝜅active𝑞2 �̂�) = −𝜅active𝑞2 (
𝜕𝑤1

𝜕𝑟
+

1

𝑟
(𝑤1 +

𝜕𝑤2

𝜕𝜃
) +

𝜕𝑤3

𝜕𝑧
), 

 

and upon the reduction due to axial symmetry, the weak form of the second term in Eq (M11) is 

 

∫ −2𝜋𝑟 ∇𝒘 ∶ (𝜅active𝑞2 �̂�) 𝑑𝒙 =
𝛺(𝑡)

∫ −2𝜋𝑟 𝜅active𝑞2  (
𝜕𝑤1

𝜕𝑟
+

𝑤1

𝑟
+

𝜕𝑤3

𝜕𝑧
) 𝑑𝒙

𝛺(𝑡)
.   (M15) 

 

The factor 2𝜋𝑟 in Eqs (M14-15) is the result of integration over .  

 

Eqs (M14) and (M15) were implemented in COMSOL. Linear Lagrange finite elements were used 

in computing actin velocities. 

 

M3.5 Mesh Smoothing Equations 

Solving a moving boundary problem using the ALE method requires computing local mesh 

velocities 𝐯m. While 𝐯m are not known in advance in the interior of the domain, velocities of points 

on a moving tubule are computed from Eq (5) of Model, while other boundaries of the 

computational domain are fixed in the course of a simulation. To correctly model the movements 

of the domain, mesh velocities at the boundaries should coincide with the velocities of the 

boundary. Then the mesh velocities of the interior points of the domain may be computed, for 

instance, by employing a harmonic extension of the boundary velocities (Formaggia and Nobile, 

2004).  

 

Computing 𝐯m  and tracking of mesh movements  were done using the ‘Moving Mesh’ module of 

COMSOL, which allows one to prescribe mesh displacements 𝐱m and/or mesh velocities at the 

domain boundaries and at any other interior domain points/edges. Values of 𝐯𝑚 in the domain 

interior were computed using a Laplacian mesh smoother with linear geometric shape functions. 

Care must be exercised in simulating large elongations, which may result in a highly distorted 

mesh. The ALE methods become instable on distorted meshes, so that the domain needs to be 

remeshed to restore the regularity of the elements (San Martín et al., 2009). Remeshing entails 

interpolation to a new mesh, which introduces additional error.  Also, frequent remeshing increases 

computational costs. To avoid remeshing and the issues associated with it, we defined a virtual 

edge in the interior of the computational domain, indicated by a dashed line in Figure M1. The 

tubule velocity computed from Eq (5) in Model was then used as the 𝑧-component of the mesh 

velocity for both the virtual edge and the circular part of 𝛤5. The 𝑟-components of the mesh velocity 

on these segments were set to zero. The prescribed movement of the virtual edge guides the mesh 

deformation in the interior of the domain and allows for modeling very large tubule elongations 
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without remeshing. On 𝛤2, 𝛤4 and the straight part of 𝛤5, the 𝑟-component of the mesh displacement 

was set to zero, whereas the vertical components was allowed to vary freely. Displacements of the 

mesh on the remaining horizontal segments of the domain boundary were set to zero.  

 

M3.6 Equation for Updating NPF Ring Position 

Eq (M8), determining the time-dependent z-component of the position of the moving ring, 𝑧ring , 

was solved using COMSOL’s ‘Point ODEs and DAEs’ module for one point on 𝛤5. The  𝑧ring was 

initialized to the position of the ring at  𝑡 = 0. Because Eq (M8) was solved in COMSOL within a 

spatial model, a constant discontinuous Lagrange finite element was used to approximate 𝑧ring. 

 

M4 Solvers and Computational Parameters 

The coupled nonlinear system of equations describing the cytosolic species, Eqs (M2.1- 8), the 

membrane-bound species, Eqs (M3.1-3), the ring’s position Eq (M8), and the actin velocities, Eqs 

(M14-15), along with the corresponding boundary conditions, were discretized using FEM and 

solved in a fully coupled manner in COMSOL. Note that even though the force-balance equation 

does not involve time derivatives, the coupled system constitutes an initial-value problem, so that 

initial conditions must be specified for all variables (initial values of the actin velocities were set 

to zero).  

 

The time-dependent system was solved using a backward-differentiation time-stepping method of 

order 1-2. Relative and absolute tolerances of the time-stepper were set to 1 × 10−5 and  1 × 10−6, 

respectively. Other default solver parameters were used without modification. Linearization was 

performed using Newton’s method with a constant damping factor of 1. The system’s Jacobian 

was updated at each nonlinear iteration. The linearized system was solved monolithically using a 

direct MUMPS solver with default solver parameters. We verified, by solving the problem with 

varying solver parameters (including the tolerances of the time-stepper), that the solutions did not 

depend on specific choices of parameters of the solver. 

 

M5 Data Analysis and Display 

Presentation and post-processing of numerical results were facilitated by exporting the COMSOL 

FEM solutions, obtained at the Lagrange points, which were further processed in MATLAB 

R2017b [ref(s)]. The 2D snapshots of the solution (see, as an example, Figure 4 of the main text 

or in Supplemental Figures 1) were obtained by interpolating the FEM solutions onto a uniform 

2D grid. A sufficiently large size of the grid allowed for accurately capturing all important features 

of the FEM solution that were first visualized in COMSOL. The 3D snapshots (see, for instance, 

Figure 7A of the main text or in Supplemental Movies 1 and 2) were exported as image files from 

COMSOL and then replotted in MATLAB. 

 

The actin filament heat maps in Figure 8 and in the Supplemental Figure 2 were produced by first 

interpolating the FEM solutions for polymerized actin onto a uniform 3D grid defined inside a 

domain with the horizontal and vertical extensions of [−0.5, 0.5] μm and [0, 0.5] μm, equal to the 

respective ranges of 𝑟 and 𝑧 coordinates of the 2D axisymmetric model. The extension in the depth 

direction was [−0.2, 0.2] μm, in accordance with the thickness of the imaging plane in 

epifluorescence microscopy experiments of (Arasada et al., 2018). The interpolated 3D data was 

then projected on a 2D plane by integrating over the depth direction; the corresponding heat maps 

are presented in Supplemental Figure 2. The projected data were further subjected to a median 
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filter with a half window size of 35 nm; the heat maps for the filtered data are shown in Figure 8 

of the main text.   

 

The histograms in Figure 8 (and in Supplemental Figure 2) were produced as follows. First, the 

filtered projected (projected only for Supplemental Figure 2) data were integrated over time. This 

yielded a two-dimensional matrix with the elements corresponding to the 2D image of the actin 

filament density integrated over time. In accordance with the protocol adopted by (Arasada et al., 

2018), the width (length) distribution of the actin density was generated by summing up the values 

of the elements in each column (row) of the matrix. The width of the patch was calculated as the 

width of the corresponding histogram at half its maximum.  
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