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ABSTRACT

Detecting the most relevant brain regions for explaining the distinction between cognitive conditions is one of the most sought
after objectives in neuroimaging research. A popular approach for achieving this goal is the multivariate pattern analysis
(MVPA) which is commonly conducted through the searchlight procedure as well as a number of other approaches. This is due
to advantages of such methods which include being intuitive and flexible with regards to size of the search space. However,
these approaches suffer from a number of limitations that lead to misidentification of truly informative voxels or clusters of
voxels which in turn results in imprecise information maps. The limitations of such procedures mainly stem from several factors
such as the fact that the information value of the search spheres are assigned to the voxel at the center of them (in case of
searchlight), the requirement for manual tuning of parameters such as searchlight radius and shape and other optimization
parameters, overlooking the structure and interactions within the regions, and the drawbacks of using regularization methods in
analysis of datasets with characteristics of common fMRI data. In this paper, we propose a fully data-driven maximum relevance
minimum redundancy search algorithm for detecting precise information value of voxel-level clusters within brain regions while
alleviating the above mentioned limitations. In order to make the algorithm efficient, we propose an implementation based on
principles of dynamic programming. We evaluate and compare the proposed algorithm with the searchlight procedure using
both real and synthetic datasets.
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Introduction
In the common form of functional magnetic resonance imaging (fMRI), the blood-oxygen level dependent (BOLD) contrast is
extracted as the response signal in order to measure neural activity in the brain1. Measurement of this response signal over time
forms a time course corresponding to each voxel whose dimensions depend on the spatial resolution of the imaging device.
Analysis and comparison of these time courses can reveal valuable knowledge regarding different neurological conditions
among populations. Popular approaches for analyzing fMRI data can be broken down into two main categories: voxel-wise
univariate analysis , and multi-voxel pattern analysis, also known as MVPA 2, 3. The univariate analysis searches for correlations
between psychological or physical status and the activation of single voxels while MVPA aims to detect patterns among
conditions observed among combinations of multiple voxels 4. Unlike univariate analyses, MVPA approaches are designed to
allow researchers to test how dispersed patterns of BOLD activation across multiple voxels relate to experimental conditions 4, 5.
One approach in multi-voxel scheme is to compare and analyze spatially averaged (smoothed) BOLD activations across the
entire regions of interest. Advantages of this approach include an increase in the signal to noise ratio as well as the consistency
of the analysis among subjects can be noted 6. However, spatial smoothing leads to significant loss of information about the
patterns of activation within the regions of interest. This information includes the activities and dynamics within subregions
which can provide valuable insight into their relation with different mental states 7, 8. This issue becomes more complex when
dealing with larger regions of interest. Therefore, in order to capture such information, it is necessary to consider the BOLD
activity in smaller spherical subsets9.

The question of identifying relevant regions with regards to specific conditions has prompted numerous studies during
the recent decades. One of the most commonly employed approaches for this application is the searchlight method proposed
by Kriegeskorte et al., which given the dimensions of a sphere window, performs a search across a brain region to detect the
information of sets of neighboring voxels10, 11. In this multivariate approach, spatial patterns of activity within the search
window are compared between two groups using statistical discriminant analysis or supervised machine learning approaches
12, 13. The search sphere (“searchlight”) is centered on every voxel, i.e. the derived separability value for each voxel is derived
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from the discrimination score of its surrounding searchlight, not the voxel individually. Advantages of searchlight analysis
include its data-driven nature, its ability in performing whole-brain search without the need to specify brain regions, and its
high interpretability.

However, the searchlight procedure suffers from critical drawbacks which can lead to erroneous detection of informative
voxels/regions. Etzel et al. discussed several issues with the searchlight method in detail which we briefly point out here9. One
limitation of the searchlight procedure is that it can declare a subregion with a few highly-informative voxels as informative,
making detection of informative voxel clusters ambiguous. This issue becomes more prevalent with selection of larger search
radii 9. Moreover, choosing an appropriate search radius is essential, which depends on the shape and size of the region being
searched. However, finding the discriminative subregion by a search over several possible search radius values is difficult
specially when being applied to whole-brain analysis. Aside from this issue, the shape of the searchlight can limit the detection
of the subregions with the highest discrimination power. This is due to the fact that the searchlight is commonly in the shape of
a sphere or a cube, which forces subregions with irregular shapes to fall between multiple searchlight positions. This issue
can partially be relieved through assigning the searchlight sphere as small as possible at the expense of overfitting9. Another
shortcoming with this method is the fact that assignment of a single searchlight radius might provide optimal results for one
subregion, but does not guarantee similar results for many other regions. Consequently, finding the optimal searchlight radius
for a large search space comprised of subspaces with varying anatomical characteristics is a challenging task. Tackling some of
the mentioned issues requires further analysis while some issues are inherently irresolvable through the scope of the searchlight
procedure.

Several other approaches have been proposed based on machine learning techniques to create models for automated
decoding of cognitive states during recent years. A number of these techniques proposed using different variations of the least
absolute shrinkage and selection operator(Lasso) family to develop a continuous feature evaluation criteria 14–17. However, the
use of lasso regularization in fMRI studies introduces several limitations. One of such constraints is the fact that in case of
number of features p being larger than the number of examples m, lasso selects m features at maximum18. This is a critical
drawback due to the fact that in fMRI studies, specially on voxel-level analysis, it is very common that the number of subjects
is far smaller than the number of features (voxels, or even regions of interest). Another drawback of Lasso is the fact that since
it forces less important coefficients to be zero, it does not provide the information value of the features that have not been
selected. Consequently, instead of creating an information spectrum, it points to a small subset of features that it finds to be
more informative, which makes it less useful for researchers in fMRI studies due to loss of knowledge regarding majority
of the brain areas. Moreover, using a more recent variation of Lasso which considers group structure named group Lasso
requires disjoint subsets of the voxels to be pre-determined. This limitation creates an issue similar to the searchlight analysis
radius selection since the choice of size and structure of the groups of voxels changes the results of the feature space shrinkage.
Also, the interpretability of performing a regularization-based approach on the entire feature space is low. Another method for
detecting biomarkers is the manifold learning suggested by 19. Despite its power in nonlinear classification of MR images
and the consideration of spectral theory in dimensionality reduction, several parameters need to be fine tuned for it to achieve
preferable results. These parameters include the optimal neighborhood size, the number of dimensions learned by the manifold,
and the heat kernel parameter which the Laplacian eigenmap feature selection is sensitive to. Also, time complexity of the
spectral embedding phase of manifold learning grows substantially with the size of neighborhood, making it less efficient for
full-brain analysis20.

Therefore, development of new analytical models is essential for the critical task of automatically discovering the information
of different regions regarding certain neurological conditions to tackle the above-mentioned issues. In this study, we propose a
new algorithm for discovering the discriminant power of different brain regions for explaining the disparities in neural activities
among populations. The goal of this work is to provide a mapping of information clusters where the spatial proximity, structural
characteristics of the voxels, and the gradient neural activation patterns are taken into account without the requirement of
parameter tuning. Through a completely data-driven search, the proposed approach achieves this goal while increasing the
precision of information cluster discovery and classification accuracy at the same time. Through empirical results on a real
fMRI dataset as well as synthetic data, we compare the performance of the proposed algorithm with the searchlight methods.
We explain the experimental results as well as the suggested methodology in more detail in the next sections.

The objective of the proposed methodology is to create the information map of the brain (or regions of interest) with
regards to a certain neurological status, e.g. a cognitive disorder, age, activation differences between tasks, etc. In other
words, given two (or more) populations, the goal is to discover the level at which the BOLD activation of brain regions differ
between groups, which in this study we defined as the discriminability score of the brain region (Note that we use the terms
discriminability score and information interchangeably in order to preserve consistency with the related literature). In other
words, the discriminability score is the relevance of a feature (the neural activity or corresponding BOLD value of a voxel)
or a set of features (neural activity of a cluster of voxels) in separating two or more classes of subjects. Note that clusters of
voxels are groups of neighboring voxels whose size can span from one voxel to the entire region of interest. We also define a
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search space as the region of brain that we intend to explore (search) and investigate in order to detect informative subregions.
Generally, the input to the proposed approach is a set of matrices, each belonging to a subject, where each element in the
matrices is the activation or BOLD value of a voxel in the search space averaged over time. The output of the proposed
algorithm is an information map of the search space where each voxel/cluster is assigned a discriminability score. In order to
simplify reference to the proposed algorithm, we use the term MNS, which is the acronyms for maximum relevance minimum
redundancy (MRMR) neighborhood search.

The Proposed Algorithm
To extract the informative clusters within a region of interest we propose an algorithm which traverses the search space based
on a information-based heuristic, and outputs the discovered information clusters and their measured discriminant scores after
termination. This criteria is similar to greedy search algorithms which pick the "best" neighbor according to a heuristic, which
in this case is the discriminability score of the cluster of voxels21, 22. However, unlike common greedy algorithm procedures,
the proposed algorithm reviews the searched clusters and prunes the redundant voxels after each expansion step. A pseudo
code of the proposed algorithm is provided in Algorithm 1 in the methodology section along with implementation details.
The MNS feature selection algorithm is loosely inspired by path greedy finding algorithms such as A* search, and variable
neighborhood search strategies23–27. However, in order to formulate our problem into a spatial search problem, we propose
several modifications and constraints: 1-We use the spectral feature quality as our heuristic,2- instead of setting goal states as a
node that the algorithm needs to reach, we set it as maximum discriminant score possible in the accessible neighborhood, 3-
the search at each step is performed on the neighbors of the combination of chosen voxels (information cluster) rather than
on individual voxels, 4-and unlike the mentioned search algorithms, the proposed algorithm does not necessarily meet every
voxel in the search space, but instead, it terminates when there is no more admissible voxels in the clusters neighborhood. In
general, MNS performs a search starting from a voxel V to detect its immediate neighbors whose pairing with V enhances its
power in distinguishing between the classes of data examples. This criteria is similar to the maximum relevance criteria in
feature selection. Then, a redundancy detection is performed on the newly created cluster to remove the redundant features and
further optimize the selected voxels (features). After this redundancy procedure, similar relevance criteria is performed on the
remaining cluster, meaning that the neighboring voxels of the entire cluster are examined to find the useful voxels to add to the
cluster and expand it. This criteria is performed until there are no neighboring voxels left whose addition to the detected cluster
is helpful. In other words, the proposed search procedure relaxes the requirement of performing multiple searches starting
from a certain voxel while increasing the spatial precision of search by investigating voxel-level resolutions. Searching the
neighborhood of the entire clusters is advantageous for considering new formations and structures between groups of voxel
in order to increase the generalizability of the results. Moreover, it alleviates the issue of local optima in greedy algorithms
28, 28, 29. The proposed approach and its analytical and computational details will be discussed in the next sections. In general,
the steps of the proposed algorithm go as followed (details are provided in algorithm 1):

Step 1 Start from voxel vs and measure the relevance score of its conjugation with each of its immediate neighbors one by one,
and select the neighbors whose addition to vs increases its information. Then combine vs and its set of useful neighbors
Vu to create the information cluster Cin f .

Step 2 Search each voxel adjacent to Cin f , and admit the neighboring voxels whose admission to Cin f enhances its relevance.

Step 3 Perform the information redundancy analysis on Cin f and remove its redundant voxels with a bias against the margins
of Cin f cluster. Then move to the next neighborhood layer of the pruned Cin f cluster.

Step 4 Repeat Steps 2 and 3 and expand the cluster until there is no new neighbor whose addition to Cin f increases its score.
Save Cin f and its information in the output variable.

Step 5 Start from the voxel next to vs and follow steps 1 to 5.

Step 6 When steps 1 to 4 are performed for every voxel as the starting voxel in the search space, terminate the algorithm and
output the set of discovered information clusters and their information value.

As mentioned previously, the cluster originating from V is expanded through this criteria until no neighbors are found
whose addition to the cluster enhances its discriminability score. In that case, the algorithm saves the detected cluster as well
is its calculated score (information) as part of the output, and starts the same criteria starting from the voxel next to V . The
algorithm terminates when a cluster is detected starting from every voxel in the search space. Note that the size of information
clusters can span from one voxel (meaning that none of its immediate neighbors increase its information) to the entire search
space (meaning that the entire search space as one cluster contains relevant information). However, both of these extreme cases
were rare according to our experiments. This procedure is discussed in more detail in the material and methods section. Also,
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Figure 1. A schematic plot of of an example region traversed by the proposed algorithm The to detect information clusters
originating from voxel V1 and V2. The algorithm first creates the information map for the cluster starting from V1 from top to
bottom, and then moves to V2 and follows the same criteria. The red voxels are the admitted voxels and the yellow voxels
represent the neighbors of the cluster at each step. The online spectral relevance analysis is performed during each search in the
neighborhood layer, and the group biased mutual information redundancy anaylsis is performed before each next search in the
neighborhood layer.

note that during step 2, rather than selecting only one neighbor, which is the criteria in many greedy search methods, a group of
candidate voxels of each neighborhood layer of cluster Cin f are admitted.

While the proposed algorithm provides a general information-based framework for information detection, the proper choice
of heuristic function for analysis of relevance and redundancy needs several considerations: first, it is important to take into
account the interaction and structure within groups of voxels rather than considering them as merely a number of of voxels in a
group. Second, feasibility of the analysis should be considered as the number of voxels in the search space can be too large
for many feature selection methods due to their time complexity. For the first point, we propose an online feature selection
criteria which takes the interaction between features in to account. For the second issue, we propose an algorithmic technique
for implementation of the proposed method known as dynamic programming, which makes the analysis time-efficient for
experimentation on bigger search spaces such as whole brain analysis. In the next section, we describe these methodological
techniques.

Online Feature Selection as Heuristic Function
A basic approach for evaluating the discriminant power of a group of feature is the supervised feature subset selection by
simply using the test accuracy of a trained machine learning algorithm. The major shortcomings of this approach include the
requirement of retraining the model each time a new voxels information is being evaluated and its dependency on a specific
model. Several other approaches have been proposed for feature set evaluation including statistical methods, linear discriminant
analysis (LDA)30, 31 and spectral cluster analysis32–34. The purpose of all of these approaches is to provide a measure of how
separable different groups of data are based on a feature group. These approaches are designed for offline feature selection
where the entire feature group is known a priori. As explained previously,in the proposed MNS approach, the features flow into
the model one at a time dynamically while the samples (subjects) are constant, and are added to the model if they are found to be
beneficial to the information of the data, otherwise they are rejected. As a result, we can exploit this characteristic to formulate
our search procedure as a criteria known as online (or streaming) feature selection, where evaluation of the features is performed
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Figure 2. An example information map where the degree centrality of voxels within the cluster is shown via a heatmap. The
voxels at the margins of the cluster have a lower degree centrality.

Figure 3. a.An schematic illustration of the steps and output of searchlight procedure compared with the MNS algorith. The
blue voxel is the central voxel in the searchlight method, and the starting voxel in MNS algotihm. The radius for searchlight in
this illustration is one voxel, and the information of the sphere, denoted by a specific color is assigned to the voxel at the center
of the sphere, i.e. each voxel in the output map has the same color as its neighborhood. The output of the MNS method is a set
of clusters which expanded from the starting voxel through a data-driven heuristic. The information of each clusters is
demonstrated by a specific color. b.Left: An example illustration of overlapping clusters created by the proposed method.
Right: the same clusters depicted individually. The voxel indicated by black dots are the starting voxel V s which are expanded
based on the discriminant analysis heuristic, resulting in a specific discriminant score for each cluster.
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by their arrival. Online feature selection is a relatively new topic where the number of observations is fixed but new features are
added dynamically. During the recent years, a number of approaches have been proposed for online feature selection including
the gradient descent based model named Grafting35, the likelihood ratio-based method named Alpha-investing36, and the feature
redundancy and relevancy based method known as OSFS37. However, despite their advantages in feature selection, they do
not capture the structure and correlation within the groups of voxels. Moreover,38 suggested an online group feature selection
(OGFS), where the group structure of the features is considered in selecting the best subset. While this is a valuable quality,
the use of Lasso in feature group analysis of their approach has limited capability for the domain of voxel level decoding of
cognitive states due to previously mentioned issues. We incorporate an online feature selection method inspired by OSFS and
OGFS as the heuristic function of our greedy algorithm. However, we use a different criteria for feature redundancy analysis
while considering their interaction between the voxels and group structure as well as the gradient neural activation pattern
within clusters. ere we explain the proposed heuristics for the suggested search approach.

Relevance Analysis
In order to form the information clusters, informative voxels are admitted based on relevance analysis criteria. This can be
shown as the formula below:

di f = In f ormation(Cv∪ vn)− In f ormation(Cv) (1)

In other words, if the calculated discriminant power of the addition of the newly arrived voxel vn to cluster Cv, is higher than
the information of Cv (di f > 0), the algorithm admits vn to the cluster Cv. As the steps if the algorithm show, this relevance
analysis is performed over all of the immediate neighbors of Cv, and the relevant subset of the neighbors joins the cluster to
expand it.

As mentioned before, several approaches are used for discriminant analysis of features. Note that many feature selection
methods are designed for individual feature relevance analysis, however, in our application, the objective is to calculate the
discriminant power of group of features (feature set selection). for this purpose, we used spectral feature analysis, particularly,
group-level trace ratio of between-class (global) to within-class (local) affinity relationship in data39. This measure ensures that
samples from the same class have a higher similarity compared with samples from different classes. Therefore, if addition of a
new feature (dimension) increases this separability measure, it is considered as an admissible feature. A main reason for using
this measure is its ability to consider global group information in admission of a new feature to the group. This measure is
explained in more detail in the methodology section.

Redundancy Analysis
Addition of new features to the group of features Cv can introduce new redundancies among the existing features. In other
words, the Markov blanket (MB) of the target variable defined as the optimal set of attributes to predict it can change due to
the influence of the newly added feature40, 41. Therefore, by performing an inter-group feature subset shrinking before further
expanding the cluster Cv ∪ vn, we can find the optimal group of voxels Vopt ∈ {Cv ∪ vn}. This criteria further increases the
precision of the information map by removing residual redundancies and increases the smoothness of the information clusters.

In order to perform this inter-group feature selection analysis, we not only consider the the mutual information between the
set of features and the class variable but also the interaction between the features within the cluster. Through this approach, we
were able capture more complex structures among groups of voxels rather than looking at their individual predictive power. In
other words, the redundancy score of each feature is calculated as its own mutual information, subtract the mutual information
between itself and the rest of the features in the group, plus the unconditional class-conditional correlations42. Therefore,
there is an inverse relationship between the total value of this combination and the redundancy of the attribute. Moreover,
in order to alleviate the noisy information existing in voxel-level resolution and consider the gradient proximal structure of
neural activation, the voxels at the margins of the information clusters are penalized more compared to the voxel at the centers
of the cluster. For this purpose, we used the neighborhood network within the clusters, and introduced a bias based on the
degree centrality measure of the voxels within the cluster. Through this approach, a fast continuous redundancy analysis is
created which is applied to the the voxels who have two characteristics: redundant to the prediction of the cognitive state, and
their connection with the rest of the cluster is weak. This criteria helps us obtain smooth information clusters with minimal
redundancy while taking to account the gradient pattern of activation in different brain regions. In figure 2 we can see example
clusters created through the proposed algorithm in which the centrality areas within clusters are demonstrates by a heatmap.
The details of both the relevance analysis and biased inter-group redundancy analysis is provided in the methodology section.

Dynamic Programming Implementation
As shown in the previous section, the proposed algorithm performs a set of calculations in every step of the search to investigate
every voxel at the vicinity of the detected clusters. Therefore, repetition of a large portion of the calculations occurs due to the
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search on overlapping regions. This significantly affects the analysis time and can make search over large regions infeasible.
Dynamic Programming is a technique for making problems of recursive nature more efficient when the computations of the
subproblems overlap43, 44. We use this approach to speed up both relevance and redundancy criteria by breaking down the
calculations for every voxel and storing them at look up hash tables to be later used in the search process. At every step of the
search, the algorithm first checks if the fragment of calculation encountered during the search already exists in the tables. If
so, the algorithm directly uses the previously calculated values to save time, otherwise it performs the necessary calculation
and stores it in the table for future use. The details of the dynamic programming implementation is provided in material and
methods section. This approach significantly increases the search time, making precise information detection on voxel-level
resolutions over large search spaces possible. Time complexity of MNS based on our experimentation setup is discussed in the
results section.

Interpretation of the Output
Due to data-driven expansion of the clusters by MNS criteria, emergence of overlapping clusters with different starting points is
a possibility. Therefore, the output of the proposed method can be presented as a set of clusters with their measured discriminant
scores instead of an information map. Figure 3 presents a comparison between the outputs of the searchlight procedure with the
MNS algorithm after three steps of each method. As can be seen in that figure, the output of the searchlight algorithm is a map
where the value of each voxel represents the information of the searchlight surrounding it while the output of MNS is a set of
clusters originated from each voxel. In other words, the information of a cluster in MNS criteria is automatically assigned to
the entire cluster. The same figure also shows how clusters originating from different voxels can overlap one another. The
separated clusters on the right show a representation of the actual output where each cluster bears a certain information value.
Therefore, each cluster is assigned an information score, and each voxel can be associated with multiple clusters. In machine
learning point of view, each cluster of voxels can be considered a feature whose information value represents its classification
quality. Therefore, a cluster with high information value is more suitable for prediction and diagnosis purposes.

‘

Experimental Setup and Data
The source code of the proposed method is available at https://github.com/ThisIsNima/GNS. All the experiments were performed
on an Intel Core i7-3370 CPU, 3.40 GHz with 32 GB of RAM.

In order to evaluate the proposed approach, we first derived the information map of the fMRI datasets of two case studies
based on the suggested algorithm as well as the searchlight procedure as the base line, and then selected the clusters which
provide above chance (bigger than 50%) information as the classification features. Then, We compared the area under the curve
(AUC) of a classifier which was trained on the two generated feature vectors to assess the quality of the generated features on
the same dataset. For this purpose, we create two case studies using real fMRI data as well as a synthetic dataset.

The first case study includes a real fMRI dataset of 683 subjects from the publicly available Autism Brain Imaging Data
Exchange (ABIDE) database45. This world-wide multi-site database includes resting state fMRI images of 370 healthy subjects,
and 313 subjects diagnosed with Autism spectrum disorder (ASD). Also, despite the variances existing in this dataset due to
diversity of data sources, we performed the analysis on the subjects as one group of data. Previously preprocessed rs-fMRI data
was downloaded from the ABIDE database. This dataset was selected from the C-PAC preprocessing pipeline. The fMRI data
was slice time corrected, motion corrected, and the voxel intensity was normalized using band-pass filtering and global signal
regression. As mentioned in the methodology section, the input to the algorithm is the set of activation time courses of every
voxel averaged over time, i.e. and M×N matrix where M is the number of subjects and N is the number of voxels in the search
space.

To present the experimental results, we first compare the whole brain analysis performance, and for further investigation,
we assign the search space to be regions of interest which are widely believed to play a crucial roles in ASD, namely the
Hippocampus, Amygdalas, and Cerrebellums46–49. The Automated Anatomical Labeling (AAL) atlas was used to extract the
regions of interest.

The second case study included simulated data where time courses of an average fMRI data with two conditions were
generated for a population of 1000 subjects based on values extracted independently from a Gaussian distribution for four
different sizes of search spaces of size 100 voxels, 500 voxels, 10,000 voxels, and 30,000 voxels. Also, noisy values were added
to the signal with the constraints of realistic degree of correlation between adjacent voxels. A spatial pattern of response was
then introduced to the two conditions which faded in and out according to the average temporal pattern of the cardiovascular
response pattern among adults.

Prediction results
The prediction results of the proposed approach is provided in Figures 6 and 7 where the area under the Receiver operating
characteristic (ROC) curve is used as the evaluation measure.
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After the discriminant scores of the clusters are revealed, the clusters with above chance information were used for
classification. Note that based on both the MNS approach and the searchlight criteria a cluster was created for each voxel
where in MNS, the cluster was expanded from each voxel vi, and for the searchlight procedure, it was the searchlight that
encompassed each voxel vi by a certain radius. Similar spectral discriminant score of the relevance analysis in MNS was used
as the analytical measure for the searchlight approach to make an appropriate comparison between the two approaches. In other
words, the spectral discriminant score of each group of voxels surrounded by a search sphere was assigned to the voxel at the
center of it. Based on both methods, each cluster contains an information value. The data was split in to train and test segments
where 80% of the data was used for training, and 20% for testing. The information clusters were extracted from the training set.
The clusters with over 50% discriminability power were then selected from the outputs of both methods, and two feature sets
were created. Then, an SVM model was trained based on each of the feature sets, and was used to predict the labels of the
test data. The reason for using a classification model (SVM) different than the information mapping models is to validate the
generalizability of the analysis. par

Full brain analysis results
A visualization of the informative clusters (above 50% information) detected by MNS as well as the searchlight analysis is
presented in Figure 4. As can be seen in that figure, the above chance clusters presented by the searchlight procedure show a
lower discriminant score(maximum: 57.7%, average: 53.5% ) compared to the MNS clusters (maximum: 75.1 %, average:
69.8 %). Also, while there are a number of regions where MNS and the searchlight detect similar informative areas, MNS
detects an arrangement of voxels with a group structure which shows an increase in the information. These regions include the
posterior cingulate cortex, Wernickarea, the amygdala, and left insula. Furthermore, MNS detected clusters with above chance
information that the searchlight was not able to detect (their detected information were below 50%). These regions include
portions of the cerebellum, and the anterior cingulate cortex.

Classification AUC of the two approaches using top features was also measured after an SVM model was trained based
on both feature vectors separately. The search space for this analysis is the entire brain. For the searchlight method, radius
values from 1 to 10 voxels were examined, and the highest performance, which belonged to the search sphere of 3 voxels, was
selected. As can be seen in that plot, the classifier trained on the the MNS features on significantly outperforms the classifier
trained on the searchlight features.

The precision of the two information decoding approaches on synthetic data is provided in Figure7 where the generated
datasets contain 100, 500, 10,000, and 30,000 voxels. Similar to the real dataset, 5 fold train-test validation was also arranged
for this set of experiments. Therefore, the data for 800 subjects were used for information mapping, and the remaining 200
subjects were used for classification test based on the top informative features according to the analysis on the training set. As
can be seen in Figure7, the MNS method improves the classification accuracy over the searchlight procedure in all four setups.

Cluster level analysis results
The classification performance of the two approaches can also be assessed in smaller search spaces with more specific
topological properties. This analysis is important due to the fact that assignment of a fixed searchlight radius on large search
spaces might guarantee excellent performance in specific regions while underperform in other regions. In Figure 5, the
classification accuracies based on every feature within the left crus II of the cerebellum (Region 93 per ATL) are compared
between MNS and the searchlight criteria as an example. Analytical results of more regions are provided in the supplementary
information. In that figure, the AUC value assigned to every voxel for the searchlight method is the calculated AUC that its
search neighborhood with 3 voxel radius provides, i.e. the information of the individual clusters (searchlights). For MNS,
this value for every voxel corresponds to the measured AUC for the cluster originated from it. Five runs of analysis based on
both methods are presented in that figure, and due to the fluctuations in the AUC values as a result of random selection of the
train-test samples, the average AUCs are indicated by the black line. As can be seen in that figure, the MNS method consistently
demonstrates superiority in terms of classification accuracy compared to the searchlight approach. More comparisons of the
two mapping methods on specific regions of interest are provide in Figure6, which further displays improvement of information
map accuracy from the MNS method.

The experimental examinations of the proposed information mapping algorithm shows a significant enhancement over
the searchlight procedure over both real and synthetic datasets. The higher classification test accuracy of MNS points to the
data-driven advantage of identifying the informative combination of voxels that form various informative clusters. This is due to
the fact that besides considering the combination of the voxels in their proximity, the formation structure of the groups of voxels
as well as their interaction with one another also play important role in the information they provide. Moreover, redundant
voxels are dynamically removed by MNS, which contributes to further enhance the precision of the discovery. These qualities
are assessed through the online spectral feature evaluation and the spatially biased mutual information procedure. In other
words, the MNS increases the information cluster dynamically as it searches for informative voxels to recruit for expanding the
cluster while reassessing the Markov blanket in the existing feature set and removing the redundancies. While high precision is
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Figure 4. Top: A comparison of the above chance accuracy clusters derived using the searchlight criteria (top row) and the
MNS algorithm (bottom row) on the ABIDE data set. Major differences between the two maps are indicated by the red circles.
In case of overlapping clusters generated by MNS, the clusters with the highest predictability were selected for this
visualization. Bottom: Classification performance on full-brain search space for ABIDE dataset based on the above chance
clusters as the features where the train-test population was 546-137 respectively.
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Figure 5. Comparison of classification AUC with svm between MNS and Searchlight with 3 voxel radius for left crus II of the
cerebellum (region 93 per AAL) with 573 voxels.

Figure 6. Test AUC for classification with svm based on the MNS algorithm and the searchlight method with different search
radii for right and left hippocampus and amygdala from the ABIDE dataset.
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Figure 7. Area under the ROC curve for synthetic datasets of size 100 (a), 500 (b), 10,000 (c), and 30,000 (c) voxels.

a crucial quality for information mapping of the brain, the proposed procedure benefits from other advantageous characteristics
which are discussed in the next section.

Discussion
We suggested a new method for MVPA analysis with the objective of increasing the precision of the voxel-level information
map while eliminating several constraints including the requirement for parameter tuning. We proposed a data-driven approach
which performs a search based on a data-driven heuristic function, and starting from each voxel, dynamically detects the
appropriate formation of its combination with other voxels in its vicinity. This approach presented several valuable advantages
over the other decoding methods, which we discuss in this section.

Information of voxel clusters are discovered precisely
Due to data-driven expansion of clusters around each starting voxel, their calculated information is automatically assigned to
the individual clusters without redundant voxels. Therefore, precise knowledge about the discriminant power of clusters is
provided by avoiding exaggeration of the spatial boundaries of informative areas. This property removes the possibility of
discontinuous detection, i.e. existence of one or few highly informative voxels dominating the information of a region and
increasing the possibility of overfitting.

Parameter tuning is not required
As described in the methodology section, the only input to the MNS algorithm are the sets of time series of two or more
populations of subjects averaged over time, i.e. the BOLD activation distribution of two or more populations. The elimination of
tuning parameters such as searchlight shape (spherical or cubical) and radius, or machine learning hyper parameters (example:
deep learning based methods) or regularization parameters (the λ value in LASSO or elastic net) not only increases the
generalizability of the results, but also increases the efficiency of analysis. The latter point is due to the fact that the requirement
for multiple runs of the analysis with different searchlight radii and then selecting the highest performing parameters is removed.
Moreover, this property of the MNS algorithm resolves the issue of heterogeneous accuracy on various regions which normally
occurs due to assignment of a single searchlight radius for larger brain regions with various topological characteristics. Plus,
parameter tuning requires researchers to have advanced expertise of the methods they intend to use.

The shape of the clusters are not bound by any constraints
The shape of the searchlight sphere can affect the information detection precision. For example, in the presence of an elliptical
cluster, a spherical searchlight could fail to detect its complete boundaries, thus creating an imprecise information map.
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However, the shape of the clusters created by MNS merely depends on the information of the voxels and their combination with
the voxels in their vicinity. This can specifically be a useful property for clusters located at the edges of the search space that
are more prone to irregular shapes.

Prediction accuracy is enhanced simultaneous to cluster detection
The search space traversal of MNS is navigated toward voxels that increase the information of the clusters as its objective is to
solve the optimization function that finds the combination of neighboring voxels that maximize the information. Therefore,
starting from each voxel, the search continues as long as possibility exists for enhancing the discrimination power of the cluster
by adding useful voxels and removing redundant ones. As discussed in the results section, to validate the generalization of the
selected feature subsets, the classification accuracy can be calculated through ground truth cross-validation .

Additional analysis is not required for interpretation of the information map
Due to data-driven assignment of discriminant scores on the voxel level, clusters with clear boundaries are generated by the
MNS method. Therefore, unlike some of the other MVPA methods, complementary tests are not required to detect informative
voxels within the clusters. Moreover, the proposed approach provides higher intuitiveness compared to methodologies often
considered as "black box" such as deep learning based approaches or regularization-based methods.

Global optimality
The conventional step-wise greedy search method for feature selection yields suboptimal feature subsets due to falling in local
minima 50. This is due to the fact that the choice of features depends on the order of their selection. Therefore, the final feature
set is not necessarily the globally optimal set. However, in the approach proposed in this paper, for every starting voxel, multiple
useful neighbors are admitted at each neighborhood layer (step 2 of the algorithm), therefore reducing the chance of falling in
local optima. Moreover, the output of the algorithm includes the discovered information clusters starting from every voxel in
the search space. In other words, steps 1 to 4 are performed for every voxel in the search space, resulting in a more thorough
search over possible voxel combinations. While this algorithm does not perform an exhaustive search over every possible
combination of voxels, these two properties significantly decrease its chance of falling into local optima, therefore providing a
set of solutions that makes it near optimal. Moreover, global information within clusters are considered through both spectral
relevance analysis and the redundancy analysis as mentioned before during each step of the search and reevaluation of the
information cluster. Note that the problem of finding the best set of features is a significantly more complex problem than
distance-based graph search approaches. This is due to non-linear relations between the features compared with the notion of
physical distance which can be measured by accumulating the subdistances in the search space.

Time Complexity Analysis
A brute force implementation of the proposed search algorithm would require multiple calculations for every attribute to be
performed repeatedly due to the overlap among information clusters. However, by exploiting these overlaps, we proposed a
dynamic programming implementation of the calculations where each of theses calculations only takes place once for each
voxel in the search space. In case of revisiting voxels, instead of repeating the calculations, previous calculations stored in hash
tables are looked up, thus increasing the efficiency of the algorithm significantly. The majority of calculation of the spectral
relevance analysis is also calculated prior to search by avoiding repetition of the matrix multiplications in equation 9. Time
complexity of spectral intra-group selection with m dimensions (in our case, voxels) is O(m). Another point worth mentioning
is that the redundancy analysis is only performed after the set of high quality neighbors at each proximity layer are admitted
to the feature vector, which facilitates a more rapid traversal in the search space. The worst case scenario happens when
the algorithm visits every voxel for discovering each information cluster, meaning that the entire search space increases the
information of the initial cluster. However, in practice this is a rare case. In fact, our empirical results showed that this algorithm
traverses a much smaller subspace of the search space, which reduces its time complexity. Nevertheless, since the algorithm is
completely data-driven, the time that the proposed procedure takes to run on a given dataset highly depends on the data itself.
However, the algorithms run time in the heaviest experimental setup for our experiment, which was the whole-brain analysis for
the entire dataset, was conducted within few hours, which is within the norm of feasible analysis.

Materials and Methods
The pseudo code for the MNS algorithm is provided in Algorithm 1. Here we explain the steps of the proposed methodology in
more detail. As can be seen in that pseudo code, the input to the proposed approach includes an M×P matrix X where M is the
number of subjects and P is the number of search space voxels, and a vector Y containing the labels. Therefore, each element
Xi j contains the averaged time course of voxel j for subject i over time. Note that the input to this algorithm can include more
than two groups, and similar setup can be designed for multi-class scenario. As the search starts, the spectral discriminant score
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of Cluster Ctemp, which initially only includes the voxel Vstart is measured by exploiting the pre-calculated local and global
affinity matrix multiplications based on the right side component of equation 9(line 10) . Then, for each neighboring voxel
of Ctemp, the spectral discriminant score of the addition of the neighbors Vneighbor and Ctemp are calculate and compared with
the score of Ctemp, and useful voxels are added to Ctemp to expand it (lines 11 to 22). After one step of neighborhood search
and expansion of Ctemp, redundancy criteria is performed by first looking up the matrices that will contain the calculations for
three components of equation 7 for each voxel. If the corresponding values for the voxels inside Ctemp do exist in the vector
Featurein f and matrices Interactu and Interactc, (meaning that the voxel has been previously visited), the values are directly
used to avoid recalculations. Otherwise, the mutual information elements are calculated and placed in its corresponding location
in the three variables for future use (lines 23 to 30).

The redundancy scores of each voxel inside Ctemp is then compared with a pre-specified threshold T to remove redundant
features (lines 31 to 33). Note that T can be assigned in various fashions, depending on how strict the redundancy analysis is
preferred to be. Note that in this algorithm we avoid removing the recently added voxels during the redundancy step to avoid
the possibility of falling into infinite loops by repeatedly adding and removing the same voxels (note the loop condition in line
23 which excludes the newly added voxels). For the same reason, we avoid adding newly removed voxels (note the condition in
line 12). If the algorithm does not find any more useful neighbors during the search, after saving the results in the output it
moves to the voxel next to Vstart , and pursues the same steps until it covers the entire search space, providing a complete list of
information clusters and their information value (lines 36 to 43).

In the next sections we discuss the spectral discriminant analysis and interaction information based redundancy analysis in
more detail.

Data Preparation
Since the MNS performs a search among neighbors of clusters, it is necessary to create the neighborhood matrix of the voxels
before starting the search procedure, and just point the algorithm to the neighbors of the voxel during the search process. The
neighborhood matrix can be created by simply measuring the euclidean distance of the voxels based on their three dimensional
coordinates. In this matrix, called matrix Mneighbors, each row belongs to a voxel, and the columns include the indices of their
immediate neighboring voxels. Note that topological properties of specific regions can be considered during pre-processing
using FMRIB Software Library (FSL), and then the neighborhood matrix can be created. This would not affect the performance
of the search, as it only requires the indices of the neighboring voxels.

Spectral Discriminant Analysis Via Graph Laplacian
In order to admit a newly arrived voxel vi to the information cluster Cv in our online feature analysis scheme, the relevance
of its addition to the cluster is compared to the relevance of the cluster before its arrival. Most feature evaluation criteria
measure the quality of the attributes individually. Also, many feature set evaluation methods perform a linear evaluation of
them. However, linear methods fail if the data lies on a low-dimensional manifold because the data structure becomes highly
nonlinear. Therefore, we use non-linear approaches for both relevance and redundancy analysis. As the relevance measurement,
we employ spectral graph clustering approach which takes the geometric and topological properties of a given manifold into
account.

The spectral graph theory for feature selection attempts to find a smooth feature selector matrix based on the notions of
class affiliation which measures the ratio between local and global affinity. In other word, in higher the following relation, the
higher quality is the feature.

In f ormation(Cin f ) =
∑i j ||zi− z j||2Sb

∑i j ||zi− z j||2Sw
(2)

Where Z is a transformation of X by the feature space projection Z =W T X , and zi and z j are the corresponding values of
z for data points i and j. Also, Sb and Sw denote the Fisher score between and within class adjacency matrices 39 which are
calculated as below:

(Sb)i j =

{
1
n −

1
nl
, if i and j belong to the same class

1
n , otherwise

(3)

(Sw)i j =

{
1
nl
, if i and j belong to the same class

0, otherwise
(4)
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Algorithm 1 MRMR Neighborhood search with Dynamic Programming

1: Input: Matrix X of size m× p (m =number of subjects and p = number of voxels in search space); Labels vector Y with
m elements; Matrix Mneighbors with m rows

2: Output: Matrix COut with m rows; vector IOut with m elements
3: Calculate Mw and Ms . Matrix multiplication for local and global affinity(equation 9)
4: Declare empty array Featurein f and empty matrices Interactu and Interactc for equation 7
5: Vstart← 1; . Starting voxel
6: Ctemp←X(:,Vstart); . Starting cluster
7: Narray ← 0; . Array of helpful neighbors
8: Farray ← 0; . Array of redundant neighbors
9: while Vstart ≤ p do . Start the search

10: Calculate S(Ctemp) (spectral discriminant score) via equation 6 by using the values stored in Mw and Ms;
11: for ∀vneighbor∈Mneighbors(Ctemp) do . Relevance analysis
12: if vneighbor 6∈ Farray then
13: Calculate S(Ctemp

⋃
vneighbor) via Mw and Ms;

14: if S(Ctemp
⋃

vneighbor)> S(Ctemp) then
15: Narray← Narray

⋃
vneighbor;

16: Counter++;
17: end if
18: end if
19: end for
20: Farray← 0;
21: if Counter > 0 then
22: Ctemp←Ctemp

⋃
X(:,Narray);

23: for ∀v∈Ctemp−Narray do . Redundancy analysis
24: if Featurein f (v) 6= 0 then
25: Look up Featurein f , Interactu, and Interactc to calculate redundancy J for voxel v;
26: end if
27: if Featurein f (v) = 0 then
28: Calculate the components of equation 7 for v and store them in Featurein f , Interactu, and Interactc.;
29: Calculate score J for voxel v.;
30: end if
31: if J < T then . T is a pre-specified threshold
32: Farray← Farray

⋃
v;

33: end if
34: end for
35: Ctemp←Ctemp−Farray; . Remove redundancies
36: if Counter = 0 then . No new useful neighbors are found
37: COut(Vstart);←Ctemp; . Output results
38: IOut(Vstart)←S; . Output results
39: Vstart =Vstart +1;
40: Ctemp←X(:,Vstart); . Start a new cluster
41: end if
42: (Narray,Counter)← 0;
43: Cluster←Cluster

⋃
X(:,Narray);

44:
45: return [COut , IOut ];
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Where nl denotes the number of data points from class l. Given the adjacency matrix Sw and the degree matrix Dw of
the graph Gw being defined as Dw = diag(Sw1) if i = j, and 0 otherwise, the Laplacian matrix of graph Gw (within distance)
is defined as Lw=Dw− Sw

51. Similarly, the Laplacian matrix of graph Gb (between distance) is defined as Lb = Db− Sb.
Moreover, with the procedure of feature selection, data matrix X is transformed to Z ∈ Rm×n by the feature space projection
Z =W T ×X . This criteria can be converted into the trace ratio of the form below based on the Laplacian matrix of the graph
G(Cin f )

38, 39:

F(U) =
tr(W T

U (XLbXT )WU )

tr(W T
U (XLwXT )WU )

(5)

And the spectral quality for the arriving feature fi can be measured by a score defined below:

S( fi) =
W T

i (XLbXT )Wi

W T
i (XLwXT )Wi

(6)

Inter-group feature redundancy analysis with spatial bias
Here we introduce the inter-group feature set analysis which aims to obtain the optimal subset. For this purpose, three
mutual information elements are calculated to consider both the global and local interactions within the set of voxels which is
formulated below 42.

J = I(Xn;Y )−β

n−1

∑
k=1

I(Xn;Xk)+
n−1

∑
k=1

I(Xn;Xk|Y ) (7)

Where I denotes the mutual information between two vectors, X is the set of features, and Y denotes the labels, and n is the
number of features. The first term is the mutual information between the individual feature and the class label, the second term
calculates the sum of mutual information between each feature and every other feature in the set, and the third term (rightmost)
calculates the interaction between the features at the conditional presence of the target feature. The variables β penalizes high
correlations between the features to further signify the redundant features. As mentioned previously, we introduce a bias based
on the spatial location of the voxels with regards to the clusters in the redundancy analysis. Therefore, the term β is assigned as
the inverse degree centrality of the voxel wih regards to the information cluster. This constraint also removes the necessity of
tuning the parameter β as it is automatically calculated by the algorithm. As mentioned previously, by punishing redundancies
at the fringes of the clusters, this spatial bias alleviates the issue of noise in voxel level resolution by considering the smooth
proximal neural activation patterns. Also, the mutual information I is calculated by the formula below:

MI = ∑
x∈X

∑
z∈Z

P(x,z)log(
P(x,z)

P(x)P(z)
) (8)

Where x denotes the feature values and z shows the class labels.

Dynamic Programming-based Implementation
We suggest a top-down dynamic programming approach for the proposed method to increase its run time efficiency by exploiting
the existing overlapping subproblems in the search space. This approach is performed for both relevance and redundancy
analysis criteria. For relevance criteria, based on equation 6, the majority of computational burden is on the matrix multiplication
XLbXT which is derived from the equation below based on the property of Laplacian matrix (Note that similar property exists
for Sb):

∑
i j
||zi− z j||2Sw = XLbXT (9)

However, we can make the above matrix multiplication only once, before starting the search, and preserve the values inside
a hash table instead of recalculating it during search. Due to the property of trace of matrices, the value for each voxel can be
easily obtained by looking up the pre-calculated hash table.

Moreover, for redundancy analysis, we break down the calculations of each voxel for each of the three elements in equation 7.
This is due to the fact that both the unconditional and conditional mutual interaction informations between each voxel and every
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other voxel is a sum calculation, and the individual value of each feature(the leftmost element) can be looked up after being
calculated and stored once. Therefore, each time redundancy analysis is being performed on a feature set Cv, for each voxel, the
algorithm first checks if the calculation for it exists in the hash matrices, and only performs the calculations and saves them if
they have not been performed previously. This criteria is displayed in Algorithm 1. Note that the calculations for 7 based on
this approach are only performed when needed, which is more efficient than pre-calculating the interactions between each voxel
and every other voxel in the search space. The value of the global interaction elements in J score according to equation 7 are
calculated recursively using previous calculations. This is due to the fact that based on the proposed search method, we are
interested in detecting redundancies within an analytically-formed cluster of voxels which only requires the interaction of voxel
being visited with the members of the cluster rather than its interaction with every other voxel in the entire search space. As
mentioned previosuly, this dynamic programming based implementation removes the requirement of repeating calculations by
exploiting overlapping subproblems in the search.
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