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ABSTRACT10

A biological reaction network may serve multiple purposes, processing more than one input and impacting
downstream processes via more than one output. These networks operate in a dynamic cellular
environment in which the levels of network components may change within cells and across cells.
Recent evidence suggests that protein concentration variability could explain cell fate decisions. However,
systems with multiple inputs, multiple outputs, and changing input concentrations have not been studied in
detail due to their complexity. Here, we take a systems biochemistry approach, combining physiochemical
modeling and information theory, to investigate how cyclooxygenase-2 (COX-2) processes simultaneous
input signals within a complex interaction network. We find that changes in input levels affect the amount
of information transmitted by the network, as does the correlation between those inputs. This, and the
allosteric regulation of COX-2 by its substrates, allows it to act as a signal integrator that is most sensitive
to changes in relative input levels.

Keywords: network dynamics, allosteric regulation, systems biochemistry, Information theory,
Cyclooxygenase-2

Many biological signaling networks process multiple inputs and yield multiple outputs. Examples11

of multiple-input multiple-output (MIMO) biochemical systems include the mitogen-activated protein12

kinase (MAPK) network, which can respond to numerous ligands and yield a range of outputs including13

proliferation and differentiation(Santos et al., 2007); the NF-κB pathway, which triggers pro- and anti-14

inflammatory responses to a variety of ligands (Lawrence, 2009); and myriad metabolic networks, which15

respond to multiple substrates and allosteric regulators by producing energy and the building blocks of16

cellular components (Lorendeau et al., 2015). Recent work (Adlung et al., 2017; Spencer et al., 2009; Shi17

et al., 2016; Huang, 2009; Waite et al., 2016; Mitchell et al., 2018; Chen et al., 2012) has highlighted18

the fact that modulation of input concentrations in intracellular networks can yield markedly different19

outcomes. Despite this clear indication that MIMO systems are crucial to biological processes, few reports20

exist to date to explain how multiple inputs modulate reaction flux and information flow in a network to21

allow signal processing with a range of adaptive outputs.22

To explore the properties of MIMO systems in biology, we chose to study the dynamics of cyclooxygenase-23

2 (COX-2), a key enzyme that controls the balance between pro- and anti-inflammatory signals in mam-24

malian organisms. COX-2 lies at the interface of the eicosanoid and endocannabinoid signaling pathways25

(Alhouayek and Muccioli, 2014; Rouzer and Marnett, 2011) and is itself the target of the widely used26

nonsteroidal anti-inflammatory drugs (NSAIDs). Although COX-2 is a structural homodimer, it behaves27

as a heterodimer. One subunit in the dimer harbors the catalytically active site, while the other subunit28

contains an allosteric site that modulates the overall activity of the enzyme (Dong et al., 2013, 2011;29

Kulmacz and Lands, 1984). An array of substrates, inhibitors, and allosteric modulators can bind to,30

and thus compete for, either site, giving rise to highly complex reaction kinetics (Kudalkar et al., 2015;31

Kulmacz and Lands, 1985; Mitchener et al., 2015; Rimon et al., 2010; Yuan et al., 2009; Dong et al.,32

2016a). The various products from COX-2 activity drive multiple downstream pro- and anti-inflammatory33
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processes that lead to diverse cellular fates including stress responses and apoptosis (Funk, 2001; Rouzer34

and Marnett, 2003; Smith et al., 2000).35

It is clear that COX-2 orchestrates a complex interplay between a variety of substrates (the enzyme36

inputs), various allosteric regulators, and the concentration of downstream products (the enzyme outputs)37

that control processes such as inflammation (Funk, 2001; Rouzer and Marnett, 2003; Smith et al., 2000).38

Previously, most studies of COX-2 function have used simplified models based on Michaelis-Menten39

kinetics (Briggs and Haldane, 1925). Not surprisingly, these approaches have proved insufficient to40

capture the rich complexity of the COX-2 network of reactants, intermediates and products (Mitchener41

et al., 2015). We posit that a systems approach to understand COX-2 mechanism will improve inhibitor42

design to achieve desired outcomes in clinical settings.43

COX-2 activity also represents an ideal model system to study the detailed dynamics of a biological44

MIMO system. As a single enzyme, it is sufficiently simple to allow for the construction, simulation and45

parameterization of a detailed systems biochemistry model that can capture all of the relevant transitions46

between intermediates and products. Nonetheless, it is sufficiently complex that it represents a non-trivial47

example of how multiple inputs lead to multiple outputs in a physiological context. We focus our study48

on the allosteric regulation network of COX-2 by two important substrates, arachidonic acid (AA) and49

2-arachidonoylglycerol (2-AG), which generate unusual dynamics in the COX-2 network when both are50

present (Mitchener et al., 2015). Levels of AA and 2-AG also vary widely in vivo (Seibert et al., 1997;51

Monjazeb, 2006; Sugiura et al., 2006), and it is unclear how such variation would influence COX-2 signal52

processing.53

In this work, we analyze the execution mechanism of a biochemical reaction network with multiple54

inputs. Our work explains how a MIMO system integrates information on the concentration and nature55

of its substrates to yield potentially different outputs. In previous work, we developed a detailed model56

of the COX-2 reaction network that comprises all possible biochemical enzyme states dictated by AA57

and 2-AG occupancy of the allosteric or active sites, and all the kinetic transitions between these states58

(Mitchener et al., 2015). The reaction rate parameters for the kinetic system were determined using a59

Bayesian inference methodology (Shockley et al., 2017) to fit the model to experimental data on COX-260

kinetics. This Bayesian approach produced an ensemble of model parameters that represent the uncertainty61

in the kinetic rates given the available data and restricts our analysis to plausible kinetic states of the62

network (Mitchener et al., 2015; Shockley et al., 2017). To explore the COX-2 MIMO signal processing63

mechanism, we first employed a graph-theoretic approach to enumerate all possible paths a substrate64

can take from reactant to product molecule. We found that changing the concentration of the inputs65

modulates not only the most dominant path that is taken by the system, but also the diversity of the paths66

the system employs. We also used an information-theoretic approach (Shannon, 1948) to understand the67

flow of information between network inputs, various intermediates, and the product outputs. This analysis68

reveals that competition between AA and 2-AG for the allosteric and active site generates highly complex69

concentration-dependence curves for COX-2 that are context-sensitive. In addition to providing insight70

into how COX-2 functions as a hub for the processing of inflammatory signals, our work suggests that71

our systems biochemistry framework provides useful information relevant to the study of other MIMO72

biological systems. This work also demonstrates that the extreme context-sensitivity of MIMO systems73

must be considered when attempting to modulate their behavior through targeted interventions.74

RESULTS75

A Mathematical Model of COX-2 Allostery and Catalysis76

We built the COX-2 Reaction Model (CORM) (Fig. 1B) to understand how substrate-dependent allosteric77

regulation affects COX-2 catalytic rates (Mitchener et al., 2015). Here, we employ this model to study78

how multiple signals are processed in the context of a complex chemical reaction network, given a79

range of substrate concentrations and input correlations. Briefly, CORM encodes the reaction kinetics80

between COX-2 and two of its substrates: the fatty acid arachidonic acid (AA) and the endocannabinoid81

2-arachidonoylglycerol (2-AG). Both AA and 2-AG can bind at the catalytic and/or allosteric site on82

COX-2 with different affinities. At the catalytic site, AA is turned over to prostaglandin (PG) while 2-AG83

produces prostaglandin-glycerol (PG-G). Binding of either molecule at the allosteric site modulates the84

rate of catalysis (Mitchener et al., 2015). Although CORM includes only two substrates, the MIMO nature85

of COX-2 kinetics results in a complex network (Fig. 1B). CORM has been calibrated to experimental86

data using PyDREAM, a Bayesian parameter inference framework, to obtain the probabilistic likelihood87
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Figure 1. Network interactions within CORM. (A) The Multi-input Multi-output motif in a biological
context. (B) The COX-2 Reaction Model (CORM) represents the network of interactions in the COX-2
system. The diagram depicts the possible biochemical states that the COX-2 enzyme (blue lozenges) can
adopt through its allosteric (lower left circle) and catalytic (lower right circle) subunits, respectively. AA
bound in either site is indicated with A and 2-AG with G within the circle. AA is turned over to produce
prostaglandin (PG) and 2-AG is turned over to produce prostaglandin-glycerol (PG-G). Double-headed
arrows indicate reversible reactions while single-headed arrows indicate irreversible reactions. Credible
intervals for all fitted parameters are included in SI. (C) Dominant PG Production Paths in CORM. Colors
correspond to path fluxes in Fig. 2A. (D) Dominant PG-G Production Paths in CORM. Colors correspond
to path fluxes in Fig. 2B.

of parameters given experimental data, and information about the uncertainty in those parameter values88

(Shockley et al., 2017). CORM is encoded in Python using PySB, which provides a flexible tool to query89

the mixture of complexes present in the system at any time point given starting concentrations. Many90

of these complexes would be costly or impossible to measure experimentally. Employing the Python91

environment also facilitated the sophisticated analyses we present in this work (Lopez et al., 2013).92

Substrate-Dependent Reaction Fluxes in Signal Execution93

We first explored the net flow of reaction flux through the network using a graph theoretic approach to94

calculate all possible paths between the unbound enzyme and each final product. Briefly, we evaluated95

the system of ordinary differential equations (ODEs) in CORM at time intervals to extract the integrated96

reaction flux at a given time point for each chemical reaction. We then built paths from product to reactant97

following the reactions with net forward flux. Finally, we calculated the total chemical flux that passed98

through a given path and used this as a measure of the probability of product formation via that path;99

a detailed description of this procedure is given in SI Methods and Fig. S1. All fluxes were calculated100

for the first ten seconds of catalysis after mixture with the substrates, a time chosen to match previous101

experimental work (Mitchener et al., 2015). Path flux distributions were calculated for an ensemble of102

calibrated parameter values to quantify path flux uncertainty arising from parameter uncertainty.103

Our analysis indicates that there are six possible paths to produce PG (Fig. S2) and four possible paths104

to produce PG-G (Fig. S3) for all evaluated substrate concentration combinations. However, not all paths105
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Figure 2. Concentration-dependent PG and PG-G production paths. (A) Dominant Reaction paths for
PG Production Vary with AA and 2-AG Concentration. Each individual plot depicts the amount of flux
through each path in 1C for a given concentration of 2-AG across varying concentrations of AA. Colors
correspond to labeled paths in Fig. 1B. The error bars in each plot indicates the flux variation resulting
from inferred kinetic rates. (B) Dominant Mechanisms of PG-G Production Vary with AA Concentration.
Each individual plot is at a given concentration of 2-AG. In all plots AA increases from left to right at
concentrations of 0.5, 1, 2, 4, 8 and 16 µM in A and 0, 0.5, 1, 2, 4, 8, and 16 µM in B. Colors correspond
to labeled paths in Fig. 1C The error bars in each plot indicates the flux variation from inferred kinetic
rates.

exhibit significant reaction flux during catalysis across all the concentrations. This occurs because paths106

in which binding of a species to the allosteric site precedes binding to the catalytic site are kinetically107

disfavored in CORM. As shown in Fig. 1C and 1D, three paths dominate PG production and two paths108

dominate PG-G production. The dominant PG-producing paths (Fig. 1C) include those with one or109

two intermediates, and the allosteric site empty or occupied by AA or 2-AG. Our results show that the110

dominant path is highly dependent on the substrate input concentrations. The presence of AA and 2-AG in111

the allosteric site enhances the production of PG (Mitchener et al., 2015). The dominant PG-G-producing112

paths include one or two intermediates (Fig. 1D) with the allosteric site empty or occupied by AA. The113

presence of AA in this site reduces the rate of PG-G production Mitchener et al. (2015). Similar to PG114

production, we also found that the flux through each dominant path for PG-G production is dependent on115

substrate concentration (Fig. 2).116

In the absence of 2-AG and at low (0.5 µM) AA, PG is produced without allosteric modulation (Fig.117

2A, purple; purple-labeled path in Figure 1C, top); as the concentration of AA increases, the proportion of118

PG produced with AA as an allosteric modulator also increases (Fig. 2A, green). When 2-AG is added119

to the system, PG production shifts to using 2-AG as an allosteric modulator (Fig. 2A, red), with this120

path favored to a greater extent as the concentration of 2-AG increases (Fig. 2A, lower plots). Even in121
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the absence of 2-AG, about 20% of PG is produced by AA-modulated COX-2, and once even a small122

amount of 2-AG (0.5 µM) is added to the system, more than half of PG production occurs via a 2-AG or123

AA allosterically modulated path. In the presence of high concentrations of either modulator, as much as124

90% of PG is produced via an allosterically modulated path.125

Because 2-AG and COX-2 display substrate-dependent inhibition (Mitchener et al., 2015), the126

production of PG-G occurs via fewer paths than are available to PG. In the absence of AA, all PG-G127

produced is generated in the absence of an allosteric modulator (Fig. 2B, purple), because the intermediate128

with 2-AG bound in both catalytic and allosteric sites is not turned over. As AA is added to the system,129

the proportion of PG-G produced by the AA-modulated pathway (Fig. 2B, red) increases. Thus, in the130

range of tested substrate concentrations, the dominant mechanism of PG-G production depends entirely131

on the amount of AA present in the system. Compared to PG, a smaller proportion of PG-G produced132

by the system results from an allosterically regulated pathway because PG-G is only created via the133

AA-modulated species or the allosterically unbound species. Nevertheless, at high concentrations of AA,134

again as much as 90% of PG-G is produced by AA-modulated COX-2. For paths containing a species135

bound in the allosteric site, binding at the catalytic site followed by binding at the allosteric site is the136

favored mechanism.137

We note that at any given substrate concentration, the uncertainty arising from the calibrated kinetic138

parameter distributions never exceeds a 20% change in the percentage of product produced by a given139

path (Fig. S4-S8). We find that changes in substrate levels and their relative ratios have a much larger140

effect on the dominant reaction paths than changes in kinetic rates within the calibrated CORM parameter141

distributions. Overall, these findings suggest that variation of substrate concentrations in physiologically-142

relevant ranges has a significant impact on COX-2’s mechanism of catalysis.143

Pathway Entropy is Dynamic Across Input Concentrations144

Calculating the flux through each path allows us to obtain information about the preferred sequences of
reactions that the system executes while processing AA and 2-AG. However, these measurements do not
provide an estimate of how chemical traffic (i.e. the flow of chemical signals in the network) is distributed
throughout the network. To explore the distribution of biochemical network traffic, we introduce the
pathway entropy to quantify the degree to which COX-2 utilizes multiple paths at different concentrations
of substrates. Our definition of entropy, originally introduced by Claude Shannon (Shannon, 1948)
provides a measure of the uncertainty in a probability distribution across states as follows:

H =−
n

∑
x=1

P(xi) log2 P(xi) (1)

where H is entropy and P(xi) is the probability of any state xi. To determine the degree of uncertainty145

associated with product production (the pathway entropy), we considered each pathway as a state and use146

the fraction of flux that a given pathway contributes to the product as a measure for the probability of147

that state. This analysis yields a measure of how evenly distributed production is across possible paths.148

In general, evenly distributed fluxes across paths in a network would maximize pathway entropy for a149

multi-path system.150

Since the dominant paths vary with substrate concentration (Fig. 2), we would expect that pathway151

entropy would also vary. In Fig. 3 we present the pathway entropy dependence on input concentration for152

PG (Fig. 3A) and PG-G (Fig. 3B). The pathway entropy for PG production is highest at intermediate levels153

of AA and low levels of 2-AG, while the pathway entropy is highest for PG-G production at intermediate154

levels of AA and any level of 2-AG. These maxima correspond to states where the reaction flux is most155

spread across the possible paths from reactant to product (see Fig. 2A, top plot, center, and Fig. 2B,156

top plot, center). In contrast, in the lowest entropy states - low AA and high 2-AG for PG (Fig. 2A,157

bottom plot, far left) and low AA across the entire 2-AG spectrum for PG-G (Fig. 2B, bottom row), flux is158

concentrated in a single or a few paths. Reaction flow is thus highly distributed in some conditions yet159

highly concentrated in one path in other conditions. This finding suggests that MIMO networks utilize160

multiple execution modes across input concentrations. It also suggests that approaches to modulate or161

inhibit network activity, which focus on disrupting one or more of these paths, may need to be tailored162

to specific conditions. These behaviors could have physiological relevance. For example, high-entropy163

conditions with highly redundant path fluxes may require multiple targets for inhibition compared to a164

condition with low entropy.165
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Figure 3. Pathway entropy within CORM. (A) Pathway Entropy for Production of PG. The intensity
indicates the pathway entropy in units of bits. (B) Pathway Entropy for Production of PG-G. Units are the
same as in A.
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Input Output Behavior in CORM166

The above findings on pathway entropy suggest a complex relationship between input concentrations,167

reaction intermediates, and product concentration in CORM. To understand these relationships, we next168

considered concentration-dependence curves derived from simulations using a fixed set of CORM kinetic169

parameters in which PG was calculated at increasing AA concentrations in the presence of random170

quantities of 2-AG (Fig. 4A) or PG-G was calculated at increasing 2-AG concentrations in the presence of171

random quantities of AA (Fig. 4B). Each data point was taken at steady-state (10 seconds) for consistency172

with experiments and previous work. Note that the presence of both substrates results in competitive173

inhibition with suppression of product formation from either one. Thus, the highest levels of output in174

each case occur when the concentration of the opposing substrate is low. These levels are similar for PG175

and PG-G because COX-2 utilizes the two substrates with similar catalytic efficiencies when they are176

present individually. As the concentration of the opposing substrate increases, competitive inhibition177

is partially balanced by positive allosteric modulation in the case of the conversion of AA to PG, but178

exacerbated by negative allosteric modulation in the case of the conversion of 2-AG to PG-G. Therefore,179

the suppression of PG-G formation is greater than that of AA formation as seen in the lower plateau level180

achieved in (Fig. 4B). In addition, the range of inputs over which the output varies depends significantly on181

which input/output pair is chosen (note the difference in that range in Fig. 4A,B). Clearly, variation of both182

inputs (e.g. changing AA in addition to changing 2-AG in Fig. 4A), results in significant variation in the183

outputs. Thus, while our simulations are deterministic, introducing uncertainty in the AA concentration184

generates a type of “extrinsic noise” in the relationship between 2-AG and PG-G (Fig. 4B), and vice versa185

for the impact of 2-AG on the relationship between AA and PG, Fig. 4A). This noise represents allosteric186

modulation in the network due to varying input concentrations.187

Channel Capacity from Substrates to Products188

To better understand how this output variation, combined with the shape of the concentration-dependence
curves, influences the COX-2 reaction network, we applied an additional concept from information theory
to measure dependence between inputs and outputs, namely the Mutual Information:

I(X ;Y ) = ∑
X

∑
Y

P(x,y) log2
P(x,y)

P(x)P(y)
(2)

where X represents a given signal and Y the response to that signal (Shannon, 1948). Mutual information
quantifies the degree to which one variable provides information about a second variable. Equivalently, it
is a measure of how knowledge about one variable decreases uncertainty in the value of a second variable.
For biological systems, quantifying mutual information is challenging because the input distribution is
generally unknown. Previous work (Cheong et al., 2011; Selimkhanov et al., 2014; Suderman et al., 2017)
has focused on estimating the “channel capacity,” which is the maximum information attainable across all
possible input distributions:

C = suppx(x)I(X : Y ) (3)

Note that any practical calculation provides a lower bound estimate for the channel capacity C, since only189

a finite set of input distributions is used to estimate I (Suderman et al., 2017). We calculated channel190

capacities using the approach and software published in Suderman et al. (Suderman et al., 2017), which is191

similar to that used in Cheong et al. (Cheong et al., 2011).192

We applied this estimate to two different sets of simulations. In the first set of simulations, we193

considered a case where AA and 2-AG are perfectly correlated with each other; to do this, we sampled194

the AA concentration from a uniform distribution on [0,16 µM] and set the 2-AG concentration to195

be exactly the same. In the second set, we independently sampled the input AA and 2-AG substrate196

concentrations from a uniform distribution on the interval [0,16 µM]. In each case, we sampled a total of197

500 distinct input conditions and ran CORM simulations to 10s to agree with experiments and previous198

work (Mitchener et al., 2015). The channel capacity was then estimated between the two different inputs199

(either AA or 2-AG) and every possible intermediate and product. The maximum theoretical channel200

capacity, log2(500)≈ 9 bits, would be obtained if each of the 500 inputs yielded a distinct response. We201

repeated the channel capacity calculation for the top 5000 most probable parameter vectors from the202

calibrated parameter ensemble. This then allowed us to quantify the effect of kinetic parameter variation203

on channel capacities in the system. In total the analysis required approximately 1.5M CPU hours. An204
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Figure 4. Input vs output plots for substrates and products in CORM. (A) Input vs Output plots for AA
to PG. 2-AG varies randomly. All concentrations are measured at steady-state (10 seconds). (B) Input vs
Output plots for 2-AG to PG-G. AA varies randomly. All concentrations are measured at steady-state (10
seconds).
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example of input data used for calculating channel capacities from AA to PG and 2-AG to PG-G for a205

single parameter set is shown in Fig. 4. Greater detail is provided in the SI Methods.206

COX-2 Integrates Information from Both AA and 2-AG207

For ease of visualization, we estimated kernel densities of channel capacities given variation in calibrated208

kinetic parameters as shown in the violin plots in Fig. 5. In these plots, the data are represented by a209

central box plot that provides the mean, interquartile range and 95% credible interval, and the surrounding210

shape depicts the probability distribution, with wider regions indicating a higher probability. Because the211

input-output relationship in these simulations is deterministic, deviations from the theoretical maximum212

(≈9 bits) arise from the two phenomena described above: either changes in the input do not really lead to213

significant changes in the output (i.e. the “flat” part of the concentration-dependence curves in Fig. 4) or214

the independent variation in one of the substrates generates variation in the output that is not due to the215

input being considered (i.e. the apparent noise in Fig. 4).216

From Fig. 5, it is clear that the combination of these effects significantly reduces the observed channel217

capacities from the theoretical maximum. The highest observed value for any of the input/output pairs218

(AA to PG, 2-AG to PG-G, etc.) is at most half of the theoretical maximum (less than 4.5 bits). When input219

values are perfectly correlated ([AA] = [2-AG]), Fig. 5A, the channel capacity between the (correlated)220

inputs and the outputs is between 3 and 4.5 bits (depending on the parameters), indicating that, while not221

perfect, the concentration-dependence curves allow for high levels of information flow between inputs222

and outputs. It is interesting to note that the uncertainty in the kinetic parameters leads to some variation223

in the calculated channel capacities; since the inputs here are correlated, this variation is due to changes224

in the shape of the concentration-dependence curves between data sets. Many channel capacities in the225

correlated case are bimodal, suggesting that two specific concentration-dependent curve shapes are most226

likely.227

When the inputs are varied independently, channel capacity values decrease even further (Fig. 5B228

and C). The channel capacity between AA and PG or PG-G is generally less than 2 bits, and the channel229

capacity between 2-AG and those outputs is generally less than 1.5 bits. This could occur for two reasons.230

First, a lack of correlation could result in less entropy in the response (i.e. less uncertainty in the value of231

the product). Since the mutual information is limited by the response entropy (eq. 2, (Shannon, 1948;232

Cheong et al., 2011; Suderman et al., 2017)), this would cause a decrease in the mutual information.233

However, if the response entropy remains constant when there is no correlation between inputs, then234

mutual information can only decrease if information transfer through the network is less efficient. As235

shown in Fig. S9, the response entropy does not differ between the independent and correlated cases,236

indicating that independent variation in one of the inputs while the other input is known has a large effect237

on the output. In other words, COX-2 is truly an integrator of these signals, since accurate determination238

of the substrate concentrations given the output is considerably more difficult if the two substrates are239

independently varied.240

Since perfect correlation and complete independence represent only the two extremes of the rela-241

tionship between AA and 2-AG concentration, we also investigated the behavior of the system when242

the inputs exhibit moderate correlation (Pearson correlation coefficient = 0.5), and when the inputs are243

consistently present in a 2-to-1 AA-to-2-AG ratio (Fig. S10 and Fig. S11). The behavior when input244

ratios were fixed was similar to that for the correlated values (when the input levels were fixed equal to245

each other); channel capacities were again higher than in the independent case and the effect of kinetic246

parameter variation on channel capacity was higher. When the inputs are moderately correlated, the247

system is still able to obtain high channel capacities for some kinetic parameter sets, although the overall248

distribution of channel capacities shifts to lower values compared to when input correlation is perfect,249

further confirming COX-2 input integration.250
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Figure 5. Estimated channel capacities from substrates to intermediates or products in CORM. (A)
Estimated Channel Capacities from Input to intermediates and final products within CORM when levels
of AA and 2-AG are strongly correlated (Pearson correlation coefficient = 1). Distributions in the channel
capacities arise from uncertainty in the kinetic parameter values after model calibration.(B) Estimated
Channel Capacities from AA to intermediates and final products within CORM when AA and 2-AG are
varied independently. Distributions in the channel capacities arise from uncertainty in the kinetic
parameter values after model calibration.(C) Estimated Channel Capacities from 2-AG to intermediates
and final products within CORM when AA and 2-AG are varied independently. Distributions in the
channel capacities arise from uncertainty in the kinetic parameter values after model calibration.
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Information Flow is Dictated by Substrate Concentration251
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We next tested whether the channel capacity between substrates and products varies with substrate level.252

We binned the input data into four quadrants (high or low values of either substrate) and calculated the253

channel capacity between inputs and outputs independently for each quadrant; input ranges were otherwise254

identical to those used for the calculations described above. Low substrate values spanned 0-8 µM and255

high substrate values 8-16µM. Both independently varied inputs (Fig. 6A) and correlated inputs (Fig. 6B)256

yielded estimated channel capacities that were significantly different between the different regions of257

input space. In addition to differences in PG and PG-G channel capacity, we found that the distribution of258

information that passed through different intermediates changed with substrate concentration (Fig. S13259

and Fig. S14); certain paths to product had greater information transfer capacity at particular levels of260

substrates. This echoes findings from our pathway analysis (Figs. 2 and 3), indicating that changes in261

substrate concentration result in significant changes in how the enzyme executes its catalytic mechanism.262

Interestingly, we found no detectable correlation between the flux through a pathway and the mutual263

information between an input and an intermediate in that path (Fig. S15 and Fig. S16). We leave further264

investigation of the relationship between information transfer and actual physical reaction fluxes for future265

work.266

Splitting the input space into different quadrants also revealed signficant variation between different267

parameter sets, with most distributions showing significant bimodality across parameters (Fig. 6). This268

suggests that both the shape of the concentration-dependence curves, and the impact of “extrinsic noise”269

due to variation of one substrate independent of another, varies across parameter sets. Since all of these270

parameter sets are equally consistent with experimental data (Mitchener et al., 2015), this suggests that271

multiple modes of information flow are available to the COX-2 reaction network without significant272

changes to the core functionality of the enzyme.273

DISCUSSION274

In vivo, COX-2, AA, and 2-AG concentrations vary across cells in different tissues (Seibert et al.,275

1997; Monjazeb, 2006; Sugiura et al., 2006). In most tissues, AA processed by COX-2 is released276

from membrane phospholipids, predominantly through the action of cytosolic phospholipase A2 (Leslie,277

2015). In some tissues, (particularly the brain) a major source of AA is hydrolysis of 2-AG (Ignatowska-278

Jankowska et al., 2014; Long et al., 2008). In turn, 2-AG is also sourced from membrane phospholipids;279

through the sequential action of phospholipase C, which forms diacylglycerol (DAG), followed by280

conversion of DAG to 2-AG by DAG lipase (Fezza et al., 2014). Both DAG lipase and cytosolic281

phospholipase A2 are stimulated by increases in intracellular Ca2+ (Leslie, 2015; Bisogno et al., 2003).282

Thus, many stimuli (such as zymosan phagocytosis by macrophages (Rouzer and Marnett, 2005)) promote283

the release of AA and 2-AG simultaneously, with concentrations of AA typically higher than those of284

2-AG. Considering the precursor-product relationship between 2-AG and AA, however, it is conceivable285

that in some cells, the levels of the two substrates may change inversely to one another, or that the level of286

one may change while the other remains constant. These considerations suggest that the system features287

we find that vary with AA and 2-AG level (pathway entropy and information transfer capacity) are states288

accessible by the true biological system with the attendant repercussions for information transfer within289

that system. In addition, the postulated link between diet and the substrates available for COX-2 turnover290

(Chen, 2010) suggests that the information transfer properties of the system could be modulated by fatty291

acid intake.292

COX-2 has significant regulatory flexibility: it is an allosteric protein, with multiple substrates and293

multiple allosteric regulators, all of which can influence how COX-2 operates on its substrates in vivo.294

The pathway analysis (Fig. 1B and 1C) suggests that COX-2 functions by first binding a substrate at295

the catalytic site, followed by binding of an allosteric regulator. Allostery can be viewed as a shift296

in the conformational free-energy landscape sampled by COX-2 through preferential binding of the297

allosteric regulator to particular conformations (Lechtenberg et al., 2012; Nussinov and Tsai, 2013). From298

this perspective, modulating the concentrations of allosteric regulators in the COX-2 system shifts the299

conformational ensemble towards conformations favored by particular regulators. In the case of PG,300

these conformations are more easily turned over to product than the unmodulated enzyme, while for301

PG-G, the allosteric influence makes catalysis less energetically favorable (shifts the ensemble towards302

conformations that are less active). This allows COX-2 to manage the balance between PG and PG-G303

production in a more complex (and potentially farther-reaching) fashion than that provided by simple304

competition between substrates. This added complexity suggests a physiological reason why the COX-2305
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system would integrate information from multiple inputs: by adding a second competitive input, the306

system can access different responses than with a single input. Furthermore, the response dynamics307

of COX-2 gain even greater complexity because its inputs act as allosteric modulators in addition to308

substrates. The situation in vivo is likely far more complicated (and flexible) than considered here, as309

COX-2 has potential substrates in addition to AA and 2-AG (Rouzer and Marnett, 2009), and some310

nonsubstrate fatty acids that act as allosteric regulators (Dong et al., 2016b; Yuan et al., 2009; Dong et al.,311

2011, 2013, 2016a). In addition, many of the non-steroidal anti-inflammatory drugs that target COX-2312

also may bind at either the catalytic or allosteric site.313

One advantage of this complexity may be the significant robustness of this system to variation in314

the kinetic parameters. The 5000 parameter sets we considered here all fit experimental data on PG315

and PG-G production equally well, despite variation of over three orders of magnitude in some of the316

parameter values (Mitchener et al., 2015). Our results on both pathway flux (Fig. 2) and information317

flow (Fig. 5) indicate that different parameter sets favor different distributions of paths from substrate to318

product, and transfer information through the network in different ways. Yet the overall function of the319

enzyme is the same despite all of this variation. In vivo, a change in the kinetic rates could correspond to320

a mutation or a change in the level of molecular crowding for the reaction. The availability of multiple321

“modes of execution” in this complex enzyme thus allow the system to be highly robust to such changes.322

This complex architecture could also allow the system to be highly evolveable through a mechanism of323

facilitated variation (Gerhart and Kirschner, 2007). We expect that future work on parameter variation324

will reveal major insights into the evolution of robustness in enzymes like COX-2.325

In this work we applied a systems biochemistry framework to understand chemical reaction flux,326

pathway entropy, and information flow in the COX-2 system and investigate how these adjust to dynamic327

input concentrations and correlations. The methods and approach utilized here could be applied to328

further probe the COX-2 system by including more inputs (its other substrates, allosteric regulators, and329

inhibitors), or transferred to a larger, more complex network. Given the complexity present in even the330

simple network considered here, we predict that a systems biochemistry approach to larger networks331

would provide non-intuitive insights into the dynamics of the system as a whole.332

METHODS333

Modeling and Model Calibration334

CORM was encoded as a PySB (Lopez et al., 2013) model containing 13 distinct biochemical species and335

29 chemical reactions. It was calibrated to experimental data consisting of PG and PG-G concentrations336

at steady state across a range of substrate concentrations (Mitchener et al., 2015; Shockley et al., 2017).337

Calculating Path Fluxes and Channel Capacities338

The method for determining paths of production and the total flux through a path is described in detail in339

SI Methods and Fig. S1. Channel capacities were calculated using the method from (Cheong et al., 2011)340

and the software of (Suderman et al., 2017). Extended detail is available in SI Methods.341

The datasets generated during and/or analysed during the current study are available from the corre-342

sponding author on reasonable request.343
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