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Abstract 

Ontogenetic development hinges on the changes in gene expression in time and space within an 

organism, suggesting that the demands of ontogenetic growth can impose or reveal predictable 

pattern in the molecular evolution of genes expressed dynamically across development. Here we 

characterize co-expression modules of the C. elegans transcriptome, using a time series of 30 

points from early-embryo to adult. By capturing the functional form of expression profiles with 

quantitative metrics, we find fastest evolution in the distinctive set of genes with transcript 

abundance that declines through development from young embryos. These genes are highly 

enriched for oogenic function (maternal provisioning), are non-randomly distributed in the 

genome, and correspond to a life stage especially prone to inviability in inter-species hybrids. 

These observations conflict with the “early conservation model” for the evolution of 

development, and provide only qualified support for the “hourglass model.” Genes in co-

expression modules that peak toward adulthood also evolve fast, being hyper-enriched for roles 

in spermatogenesis, implicating a history of sexual selection and relaxation of selection on sperm 

as key factors driving rapid change to ontogenetically distinguishable co-expression modules of 

genes. These predictable trends of molecular evolution for dynamically-expressed genes across 

ontogeny might predispose particular life stages, early embryogenesis in particular, to hybrid 

dysfunction in the speciation process.   
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Introduction 

Ontogenetic development hinges on the changes in gene expression in time and space within an 

organism. The dynamic molecular networks that specify cell proliferation and differentiation 

together produce morphogenesis, going from a single-celled zygote to a reproductively mature 

adult. Evolution favors maximal reproductive success to shape those gene expression dynamics 

and the functional properties of the proteins they encode, with the strength of selection pressures 

recorded in their sequences. Do the demands of ontogenetic growth impose or reveal predictable 

pattern in the molecular evolution of genes expressed dynamically across development? How do 

the cellular constraints to forming a whole organism in embryogenesis, and the life history 

constraints on a whole organism to reproduce successfully, translate into underlying gene 

sequence conservation? What rules are there, if any, to govern the molecular evolution of 

development? We can address these questions from the perspective of genetic controls or from 

spatio-temporal dynamics in the formation of the structures of a complete organism. 

One important axis of evolutionary predictability in development emphasizes non-coding 

regulatory controls: the relative roles of cis- and trans-regulators versus protein functionality in 

developmental variation and divergence (Wray 2007; Carroll 2008; Stern and Orgogozo 2008). 

Adaptive changes to protein function also are important in evolution, as evinced by phenotypic 

examples and estimates of a large fraction of coding substitutions fixed between species by 

positive selection (Hoekstra and Coyne 2007; Galtier 2016). Empirical data, however, support an 

outsized role of cis-regulatory change in morphological divergence between species (Stern and 

Orgogozo 2008; Wittkopp and Kalay 2012), with one of the arguments explaining this pattern 

holding that lower pleiotropy of cis-regulatory changes facilitates adaptive divergence. A parallel 

notion about pleiotropic effects based on genetic network structure predicts that ‘hub’ genes with 

many interaction partners should evolve slowly, with faster evolution in genes with fewer 

interactions; however, data do not strongly favor this ‘hub’ effect for coding sequence evolution 

(Jordan, Wolf, and Koonin 2003; Batada, Hurst, and Tyers 2006). Both of these perspectives 

emphasize the genetic architecture, however, rather than the spatio-temporal architecture in the 

evolution of development.  
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Taking a more physical perspective on molecular evolutionary predictability in development, one 

ontogenetic means of limiting pleiotropy of a gene is tissue- or cell-specificity of gene 

expression: narrow breadth of expression in space must narrow the potentially negative 

pleiotropic effects of changes to gene expression or protein function (Stern 2000; Carroll 2005; 

Haygood et al. 2010; He et al. 2012). For example, mammalian genes with greater tissue-

specificity of expression evolve faster in coding sequence but slower in terms of expression 

change (Liao and Zhang 2006a). Temporal specificity of gene expression provides another 

dimension that can restrict or exacerbate the potential for pleiotropic effects of change to gene 

regulation or structure. Similar to the argument for spatial extent of gene activity, narrower 

duration of expression in ontogeny ought to narrow the potential for negative pleiotropic effects 

of changes to a given gene. A counter-argument, however, points out the unidirectional nature of 

time: changes to early points in development can cascade through ontogeny with 

disproportionate force (Poe and Wake 2004; Irie and Kuratani 2014; Arthur 2015). Because most 

new mutations with fitness effects are deleterious (Keightley and Lynch 2003), this “early 

conservation” or “generative entrenchment” view predicts slower evolution of genes expressed 

earlier in embryonic development, as has been reported for mouse and zebrafish (Roux and 

Robinson-Rechavi 2008; Irie and Kuratani 2014). By contrast, the most famous temporal 

paradigm derives from embryological observations of a ‘phylotypic stage’ with greatest 

phenotypic constraint relative to earlier and later timepoints in development, the ‘hourglass 

model’ (Raff 1996; Kalinka and Tomancak 2012). Applications of this idea to molecular data 

have renewed interest in it beyond morphology (Castillo-Davis and Hartl 2002; Cutter and Ward 

2005; Davis, Brandman, and Petrov 2005; Hazkani-Covo, Wool, and Graur 2005; Cruickshank 

and Wade 2008; Domazet-Loso and Tautz 2010; Kalinka et al. 2010; Irie and Kuratani 2011; 

Levin et al. 2012; Gerstein et al. 2014). Different still, population genetics arguments about 

weaker purifying selection on genes expressed by just one sex, like maternal-effect gene 

products deposited in eggs, predict disproportionately rapid evolution of such maternally-

deposited genes involved in early-embryogenesis of zygotes (Cruickshank and Wade 2008). 

These ‘evo-devo’ ideas, however, are largely focused on embryogenesis, and do not explicitly 

incorporate the entirety of ontogeny over an organism’s life cycle (Kalinka and Tomancak 2012). 

Ideas from the evolution of aging and senescence, by contrast, consider late life (Flatt and 

Schmidt 2009). In particular, the mutation-accumulation theory of aging predicts more rapid 
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evolution of genes expressed following the onset of reproductive maturity than for those 

expressed earlier because diminishing reproductive value following maturity weakens the ability 

of selection to eliminate mutations (Medawar 1952; Charlesworth 1993; Promislow and Tatar 

1998; Partridge 2001). Genes with expression in just one sex also ought to experience weaker 

purifying selection than other genes, leading to faster protein evolution, because mutations would 

be exposed to selection in just half of the population (Cruickshank and Wade 2008). Sexual 

contests and mate choice drive rapid divergence in morphological ornaments and their genetic 

underpinnings (Swanson and Vacquier 2002; Ellegren and Parsch 2007), so sexual selection also 

predicts faster evolution of sex-biased genes and of genes expressed late in life, to the extent that 

their development gets specified toward adulthood. The coding sequences of adult-expressed 

genes do tend to evolve faster than embryonic genes in a number of taxa (Cutter and Ward 2005; 

Davis, Brandman, and Petrov 2005; Artieri, Haerty, and Singh 2009). 

C. elegans and related nematodes are well-known for their similarity in form (Haag et al. 2007), 

despite the long times since species separated from one another (Cutter 2008). Indeed, the 

embryonic cell lineage of different Caenorhabditis species is outwardly preserved to an 

astonishing degree (Zhao et al. 2008; Memar et al. 2018), albeit with some key differences in 

timing of developmental milestones (Levin et al. 2012). This similarity of form, however, masks 

substantial evolution of genetic interactions as revealed by pronounced embryonic mortality in 

interspecies hybrids (Baird and Seibert 2013; Bundus, Alaei, and Cutter 2015). Developmental 

system drift is thought to underlie evolutionary change to spindle movement in the first cell 

division of embryos (Riche et al. 2013; Farhadifar et al. 2015; Valfort et al. 2018). Experiments 

also demonstrate that morphological stasis and even conserved expression patterns mask 

profound cis-regulatory divergence of conserved coding genes (Barriere, Gordon, and Ruvinsky 

2012; Barrière and Ruvinsky 2014; Verster et al. 2014; Barkoulas et al. 2016). Molecular 

evolution analysis of genes expressed differentially across post-embryonic development from 

microarray data reported faster evolution of coding sequences associated with the onset of 

reproductive maturity, but little directional effect of timing in embryogenesis (Cutter and Ward 

2005). These collective observations motivate characterization of molecular evolution for gene 

expression dynamics across the entirety of ontogeny. 
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Here we characterize co-expression modules of the C. elegans transcriptome over the full course 

of development, using a time series of 30 points from early embryo to adults (Gerstein et al. 

2010; Gerstein et al. 2014). By coarse graining the functional form of these ontogenetic 

trajectories of gene expression, we capture quantitative metrics that reveal how developmental 

dynamics relate to rates of molecular evolution. Surprisingly, we find the fastest evolution, both 

in terms of coding sequence divergence and ortholog turnover, in the unique set of genes with a 

high abundance of transcripts in young embryos that then decline in expression level over 

development. These genes are highly enriched for oogenic function, implying that they are 

comprised disproportionately of maternally-deposited transcripts. Genes in co-expression 

modules that show rising post-embryonic expression that peaks toward adulthood also exhibit 

especially fast evolutionary change. These latter gene modules are hyper-enriched for roles in 

spermatogenesis, implicating a history of gametic co-evolutionary interactions, sexual selection, 

and relaxation of selection on sperm in C. elegans history as key factors driving rapid change to 

ontogenetically distinguishable co-expression modules of genes. By contrast, genes in modules 

of co-expression with high transcript abundance and constitutive expression across all or most of 

ontogeny have the strongest sequence conservation. These results are consistent with temporal 

breadth of gene expression in development as delimiting bounds for molecular evolution, 

mediated by ongoing genetic interactions rather than pleiotropic cascades. 

 

Results 

We defined 14 co-expression modules to describe clusters of the 19,711 genes that get expressed 

across 30 timepoints from early embryo through young adult stages of hermaphrodite C. elegans 

(Figure 1), based on ModENCODE transcriptome profiling data (Supplementary Table S1) 

(Gerstein et al. 2010; Gerstein et al. 2014). To obtain quantitative metrics describing the shape of 

each co-expression module, we then fit a cubic function to the gene expression profiles of each 

of the 14 developmental time series (Figure 1). The parameter values extracted from the cubic 

fits capture the overall expression level (α), increasing or decreasing trends in expression across 

development (β1), the degree of concave versus convex expression dynamics over ontogeny (β2), 

and how S-shaped are the expression dynamics (β3). Four modules show consistent expression 
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with little change across development (M3, M6, M12, M13). These ‘constitutive’ gene 

expression modules differ from one another primarily in the overall magnitude of expression 

(highest α=8.91 for M6, lowest α=0.66 for M13) and include the three largest modules by gene 

membership (M3, M12, M13) (Figure 1). By contrast, five modules exhibited hump-shaped 

expression dynamics with low expression in early embryos coupled to peak expression in late 

embryogenesis (β1>>0, β2<<0, β3<<0; M1, M2, M5, M7, M8). Module M4 was unique among 

all modules in showing peak expression in early embryogenesis, which then declined across 

developmental time (β1<<0). The four remaining modules displayed peak expression in post-

embryonic stages (M9, M10, M11, M14), with especially strong up-regulation toward adulthood 

in M10 and M11 (Figure 1). 

Given the utility of coarse graining the module expression patterns with a cubic function fit, we 

next fit the cubic functional form to each gene and extracted the gene-wise parameters for α, β1, 

β2, and β3 (Supplementary Figure S1, Supplementary Figure S2). Discriminant analysis 

demonstrated that values for these four parameters could correctly determine the co-expression 

module identity for 92.9% of genes, indicating that gene-wise cubic function fitting captures well 

the key distinguishing features of ontogenetic expression dynamics. The quadratic and cubic 

terms (β2, β3) were generally symmetric in distribution around zero (Supplementary Figure S1), 

whereas the α parameter suggests a bimodal distribution of expression-levels across genes and 

the linear change parameter illustrates how most genes increase in expression across ontogeny 

(β1>0) but that a subset primarily composed of genes in M4 decline strongly in expression 

(β1<0).  

Upon defining these ontogenetically dynamic gene expression modules, we investigated their 

distinguishing features in terms of genomic organization, function and molecular evolution. 

Interestingly, genes from related expression profiles showed distinctive chromosome biases. Five 

modules were enriched on the X-chromosome, all of which corresponded to those with peak 

expression in late embryogenesis (M1, M2, M5, M7, M8; Figure 2). The early-embryogenesis 

module M4 showed the greatest chromosomal bias of any module, being >2-fold enriched on 

Chromosome II and tended to be underrepresented on all other chromosomes (Figure 2). Genes 

from those modules with peak post-embryonic expression, by contrast, showed enrichment on 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/518621doi: bioRxiv preprint 

https://doi.org/10.1101/518621
http://creativecommons.org/licenses/by-nc/4.0/


8 
 

chromosomes IV and V (M9, M10, M11, M14), and highly-expressed ‘constitutive’ modules 

showed enrichment on chromosomes I and III (M3, M6, M12; Figure 2). When we looked within 

chromosomes at their recombination domain structure of arms versus centers, we found genes for 

most modules to be present in their expected proportions given chromosomal gene densities 

(Figure 2). However, genes in M4 were significantly enriched in arms on Chromosome II, the 

chromosome where M4 genes are exceptionally abundant, and were elevated on arms relative to 

centers of other chromosomes (Figure 2). Post-embryonic modules M9 and M10, as well as the 

low-expression ‘constitutive’ module M13, also showed significant enrichment on arms of 

several chromosomes (Figure 2). By contrast, the highly-expressed ‘constitutive’ module M12 

was under-enriched on the arms of Chromosomes II and V (Figure 2). At a more local scale of 

genome organization, we found that three modules were hyper-enriched for membership in 

operons, with each of the highly-expressed ‘constitutive’ modules M3, M6 and M12 containing 

>40% of their genes in operons (Figure 3); just 20.5% of coding genes overall occur in operons. 

Of the remaining modules, only M13 (the fourth ‘constitutive’ module) and M8 had >10% 

operonic genes, and <4% of genes occurred in operons for all four modules with post-embryonic 

peak expression (M9, M10, M11, M14) (Figure 3). 

We cross-referenced the gene composition of co-expression modules with those gene sets 

identified by Ortiz et al. (Ortiz et al. 2014) to have sex-neutral, oogenic or spermatogenic 

enrichment of expression. These three expression categories had been inferred from differential 

expression of dissected gonads that had either active oocyte-only or sperm-only development 

(Ortiz et al. 2014). The early-embryogenesis module M4 showed extreme enrichment for 

oogenic genes (57%), with the next most enriched modules for oogenic genes being 

‘constitutive’ modules M3 (24%) and M12 (23%) (Figure 3, yellow portion of bar plots). By 

contrast, the four modules with peak expression in post-embryonic stages contained almost no 

oogenic genes, instead being exceptionally enriched for spermatogenic genes (75% to 92%) 

(Figure 3; M9, M10, M11, M14). As expected of genes with sperm-related function (Reinke and 

Cutter 2009), operons were rarest in these modules (M9-M11, M14) (Figure 3). Eight of the 14 

modules overall were comprised of >50% sex-neutral genes, including all five of those with peak 

expression late in embryogenesis, though three of the ‘constitutive’ modules contained the 

highest abundance of them (71% to 82%; M3, M6, M12) (Figure 3, gray portion of bar plots). 

Gene ontology (GO) and phenotype enrichment analysis (PEA) further showed these highly 
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expressed ‘constitutive’ modules to be enriched for basic cellular processes, like ribosomal and 

mitochondrial activity, embryonic defects, and chromosome segregation (M3, M6, M12; Figure 

2B; Supplementary Table S2; Supplementary Table S3). By contrast, the modules showing 

increasing expression across embryogenesis and later stages tended to have significant 

enrichment of developmental GO and behavioral PEA terms, such as regulation of cell shape, 

neural activity, linker cell migration, and animal motility (Figure 2B, purple and green shaded 

modules; Supplementary Table S2; Supplementary Table S3). The most overrepresented terms 

across all co-expression modules were found in early-embryogenesis module M4, involving 21-

fold enrichment of genes associated with protein heterodimerization activity (GO) and 19-fold 

enrichment of early embryonic chromatid segregation (PEA) (Figure 2B; Supplementary Table 

S2; Supplementary Table S3). Among the 105 genes in the C. elegans genome annotated with 

the protein heterodimerization activity GO term (GO:0046982), 69% correspond to histones, 

with most of the others comprised of TATA-box binding proteins, transcription factors, and 

CENP centromere-related proteins; M4 alone has 31 histones. 

The co-expression modules also differ significantly in the rate at which their gene members 

evolve (Figure 3). Module M6 contains genes with strongest protein sequence conservation 

between species: median KA = 0.033 implies that only about 3% of non-synonymous sites in 

codons have changed between C. elegans and C. briggsae since their common ancestor, 

estimated at 113 million generations ago (Cutter 2008). At the other extreme, curiously, those 

genes in M4 with peak expression in early embryogenesis comprise the most rapidly-evolving 

set of genes (median KA = 0.43; Figure 3). As another sign of rapid evolution of genes in M4, 

this module contained the lowest percentage of genes with identifiable orthologs between C. 

elegans and C. briggsae (28% vs. 64% genome-wide and 92% ortholog pairs identified for M6; 

Figure 3). Curiously, however, module M4 has the highest fraction of genes (9.3% vs. 0.5% of 

genes overall) with near-zero values of KA, implying exceptionally strong selective constraint on 

this subset of genes within M4: this subset is comprised entirely of histones, which are 

overrepresented in M4. These 14 histone genes, plus another subgroup of 15 genes with KA < 

0.02 (14 of which also are histones), imply that about 20% of M4’s “early embryogenesis” genes 

encode histones that evolve extraordinarily slowly in stark contrast to the remaining 80% that 

evolve remarkably fast (Supplementary Figure S3). The only other module with substantial 

abundance of a group of exceptionally conserved coding sequences is ‘constitutive’ module M6 
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(4.9% of genes with near-zero KA), which also shows the strongest sequence conservation on 

average irrespective of this exceptional subset of genes. 

The four modules with peak post-embryonic expression and enrichment with spermatogenic 

function also evolve up to twice as rapidly as the genome-wide median KA = 0.121 (median KA 

for “post-embryonic” modules M9, M10, M11, M14 from 0.185 to 0.261; Figure 3). Overall, co-

expression modules with lower incidence of sex-neutral genes exhibit more rapid sequence 

divergence (Figure 4). As expected from previous analyses of C. elegans molecular evolution 

(Cutter, Dey, and Murray 2009), genes in those modules with higher average expression tend to 

evolve more slowly and show more sequence conservation (Figure 4); this manifests as 

unusually low divergence at synonymous sites only for M6 (median KS = 1.1 vs. genome-wide 

median KS = 2.33). An outlier to the KA–expression relationship, however, is module M4: these 

early-embryogenesis genes show fast molecular evolution despite relatively high transcript levels 

(Figure 4). Our gene-wise analysis of coarse-grained cubic function parameters corroborate these 

findings (Supplementary Figure S4), with the four α and β parameters alone being capable of 

explaining 11.5% of the variability in KA across genes (ANOVA F4,12623 = 408.5, P<0.0001; log-

transformed KA). 

As a complement to the developmental time series analysis, we quantified rates of molecular 

evolution for a simpler partitioning of genes, by grouping genes according to the timepoint with 

highest observed expression. Median rates of protein sequence evolution were fastest for those 

genes with peak expression in the final L4 larval stage, young adults and in early embryos 

(Figure 5), corroborating the findings from the ontogenetic co-expression modules. Among those 

genes with peak expression in embryogenesis, genes with later peak expression tended to evolve 

more slowly (Figure 5), recapitulating the contrast of KA for “early embryogenesis” module M4 

versus “late embryogenesis” co-expression modules (M1, M2, M5, M7, M8). However, genes 

with peak expression at timepoints 7-9 (180-240 minutes) exhibit a dip in median divergence 

(Figure 5), suggesting a trend of greater sequence conservation near ventral enclosure in 

embryogenesis reminiscent of patterns of expression divergence between species (Levin et al. 

2012). 
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Discussion 

An understanding of the interplay between genes and phenotypes in the evolution of 

development must accommodate both phenotypic divergence and phenotypic conservation. The 

conservation of phenotype, however, including developmentally static phenotypes like 

Caenorhabditis embryogenesis (Zhao et al. 2008), need not imply conservation of the genetic 

pathways that produce them (Kalinka and Tomancak 2012). This idea is the essence of 

developmental system drift (DSD) (True and Haag 2001), and a key question is to what extent 

are different stages of development more or less susceptible to molecular divergence and DSD in 

a predictable way. Temporal trajectories of gene co-expression provide a means of interrogating 

these questions to determine what are the rules in the molecular evolution of development. 

We observe the fastest coding sequence evolution for genes with peak expression early in 

embryogenesis (co-expression module M4), suggesting that this developmental stage near 

gastrulation may be especially prone to DSD. Why do genes with peak expression in early 

embryogenesis evolve so fast? This rapid evolution occurs despite an over-representation of 

histone proteins within this co-expression module that have exceptionally slow sequence 

evolution. Among the genes with rapid evolution, weaker purifying selection on maternally-

provisioned transcripts provides one plausible basis for faster evolution of early-embryogenesis 

genes (Cruickshank and Wade 2008). A greater incidence of positive selection also could 

contribute to the rapid evolution of genes in M4, perhaps resulting from parent-offspring conflict 

or protein-protein co-evolution yielding DSD between gene partners (True and Haag 2001; Clark 

et al. 2009; de Juan, Pazos, and Valencia 2013). Moreover, genes in M4 are over-represented on 

autosomal arms (64% of M4 genes on arms vs. 37% genome average), genomic regions known 

to harbor genes with greater divergence (Cutter, Dey, and Murray 2009). Despite the extreme 

consistency of cell lineage in early embryos of different Caenorhabditis species (Zhao et al. 

2008), the underlying molecular controls of early embryogenesis have diverged radically so that 

embryonic arrest near this stage represents the usual fate of inter-species hybrids (Baird, 

Sutherlin, and Emmons 1992; Baird and Seibert 2013; Dey et al. 2014; Bundus, Alaei, and 

Cutter 2015), consistent with divergence of genetic interactions with important biological 

consequences. Thus, the molecular evolutionary consequences of the biased composition of 
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genes with peak expression early in embryogenesis might be predisposed to DSD and to 

contribute to hybrid inviability in the speciation process. 

Our observation of more rapid coding sequence evolution for genes with peak expression early in 

embryogenesis clearly conflicts with the “early conservation” model for the evolution of 

development (Kalinka and Tomancak 2012). Moreover, it has been argued that “conservation at 

the end of embryogenesis is not endorsed by any model” (Kalinka and Tomancak 2012), and yet 

the trend we observe shows just that, based on analyses of both co-expression modules and peak 

gene expression patterns. Our analysis of peak expression timing (Figure 5B), however, does 

show a hint of a phase of mid-embryonic development with strongest constraint, suggestive of 

the “hourglass model” that has been endorsed in Caenorhabditis from analysis of expression 

divergence (Levin et al. 2012). In our view, however, the unusually rapid evolution of early 

embryogenesis represents the more compelling pattern of molecular evolution requiring 

attention. Developmental stages associated with genes having faster rates of molecular evolution 

ought to be predisposed to more extensive developmental system drift, which can reveal itself by 

manifesting as the stage of development most sensitive to hybrid dysfunction in crosses between 

diverged species (Bundus, Alaei, and Cutter 2015). 

Tissue-specific genes have faster coding sequence evolution in mammals (Liao and Zhang 

2006a), and temporal specificity might lead to similar consequences. In our analysis, we can 

think of genes with extreme values of β1, β2, and β3 as having greater temporal specificity of 

expression and therefore mutations to them having lower potential for pleiotropic effects; 

however, we observe no strong associations of these metrics with KA (Supplementary Figure S2). 

Alternately, we can think of mutations to genes with lower α (i.e. a profile of lower overall 

expression across ontogeny) as having lower potential for pleiotropic effects due to the rarity of 

gene products, and indeed genes with lower α evolve faster. Genes in module M4, with peak 

expression during early embryogenesis represent an important outlier to this trend, as they tend 

to have both fast sequence evolution and moderately high values of α (Supplementary Figure 

S2). In yeast, however, factors like translational robustness appear to be especially important in 

mediating the correspondence between expression level and rate of coding sequence evolution 

(Drummond et al. 2005), though it remains unclear how general this explanation holds across 

eukaryotes. 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 11, 2019. ; https://doi.org/10.1101/518621doi: bioRxiv preprint 

https://doi.org/10.1101/518621
http://creativecommons.org/licenses/by-nc/4.0/


13 
 

Our analysis puts to the side the question of the relative importance of regulatory versus coding 

changes in adaptation and morphological divergence (Wray 2007; Carroll 2008; Stern and 

Orgogozo 2008). Instead, we focus on coding sequence evolution to ask what features of 

ontogeny predict differences in the rates of evolution across genes. The differences in rates of 

coding sequence evolution among distinct co-expression modules implies a mapping between the 

nature of regulatory control and protein evolution. Previous studies of diverse animals show a 

weakly positive correlation between molecular evolutionary rates of coding sequences and 

regulatory regions (Jordan, Mariño-Ramírez, and Koonin 2005; Lemos et al. 2005; Liao and 

Zhang 2006b), including for Caenorhabditis (Castillo-Davis, Hartl, and Achaz 2004; Mark et al. 

2019). Both coding sequences and gene expression are subject to purifying selection in C. 

elegans (Denver et al. 2005; Cutter, Dey, and Murray 2009), but future genome-scale analyses 

that couple ontogenetic transcriptome profiles with coding and regulatory sequence evolution are 

required to more fully determine the magnitude of inter-dependence of these modes of molecular 

evolution across development. 

Verbal models suggest that genes will be more likely to diverge in coding sequence when they 

have fewer cis-regulatory elements, and when coding mutations are less likely to exert 

pleiotropic effects (Carroll 2008). The simple expression profiles of genes in the constitutive 

modules that we identified (M6, M12, M3, M13) versus the more complex dynamics of the 

modules that get up- or down-regulated across ontogeny implies the potential for simple versus 

complex cis-regulatory control. Indeed, for a given magnitude of expression (α), genes in 

modules with simple profiles tend to show faster coding sequence evolution (e.g. M3 vs M7, 

M13 vs M1; Figure 4B), though genes with simple profiles often have high expression and slow 

evolution (e.g. M6). These observations set up a substrate for future analyses to test the 

hypothesis of a direct connection between cis-regulatory complexity and coding sequence 

evolution. 

Evo-devo generally focuses on how the relative strength of constraint, which manifests as 

purifying selection and sequence conservation, could shape temporal ontogenetic patterns of 

evolution (Kalinka and Tomancak 2012). And yet, micro-evolutionary studies demonstrate that a 

majority of amino acid substitutions in protein coding sequence evolution may accumulate as a 

result of adaptive evolution in many animals, especially those with large effective population 
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sizes (Galtier 2016). Our analysis of divergence, however, cannot distinguish whether 

differences in coding sequence evolution among gene classes reflects differences in the strength 

of purifying selection versus the incidence of adaptive divergence. In Drosophila, rapidly-

evolving proteins involved in chromatin regulation and genomic conflict are known to play 

important roles in creating post-zygotic reproductive barriers between species during early 

development (Presgraves 2010; Maheshwari and Barbash 2011; Cooper et al. 2018). 

Evolutionary conflict over allelic expression in early embryos can drive rapid sequence evolution 

(Haig 1997), and empirical observations demonstrate that positive selection is responsible for 

many coding sequence differences between species (Galtier 2016). Therefore, our findings raise 

the possibility that adaptive protein sequence divergence rather than weaker constraint might 

contribute importantly to ontogenetic patterns in the molecular evolution of development that 

lead to predictable developmental manifestations of hybrid dysfunction in the speciation process.   

 

Materials and Methods 

Expression data source and primary processing 

We obtained RNAseq transcriptome sequences as sam-format files (mapped to C. elegans 

reference genome version WS248) from the public modENCODE data repository 

(http://data.modencode.org) for the C. elegans developmental time series for early embryos, each 

larval stage and young adult hermaphrodites (Supplementary Table S1) (Gerstein et al. 2010; 

Gerstein et al. 2014). We quantified expression for each gene using featureCounts (Liao, Smyth, 

and Shi 2014), based on exon annotations of WS248 (transposable element and pseudogene 

annotations were excluded; exons corresponding to all alternative splice forms of a given gene 

contributed to expression quantification for that gene). We then normalized expression counts 

following the log-counts per million method of (Law et al. 2014). Embryonic transcriptomes 

included a single biological replicate per timepoint whereas larval and young adult 

transcriptomes included duplicates; given the high correlation between duplicates (r > 0.95), we 

used the average log-normalized expression for each larval and adult timepoint for subsequent 

analyses. We restricted our analyses to those 19,711 genes with an expression level ≥1 read 

count per million (cpm) in at least one timepoint (Robinson, McCarthy, and Smyth 2010). We 
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recalculated the log-cpm values for this set of 19,711 genes to account for the slight change in 

library sizes after the filtering step. 

 

Co-expression clustering and expression quantification of modules 

To uncover and identify distinct sets of gene expression patterns over time across the 19,711 

genes in the C. elegans transcriptome (co-expression “modules”), we performed a functional 

principal components analysis (FPCA) (Madrigal, Dai, and Hadjipantelis 2018). FPCA is 

appropriate for longitudinal datasets (Yao, Müller, and Wang 2005), as for this transcriptome 

time series with just a single replicate per timepoint. First, we applied FPCA to the log-

normalized gene expression data, using the “FPCA” function in the R package fdapace 

(Madrigal, Dai, and Hadjipantelis 2018), observing the first two components to cumulatively 

explain ~92% of the total variation. We then used each gene’s FPC scores of the first two 

components as input for the clustering algorithm, implemented through the “FClust” function in 

R that uses a Gaussian Mixture Model approach based on EMCluster (W.C. Chen and R. Maitra, 

2015, http://cran.r-project.org/package=EMCluster). We determined the optimal number of co-

expression clusters or modules in our analysis to be k = 14, based on minimizing the Bayesian 

information criterion (BIC) value. We varied k between 2 and 20 and observed minimum ΔBIC = 

11.4 occurring between k = 12 and k = 14. Visual inspection of expression trends affirmed the 

biological relevance of choosing k = 14 co-expression modules to represent the variation in 

expression profiles in the C. elegans transcriptome time series. Based on the outputs of the 

clustering algorithm, we assigned each gene to the module for which the gene has the highest 

membership probability. 

To summarize quantitatively the dominant trends in expression over time for each co-expression 

module, we fit orthogonal cubic polynomial functions with time to log-normalized expression 

values, rescaled using the “poly_rescale” function in the polypoly R package (T. Mahr, 2017, 

https://cran.r-project.org/package=polypoly). To relate the co-expression modules to each other, 

we then performed hierarchical clustering on the module-wise cubic polynomial regression 

coefficients. The parameters extracted from the cubic fits summarize the overall expression level 

(α), increasing or decreasing trends in expression across development (β1), the degree of concave 
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versus convex expression dynamics over ontogeny (β2), and how S-shaped are the expression 

dynamics (β3). In order to obtain a finer-grained view of the temporal trends, we also performed 

a gene-level analysis, in which we fit an orthogonal cubic polynomial to each individual gene 

expression profile and extracted the corresponding parameters for analysis. 

Finally, we classified genes according to expression pattern in the simplest of ways, by grouping 

genes according to which timepoint they showed peak expression across the time series.  

 

Enrichment analysis 

To investigate trends of genomic organization for each co-expression module, we used 

contingency tables and χ2-test statistics to test for non-random distributions of genes for each of 

the 14 modules across each of the 6 chromosomes in the genome. To achieve this, we arranged 

the data in 84 individual two-way contingency tables, so that we could obtain χ2-test statistics on 

1 degree of freedom to test for an association within each module-chromosome combination.  

We further investigated trends of genomic organization by looking within chromosomes, at 

enrichment within the arm and center regions of each chromosome, with arm vs. centre domains 

defined by recombination rate breakpoint positions given by (Rockman and Kruglyak 2009). 

MtDNA genes were excluded for these analyses, and p-values were adjusted for multiple testing 

using the Holm–Bonferroni method. 

We conducted gene ontology (GO) and phenotype enrichment analysis (PEA) tests using the list 

of genes in each co-expression module as input into the WormBase Enrichment Analysis Suite 

(Angeles-Albores et al. 2016; Angeles-Albores et al. 2018), obtaining Benjamini-Hochberg false 

discovery rate corrected p-values (q-values) for statistical significance. By also cross-referencing 

genes with the analysis of (Tu et al. 2015), we used their determination of operon identity and 

calculations of coding sequence divergence between orthologs of C. elegans and C. briggsae to 

quantify molecular evolution of protein sequence as KA, the rate of non-synonymous site 

substitution per non-synonymous site. Finally, we cross-referenced the genes in the 

transcriptome time series with those identified by (Ortiz et al. 2014) to have sex-neutral, oogenic 
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or spermatogenic enrichment of expression in their analysis of C. elegans transcriptomes from 

dissected gonads.  
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Figures 

 

Figure 1. Ontogenetic time series of 19,711 C. elegans gene expression profiles clustered into 14 

co-expression modules. Modules colored according to a trend of decreasing expression across 

development (yellow M4), peak expression in late embryogenesis (green M1, M8; M2, M7, M5), 

peak expression post-embryogenesis (purple M10, M11; M9, M14), or non-dynamic 

‘constitutive’ expression across all 30 developmental timepoints (gray M6, M12, M3, M13). 

Thick black curves indicate expression trend across all genes in a module; thick orange curves 

indicate cubic polynomial fit to the expression trend. Similarity of module profiles indicated in 

dendrogram, with heatmap of parameter values from polynomial fit to each module expression 

trend (α = overall expression level, β1 = linear change over time, β2 = quadratic curvature, β3 = 

cubic S-shape to expression profile over development). Vertical line at developmental timepoint 
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25 indicates the end of embryonic development, followed by 5 post-embryonic timepoints; 

embryonic timepoints taken at 30 minute intervals, with 1 timepoint for each larval stage L1-L4 

and young adult (Supplementary Figure S1) (Gerstein et al. 2010; Gerstein et al. 2014). 
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Figure 2. (A) Enrichment of gene membership among chromosomes for each co-expression 

module. Bold black text for observed/expected values in the heatmap indicates significant over- 

or under-enrichment (Holm-Bonferroni corrected p-values < 0.05,). (B) List of the 30 most 

enriched (>4-fold) gene ontology (GO) terms for each module, plus the single most enriched GO 

term observed for M3, M5, M12, M13 (all q-values < 0.005; 346 significantly enriched GO 

terms total across the 14 modules; Supplementary Table S1, Supplementary Table S2). (C) 

Enrichment of module gene membership on chromosome arms (values <1 imply enrichment in 

chromosome centers), where arm regions have higher recombination, higher density of repetitive 

elements, and lower gene density. Genome-wide significant enrichment on autosomal arms for 

M4, M10, and M13 and in centers for M5 and M12 (all Holm-Bonferroni corrected p-values < 

0.003). Module identities colored and sorted by expression profile similarity as in Figure 1. 
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Figure 3. Functional and evolutionary properties of genes within each co-expression module. The 

proportion of genes with enrichment of spermatogenic, oogenic or sex-neutral expression 

categories defined by Ortiz et al. (2014), shown in the cumulative bar graph. Heat map shows the 

incidence of module genes in operons, the fraction of module members having orthologs in C. 

briggsae, and the median rate of non-synonymous site substitution (KA) as a measure of protein 

sequence divergence. Module order sorted by expression profile similarity as in Figure 1. 
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Figure 4. (A) Median rate of protein evolution (non-synonymous site substitution, KA, between 

orthologs of C. elegans and C. briggsae) for genes within each co-expression module as a 

function of the proportion of module genes with the sex-neutral expression category, as defined 

by Ortiz et al. (2014). (B) Rates of protein evolution (KA, log-scale) plotted as a function of the α 

parameter (overall expression level) from the polynomial fit to the expression time series. Per-

gene values shown as small squares, module median values shown as large circles. Module 

membership color is the same in A and B. 
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Figure 5. (A) Median rates of protein evolution (KA) for genes with peak expression in different 

stages of the C. elegans life cycle (EE = early embryo, ME = mid-embryo, LE = late embryo, 

larval stages L1-L4, young adult); circle diameters proportional to value of KA. (B) Median KA 

for genes with peak expression at each timepoint in the ontogenetic time series (shading: yellow 

= EE, light green = ME, dark green = LE, blue = larval L1-L3, purple = larval L4 to young 

adult). Timepoints in embryogenesis are spaced at 30 minute intervals (Gerstein et al. 2010; 

Gerstein et al. 2014). (C) Cumulative fraction of genes having peak expression at each timepoint 

that are members of the 14 co-expression modules. Module identities sorted by expression 

profile similarity as in Figure 1 and colored as in Figure 4; dashed vertical white lines demarcate 

the boundaries between EE, ME, LE, larval L1-L3, larval L4 to adult as in B. 
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