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Abstract
Linear machine learning models are a powerful tool that can “learn” a data transformation by being

exposed to examples of input with the desired output, forming the basis for a variety of powerful

techniques for analyzing neuroimaging data. However, their ability to learn the desired transfor-

mation is limited by the quality and size of the example dataset, which in neuroimaging studies

is often notoriously noisy and small. In these cases, it is desirable to fine-tune the learned linear

model using domain information beyond the example dataset. To this end, we present a framework

that decomposes the weight matrix of a fitted linear model into three subcomponents: the data

covariance, the identified signal of interest, and a normalizer. Inspecting these subcomponents in

isolation provides an intuitive way to inspect the inner workings of the model and assess its strengths

and weaknesses. Furthermore, the three subcomponents may be altered, which provides a straight-

forward way to inject prior information and impose additional constraints. We refer to this process as

“post-hoc modification” of a model and demonstrate how it can be used to achieve precise control

over which aspects of the model are fitted to the data through machine learning and which are

determined through domain knowledge. As an example use case, we decode the associative strength

between words from electroencephalography (EEG) reading data. Our results show how the decoding

accuracy of two example linear models (ridge regression and logistic regression) can be boosted by

incorporating information about the spatio-temporal nature of the data, domain knowledge about

the N400 evoked potential and data from other participants.

Highlights:

• We present a framework to decompose any linear model into three subcomponents that are

straightforward to interpret.

• By modifying the subcomponents before re-assembling them into a linear model, prior infor-

mation and further constraints may be injected into the model.

• As an example, we boost the performance of a linear regressor and classifier by injecting

knowledge about the spatio-temporal nature of the data, the N400 evoked potential and data

from other participants.
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1 Introduction

Linear models are the workhorse behind many of the multivariate analysis techniques that are

used to process neuroimaging data,1 with applications ranging from signal decomposition2 3 4 1 McIntosh and Mišić, 2013

2 Uusitalo and Ilmoniemi, 1997

3 Jutten and Herault, 1991

4 Vigario, Sarela, Jousmäki, Hamalainen,

and Oja, 2000

to source modeling5 6 7 8 and signal decoding.9 10 11 Even though they may serve very different

5 Hämäläinen and Ilmoniemi, 1994

6 Matsuura and Okabe, 1995

7 Van Veen, van Drongelen, Yuchtman, and

Suzuki, 1997

8 Gross et al., 2001

9 Grootswagers, Wardle, and Carlson, 2017

10 Lotte, Congedo, Lecuyer, Lamarche,

and Arnaldi, 2007

11 Tong and Pratte, 2012

purposes, the data transformation performed by all linear techniques can be mathematically

described by a single matrix multiplication between the input data and a “weight matrix”. From

this point of view, the key difference between the various techniques is how the weight matrix

is computed.

Supervised linear machine learning algorithms compute the weight matrix based on examples

of the input data and the desired output.12 This class of algorithms have advanced the analysis

12 Hastie, 2009

of neuroimaging data on two important fronts. First, by learning what is signal and what is

noise, the signal can be projected away from noise sources, which provides an alternative

method to increase signal-to-noise ratio (SNR) to signal averaging. This makes it for example

possible to perform single-subject and even single-trial analysis.13 14 15 Second, by focusing on

13 Pernet, Sajda, and Rousselet, 2011

14 Parra et al., 2003

15 van Vliet et al., 2016

patterns rather than individual data points, there is no longer a requirement for a one-to-one

correspondence between the experimental manipulation and a change in the signal at a certain

location, time, or frequency, which enables more ambitious neuroimaging studies.16 17

16 Mitchell et al., 2008

17 Huth, Heer, Griffiths, Theunissen, and

Jack, 2016

The success of machine learning algorithms to find the desired transformation is for a large

part dependent on the ratio between the number of parameters that need to be estimated

and the number of provided training examples. In general, the more parameters that need

to be estimated, the more training data is needed to prevent overfitting of the model.18 19

18 Babyak, 2004

19 Blankertz, Lemm, Treder, Haufe, and

Müller, 2011

Unfortunately, it is common in neuroimaging studies for the data dimensionality to exceed the

number of trials in a recording, in which case restrictions need to be placed on the model in

order to force a unique solution. Especially in these cases, it is desirable to inspect the data

transformation that was “learned” by the algorithm to understand what aspects of the data

contribute to the output of the model, identify possible problems, and possibly impose further

restrictions on the model if the transformation was unsatisfactory.

In linear models, there are some effective general purpose approaches to place restrictions on

the learned data transformation, notably `1 regularization,20 which enforces sparsity of the 20 Tibshirani, 1996

weight matrix, and `2 regularization,21 which enforces a small magnitude of the individual 21 Rifkin and Lippert, 2007

weights. Moving beyond these approaches, imposing further restrictions that are motivated

by domain knowledge may lead to even better performance of the model. However, it is in

practice very difficult to express domain knowledge in terms of the weight matrix,22 since 22 Haufe et al., 2014

interpreting this matrix is not straightforward when there are co-linearities in the data, which

is almost always the case in neuroimaging.

To facilitate the interpretation of linear models, Haufe et al. (2014) introduced a way to trans-

form the weight matrix into a pattern matrix, which is more straightforward to interpret (see

section 2.2). It is therefore also easier to formulate domain knowledge in terms of the pattern

than the weights. For example, in a source estimation setting, the pattern matrix is the leadfield

(i.e., forward solution) and the weight matrix is the inverse solution. Bayesian methods for

computing the inverse solution formulate their domain knowledge driven priors on the lead-

field, rather than the inverse solution.23 24 In this paper, we combine the insight of Haufe et al. 23 Wipf and Nagarajan, 2009

24 Trujillo-Barreto, Aubert, and Penny,

2008

(2014) that a pattern matrix can be computed for any linear model, with the insight from source

estimation methods that priors that are formulated on the pattern matrix can be translated

into priors on the weight matrix.

We propose a framework that decomposes the weight matrix of a linear model into three
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subcomponents: 1) the data covariance, 2) the pattern matrix, and 3) the normalizer (see

section 2.3). Inspecting these subcomponents in isolation offers an intuitive way to gain

insights into the functioning of the model and possible problem points. Importantly, we

may modify each component to impose new constraints and incorporate domain knowledge,

before recomposing the subcomponents back into a weight matrix. By doing so, we are not

only able to improve the performance of linear analysis techniques, but also gain a deeper

insight into the similarities and differences between different linear models, as seemingly

unrelated techniques appear in this framework as variations of the same underlying theme

(see section 4).

Since the decomposition-modification-recomposition cycle of the weight matrix takes place af-

ter the initial model has been constructed through a conventional machine learning algorithm,

we refer to this process as “post-hoc modification”.

While the framework is agnostic to the methods by which the initial linear model was con-

structed, and is hence applicable to a wide variety of data analysis techniques, we will use

linear regression as an example throughout this paper to provide context to our procedures

and equations. To provide practical examples, we demonstrate several ways in which the

framework may be used to combine machine learning with domain information to decode

the associative strength between words from an EEG recording, following a semantic priming

protocol.25 26 We explore a regression scenario with a ridge regressor as a base model, and also 25 Neely, 1991

26 van Vliet et al., 2014a classification scenario with a logistic regressor. Using the post-hoc modification framework,

these two general purpose models were modified to incorporate 1) the fact that there is a

both a dependency between EEG sensors and time samples, 2) data recorded from the other

participants, and 3) the timing of the N400 component of the event-related potential (ERP),

which occurs around 400 ms after the onset of the second word stimulus.27 28 27 Kutas and Hillyard, 1980

28 Kutas and Federmeier, 2011

2 Methods

2.1 Linear models

Since the post-hoc modification framework can operate on any type of linear model, regardless

of function and type of data, we have chosen to adopt the general purpose terminology used

in the machine learning literature.29 See Table 1 for a summary of the mathematical symbols 29 Hastie, 2009

used in this paper.

We will refer to a data instance, for example a single epoch of EEG data or a single functional

magnetic resonance imaging (fMRI) image, as an “observation”. An observation consists of

m “features”, for example the voltage at each sensor and each each time point of an epoch,

or the beta weight for each voxel in an fMRI image. In this manner, a single observation is

described by row vector x ∈R1×m and an entire data set, consisting of n observations, by matrix

X ∈Rn×m .

A linear model transforms the input data by making a linear combination of the m features

to produce output data with k dimensions, referred to as “targets”. In machine learning,

the desired transformation is deduced by exposing the algorithm to an example input data

set X along with the desired output Y ∈ Rn×k . This process is referred to as “training” the

model.

To simplify the equations, it is assumed w.l.o.g. that the columns of both X and Y have zero

mean. In practice, this can be achieved by removing the column-wise mean from X and Y

before entering them into the model and adding the removed offsets back to the output. Under

the zero-mean assumption, the data transformation that is performed by a linear model can
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k Number of targets
m Number of features describing an observation
n Number of observations in a dataset
x A row vector of length m that describes a single observation
X A dataset consisting of n observations
X̂ An approximation of X
ΣX The empirical covariance matrix of X
Σ̃X A modified version of the empirical covariance matrix of X
y A row vector of length k that describes the desired output for a single example

observation
Y The desired output of a model for n example observations
Ŷ The actual output of a model, here an approximation of Y
ΣŶ The empirical covariance matrix of Ŷ, also referred to as the normalizer
Σ̃Ŷ A modified normalizer
W The weight matrix describing a linear transformation from X to Ŷ
W̃ The updated weight matrix obtained by combining Σ̃X, P̃ and Σ̃Ŷ
P The pattern matrix describing a linear transformation from Ŷ to X̂
P̃ A modified pattern matrix
I An identity matrix of appropriate size
λ Controls the amount of `2 regularization of the covariance matrix
α Controls the shrinkage of the spatial component of the covariance matrix
β Controls the shrinkage of the temporal component of the covariance matrix
µ Controls the center of the Gaussian kernel used as a windowing function for the

pattern matrix
σ Controls the width of the Gaussian kernel used as a windowing function for the

pattern matrix
ρ Controls the weighting between the pattern matrix for the current recording and the

grand-average pattern matrix across all other recordings

Table 1: A summary of the mathemati-
cal symbols used in this paper.

be represented by a multiplication between X and a weight matrix W ∈Rm×k :

Ŷ = XW, (1)

where Ŷ ∈Rn×k denotes the output of the model. In the case of machine learning, W is chosen

such that Ŷ approximates Y.

2.2 The pattern matrix

Haufe et al. (2014) showed the relationship between a linear model W that transforms X into Ŷ

and a linear model P ∈Rm×k that does the opposite and approximates X given Ŷ:

P =ΣXWΣ−1
Ŷ

, (2)

X̂ = ŶPT. (3)

In the above equations, ΣX is the (empirical) covariance matrix of X, Σ−1
Ŷ

is the inverse of the

(empirical) covariance matrix of Ŷ and X̂ ∈Rn×m is an approximation of X. We refer to P as the

pattern matrix and it can be interpreted in many ways. For example, P can be interpreted as

the inverse of the linear transformation performed by W. In a source estimation setting, P can

be regarded as the leadfield and W as the inverse solution. Alternatively, if W is a decoding

model, then P is the corresponding encoding model. Another useful interpretation is to regard

P as the signal of interest and W as a filter that isolates this signal from the rest of the data (see

Figure 1 for a visual guide).
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Figure 1: Visual explanation of the filter/signal interpretation of the weight and pattern matrices. This is a simulation of
a signal that is being observed through two sensors. Dots represent observations of the signal and the color of the dots
indicates the true signal strength during each observation. Linear regression is used to decode the true signal strength from
the observed data.
A: The simulated data consists of two components. The first component (large dots) dictates how the signal is measured by
the sensors (i.e. the encoding model). In this simulation, there is a one-to-one relationship between the true signal strength
and the measurements at both sensors. The second component (small dots) is simulated using random numbers drawn
from a two-dimensional Gaussian distribution and is a simulation of noise that is unrelated to the strength of the signal.
B: The data that is recorded by the sensors (large dots) is the summation of both the signal and noise components. A linear
regression model was trained on these observations, with the true signal strength as target, to determine the optimal linear
transformation to map the measured data to signal strength. In visual terms, the task of the model is to decode the color of a
dot, based on its location in the graph. In this two-dimensional example, the model’s weights can be visualized as a line
(orange line). We see that the direction of the regression line is dictated by the noise rather than the signal component, which
is why the weight matrix is so hard to interpret. In a similar fashion, the corresponding pattern (computed using equation 2)
can also be visualized as a line (green), which approximates the signal component.
C: Applying the linear regression to the data is equivalent to projecting the measured data onto the regression line (orange
axis). By projecting the data orthogonal to the noise, a near perfect reconstruction of the signal strength can be obtained,
which explains why the direction of the regression line is dictated by the noise component. For comparison, the result of
projecting the measured data onto several other lines is also shown: the pattern line (green axis) in the direction of the
signal component, the horizontal axis and the vertical axis. For each projection, the Pearson correlation between the signal
strength and the position along the projection line is provided.

An interactive version of this figure is available at https://users.aalto.fi/~vanvlm1/posthoc, where the noise com-
ponent can be manipulated to study its effect on the direction of the regression line.

2.3 Post-hoc modification

When we solve for W in equation 2, we obtain:

W =Σ−1
X PΣŶ, (4)

and observe that a weight matrix may be constructed from three subcomponents:

1. the covariance matrix of the data ΣX which describes the scale of the features and their

relationship

2. the pattern matrix P which describes the signal of interest

3. the normalizer ΣŶ which, in the case of k = 1 describes the scale of the result, or in the

case of k > 1 also the relationship between the targets

Since the above subcomponents are easier to interpret and manipulate than the weight matrix,

we propose a framework in which the weight matrix is first decomposed into these subcompo-

nents, which may then be manipulated at will, and finally recomposed into an updated weight
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compute initial weight matrix

manipulate components

decompose weight matrix

reassemble weight matrix

Figure 2: The post-hoc modification
framework. First, the initial linear
model W is constructed. This can for
example be done with a general pur-
pose linear machine learning algorithm.
Then, using equation 2, W is decom-
posed into data covariance ΣX, pattern
P and normalizer ΣŶ. These subcom-
ponents can then be manipulated at
will to impose further restrictions on the
model or inject prior information. Fi-
nally, the modified subcomponents Σ̃X,
P̃ and Σ̃Ŷ are reassembled into an up-
dated linear model W̃.

matrix (Figure 2):

W̃ = Σ̃−1
X P̃ Σ̃Ŷ, (5)

where Σ̃X is a modified version of the data covariance, P̃ is a modified version of the pattern

matrix, Σ̃Ŷ is a modified version of the normalizer, and W̃ is the updated weight matrix that

reflects the changes made to the subcomponents.

We will now go over some examples of how the subcomponents may be modified to improve

the performance of a linear model in a neuroimaging setting. In these examples, the task of

the linear model is to decode the forward association strength (FAS) between two words,30 30 Nelson, McEvoy, and Dennis, 2000

based on an EEG recording of a participant reading the word-pair during a semantic priming

experiment.

2.4 EEG recordings

The decoding performance of two linear models were evaluated on an EEG dataset, which was

recorded with 24 participants (7 female, aged 22–38, mixed handedness and all native speakers

of Flemish-Dutch). Two recordings were dropped from the study: one was dropped due to

problems with the stimulus synchronization signal and the other due to excessive sensor

impedance. Participants signed an informed consent form prior to participating. Ethical

approval of these studies was granted by an independent ethical committee (“Commissie voor

Medische Ethiek” of the UZ Leuven, Belgium). These studies were conducted according to the

most recent version of the declaration of Helsinki.

The participants read a series of sequentially presented words, organized in prime–target pairs,

and pressed one of two mouse buttons to indicate whether the two words of a word-pair were

related or not. The hand used to hold the mouse and the assignment of buttons to “yes”/“no”

responses was counterbalanced across participants.

The prime word was presented for 200 ms and the target word for 2000 ms with a stimulus

onset asynchrony (SOA) of 500 ms. Words were presented in white on a black background,

rendered in the Arial font. Since a speeded button response task will generate ERP components

that can mask N400 modulations,31 the participants were instructed to delay their button 31 van Vliet et al., 2014
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response until the target word turned yellow, which happened 1000 ms after the onset of the

target word. The participants had 1000 ms to respond, or else a non-response code would be

logged for the trial.

In addition to capturing the button response of the participant, EEG was recorded continuously

using 32 active electrodes (extended 10–20 system) with a BioSemi Active II System, having

a 5th order frequency filter with a pass band from 0.16 Hz to 100 Hz, and sampled at 256 Hz.

An electro-oculogram (EOG) was recorded simultaneously using the recommended montage

outlined by Croft and Barry (2000). Two final electrodes were placed on both mastoids and

their average was used as a reference for the EEG.

2.5 Stimuli

The stimuli consisted of Flemish-Dutch word pairs (see section 2.12) with varying FAS between

the two words in each pair, as measured by a large-scale norming study performed by De Deyne

and Storms (2008). In this norm dataset, FAS is defined as the number of participants, out

of 100, that wrote down the target word in response to the prime word in a free association

task.

The stimuli used in the experiment were the top 100 word-pairs with highest FAS in the norm

dataset and 100 word-pairs with an assumed FAS of zero that were matched in length, frequency

and in-degree. Each word-pair with a high FAS consisted of words with a length of 3 to 10

letters, with no restrictions on frequency or in-degree. To construct the low FAS pairs, for each

word in the high FAS condition, a random word was selected with equal length, frequency and

in-degree (or, if no such word existed, a word that matched these as close as possible), and

random pairings were made from the resulting words.

2.6 Data preprocessing

All data processing was performed using the MNE-Python32 and auto-reject33 software pack- 32 Gramfort et al., 2013

33 Jas, Engemann, Bekhti, Raimondo, and

Gramfort, 2017

ages. The EEG was bandpass filtered offline between 0.1 Hz and 50 Hz by a 4th order zero-phase

Butterworth filter to attenuate large drifts and irrelevant high frequency noise, but retain eye

movement artifacts. Individual epochs were obtained by cutting the continuous signal from

0.2 s before the onset of each target stimulus to 1 s after. Baseline correction was performed

using the average voltage in the interval before the stimulus onset (−200 ms to 0 ms) as baseline

value. The random sample consensus (RANSAC) algorithm was used to detect excessively noisy

channels, and those signals were subsequently replaced by interpolating the signals from

nearby sensors using spherical splines.34 Two EOG artifact elimination passes were performed 34 Perrin, Pernier, Bertrand, and Echallier,

1989on the data. First, the EOG channels were used to attenuate eye artifacts from the EEG signal

using the regression method outlined in Croft and Barry (2000). Second, the data was de-

composed using independent component analysis (ICA) and any components that correlated

strongly with one or more EOG channels were removed. Next, the signal was band pass filtered

further using a tight passband around the frequency range in which the N400 component

was found, namely between 0.5 Hz and 15 Hz, by a 4th order zero-phase Butterworth filter

and downsampled to 50 Hz to reduce the dimensionality of the data. Further artifacts were

removed using the autoreject procedure,35 which flags and interpolates noisy channels in each 35 Jas et al., 2017

individual epoch by measuring how well data from other epochs predicts the data of the epoch

currently under consideration. While autoreject can also flag and remove noisy epochs, this

functionality was disabled to ensure no epochs were dropped from the data.
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A full report of the data preprocessing steps can be found at:

https://users.aalto.fi/~vanvlm1/posthoc.

2.7 Initial linear models

In this paper, we give some examples on how to use the post-hoc modification framework

to inject domain knowledge into two general purpose machine learning models. For the

regression scenario, we chose the ridge regressor as implemented in the Scikit-Learn package36 36 Pedregosa et al., 2012

as the base model, and for the classification scenario the logistic regressor from the same

package was chosen. These two particular models were chosen because they are widely used

in neuroimaging and their performance on our example datasets is equal or better than other

commonly used linear models (e.g. shrinkage linear discriminant analysis (LDA) or linear

support vector machine (lSVM)).

Each epoch of the recording served as a single observation for the model, and the corresponding

row-vector x was obtained by concatenating the timecourses recorded at all EEG sensors. The

resulting vectors formed the rows of input matrix X, resulting in X ∈R200×1600. In the regression

scenario, the desired output of the model, Y ∈R200×1, was specified as the log-transformed FAS

of the word-pair presented during each epoch.37 In the classification scenario, Y was formed by 37 van Vliet et al., 2016

specifying 1 if the word-pair presented during the epoch consisted of two associatively related

words, and −1 otherwise.

To evaluate the overall performance of a model, 10-fold crossvalidation was used, where nine

folds were used as training data and one fold was used as test data. By repeating this ten times,

such that each fold has been used as test data once, and collecting the output of the model for

each run, the full matrix Ŷ was constructed, containing the crossvalidated model output for

each epoch. The performance of the model, p, was then quantified in the regression scenario

using the Pearson correlation between Ŷ and Y, and in the classification scenario using the

classification accuracy.

Normalization of X was performed inside the crossvalidation loop as well, such that the mean

and standard deviation of each feature across observations was computed on the training data

only, and subsequently used to normalize the features of the test data.

2.8 Strategies for modifying the covariance matrix

The input data X that is given to the linear model is a set of preprocessed EEG epochs. Each

epoch is encoded as a row vector x by concatenating the timeseries (consisting of 50 samples),

as recorded at each of the 32 sensors, resulting in m = 50×32 = 1600 features. Because we have

a maximum of n = 200 epochs available for each participant, the problem of estimating 1600

weights from the data of a single participant is massively underspecified and the model will

overfit.38 38 Babyak, 2004

A common way to alleviate overfitting in linear models is to introduce regularization when

estimating the covariance matrix during the training of the model. For example, with `2

regularization, a trade-off is made between maximizing the fit between Ŷ and Y and minimizing

the absolute value of the weights ‖W‖, which prevents the model from placing too much

emphasis on a single feature.39 40 The initial ridge regression model we use as a base model 39 Rifkin and Lippert, 2007

40 Hastie, 2009(section 2.7) already implements such regularization.
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Figure 3: Shown on the right is the
grand average covariance matrix. This
matrix can be approximated with the
Kronecker product of the grand average
spatial covariance matrix (upper left)
and grand average temporal covariance
matrix (bottom left).

The post-hoc modification framework can be used to impose `2 regularization on any linear

model by adding a constant value to each diagonal element of the covariance matrix ΣX:

Σ̃X =λI+ΣX, (6)

where I is an identity matrix of the appropriate size and λ ∈ [0 . . .∞) is a parameter that

controls the tradeoff between the fit between Ŷ and Y and the scaling of the weights ‖W‖. As λ

approaches infinity, Σ̃−1
X and hence W̃ approach zero (equation 5).

Another approach is to apply “shrinkage” regularization,41 42 which drives the covariance matrix 41 Blankertz et al., 2011

42 Engemann and Gramfort, 2015towards a (scaled) identity matrix:

γ= trace(ΣX)

m
, (7)

Σ̃X =αγI+ (1−α)ΣX, (8)

where α ∈ [0 . . .1] controls the amount of shrinkage and γI is an identity matrix that is scaled by

the mean of the diagonal elements of the empirical covariance matrix. In the shrinkage scheme,

we choose α according to how certain we are that the empirical estimate of the covariance

matrix is a good approximation of the true covariance matrix. When the data dimensionality

is low and the number of available training examples high, the empirical estimate is likely a

good approximation, so we choose α close to zero. In the inverse case, where the empirical

estimate is likely to be biased, it may be beneficial to choose α close to one, in which case the

linear model will disregard any relationship between the features.

In our EEG example, X was obtained by concatenating the timecourses for each sensor, which

introduces a striking regularity in the covariance matrix, see Figure 3. The covariance matrix

can be approximated by the Kronecker product43 between the spatial covariance matrix Σs
43 Loan, 2000

(i.e., the linear relationship between the sensors) and temporal covariance matrix Σt (i.e., the

linear relationship between the samples in time):44 44 Bijma, De Munck, and Heethaar, 2005

ΣX ≈Σs ⊗Σt, (9)

where (⊗) denotes the Kronecker product. With this in mind, we propose a variation of the

shrinkage approach that we call “Kronecker shrinkage”. First, we shrink of ΣX towards Σs ⊗ It,
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where It denotes an identity matrix of the same dimensionality as the temporal covariance

matrix. Then, we substitute the result into equation 8 instead of ΣX:

Σ̃X =αγI+ (1−α)(βΣs ⊗ It + (1−β)ΣX), (10)

where α controls the shrinkage of the spatial component and β controls the shrinkage of the

temporal component of the covariance matrix.

2.9 Strategies for modifying the pattern matrix

The root problem that causes overfitting of the model is a lack of available training data.

Therefore, for datasets that include multiple participants or recording sessions, we would

expect the model to perform better if it had access to all recordings. However, transferring a

weight matrix from one participant to another is often non-optimal, because it is unlikely to

be similar across participants. Since this matrix represents a filter that isolates the signal of

interest from all signals of non-interest (Figure 1), it depends on all signal components. This is

why, in a neuroimaging setting, linear models that aim to generalize across participants are

often outperformed by participant-specific models, even when the general models have access

to more training data.45 46 47 45 Reuderink, Farquhar, Poel, and Nijholt,

2011
46 Lotte, Guan, and Ang, 2009

47 Fazli et al., 2009

In contrast, the pattern matrix is more likely to be similar across participants, because it repre-

sents only the signal of interest, and has been successfully transferred between participants.48 49

48 van Vliet et al., 2016

49 van Vliet, Van Hulle, and Salmelin, 2018

In the post-hoc modification framework, the pattern matrix can be straightforwardly steered

towards the grand average. Let P be the average of the pattern matrices for all recordings,

excluding the recording currently under consideration. Then:

P̃ = ρP+ (1−ρ)P, (11)

where ρ controls how much the pattern matrix is steered towards the grand average. This oper-

ation can be beneficial if the model has difficulty identifying the signal of interest during the

training phase (e.g, due to noisy data, lack of training data, or absence of a Y matrix50). 50 van Vliet et al., 2018

Another approach to correcting inaccuracies in the pattern matrix is to leverage domain

knowledge of the signal of interest. In our example case, the task is to decode FAS from the

EEG signal, in which case the literature notes the N400 component of the ERP 51 52 as the 51 Kutas and Hillyard, 1980

52 Kutas and Federmeier, 2011primary signal of interest. We can instruct the model to look for a specific ERP component, by

multiplying the timecourses in the pattern matrix with a Gaussian kernel (Figure 4):

P̃(c, t ) = e
− 1

2

(
t−µ
σ

)2

P(c, t ), (12)

where c iterates over all channels, t iterates over all time samples, and P(c, t) denotes the

element of P that corresponds to channel c at time t . Parameters µ and σ determine the center

and width of the Gaussian kernel (Figure 4).

Of course, the above operation is specific to our example case, in which we have intimate

knowledge of the signal of interest. But even when the signal of interest is unknown, most

event-related studies are designed such that each epoch is preceded by a baseline period that

should be devoid of the signal of interest. In these cases, setting the values in the pattern matrix

that correspond to the baseline period to zero may be beneficial. Note that this is not the

same as discarding the baseline data. Rather, this operation flags the data as containing only

noise, which is beneficial for designing the filter, which, as we have seen, depends on accurate
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Figure 4: Example of multiplying the
pattern matrix with a Gaussian kernel. A:
Parameters µ and σ determine the posi-
tion and shape of the kernel. B: Example
of a pattern matrix, with the timecourse
for each sensor drawn in black. An ex-
ample Guassian kernel is drawn in blue.
For this visualization, the pattern was
normalized to have a maximum ampli-
tude of 1 to have the same visual scale as
for the kernel. C: The result of multiply-
ing the pattern matrix with the Gaussian
kernel.

modelling of both signal and noise.

2.10 Strategies for modifying the normalizer

Modifying the covariance and pattern matrices also influences the matrix norm of the weight

matrix and hence the magnitude of the output of the linear model. Depending on the applica-

tion of the model, this may be problematic. For example, setting elements of the pattern matrix

to zero (section 2.9) may decrease the error as measured by a scale-free metric such as Pearson

correlation. However, as it will reduce the magnitude of the output, it may increase the error as

measured by a scale-dependent metric such as the commonly used mean squared error (MSE).

In such cases, it may be desirable to modify the normalizer to enforce a standardized scaling of

the output.

Inspiration for such normalization schemes can be found in the beamformer literature.53 For 53 Sekihara and Nagarajan, 2008

example, the basic formulation of a linearly constrained minimum variance (LCMV) beam-

former54 constrains the result such that W̃P̃ = I and is computed as follows: 54 Van Veen et al., 1997

W = Σ−1
X P

PTΣ−1
X P

. (13)

In the post-hoc modification framework, we can use the same scaling strategy by using the

denominator of equation 13 as a normalizer:

Σ̃Ŷ = (P̃TΣ̃−1
X P̃)

−1
. (14)

2.11 Tuning of the parameters

Both initial models (see section 2.7) have a parameter (α) that determines the amount of `2

regularization, and throughout sections 2.8 to 2.9, we have defined several more parameters
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(β,ρ,µ,σ) that control various aspects of the model. These parameters can be used to impose

hard constraints on the model, for example, µ and σ limit the time-range in which the model

will search for the signal of interest. Alternatively, they can be treated as parameters that need

to be learned, just like the model weights.

In our example analysis, we used an inner leave-one-out cross-validation loop to learn these

parameters during the training phase, using a general convex optimization algorithm (Limited-

memory Broyden–Fletcher–Goldfarb–Shanno with box constraints (L-BFGS-B)55). This algo- 55 Byrd, Lu, Nocedal, and Zhu, 1995

rithm searches for the optimal parameters by alternating between two phases: 1) estimating

the direction of maximum performance gain by making tiny changes to each parameter and

measuring the effect on the leave-one-out performance of the model, followed by 2) updating

the parameters in the direction of maximum positive effect on the performance. This process

is repeated until no changes to the parameters can be found that improve the leave-one-out

performance.

The optimization approach employed by the L-BFGS-B algorithm requires that the chosen

model performance evaluation function is continuous and differentiable. This is why, for the

classification model, we used the logistic loss function rather than classification accuracy, since

the latter is not differentiable. For the regression model, the Pearson’s correlation coefficient

between the leave-one-out model output and the desired output (Y) was used.

2.12 Data and code availability

Electronic supplementary information is available at: https://users.aalto.fi/~vanvlm1/posthoc.

This includes a Python package that provides an implementation of the post-hoc modification

framework that is compatible with Scikit-Learn.56 The package contains optimized implemen- 56 Pedregosa et al., 2012

tations (see appendices) of all modification strategies discussed in this paper and provides an

interface for implementing new ones.

The consent form that was signed by the participants stated that the raw data would not

be shared publicly without limitations. This data can be obtained upon request from the

corresponding author, for reasons such as replication, assessment of other analysis methods,

or aid in future studies on semantic processing.

All nonsensitive data can be found in the electronic supplementary information, including the

grand-average pattern matrices, the preprocessing reports for the data of each participant, the

output of the models and the stimulus list.

3 Results

The performance of the initial ridge regression and logistic regression models (section 2.7)

were evaluated using 10-fold cross validation (the epochs were shuffled before being assigned

to folds). For the ridge regression model, we report the Pearson correlation between the model

output and the FAS of the word-pairs as the performance metric (Figure 5, left, “ridge”). For the

logistic regression model, we report the classification performance using the receiver operat-

ing characteristic – area under curve (ROC-AUC) score (Figure 5, right, “logistic”), where the

classification task was to assign each epoch to either the low-FAS or high-FAS category.

The performance of the models varied substantially between recordings performed on different

participants. One factor that influences the performance of the model is the amount of noise

and the ability of the model to accurately determine the “direction” of the noise (see Figure 1).

By applying regularization to the covariance matrix, the estimated direction of the noise is
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Figure 5: Performance of the linear
model, before and after applying various
post-hoc modification strategies. Re-
gression performance (left) is measured
as the Pearson correlation between the
model output and the log-transformed
FAS of the word-pairs. Classification per-
formance (right) is measured as the ROC-
AUC, where the classification task was to
distinguish between word-pairs with ei-
ther a low or high FAS. The performance
for each participant is shown (colored
dots and numbers), along with the mean
performance across participants (black
dots). Lines have been drawn between
the dots in order to facilitate comparing
the performance of a single participant
across modification strategies. See the
main text for an explanation of the mod-
ification strategies.
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Figure 6: For each participant (1-22), the pattern that was learned by the initial linear models, for both the regression (left,
ridge regression) and classification (right, logistic regression) scenarios. The timecourses of all electrodes are shown overlaid.
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Figure 7: For each participant (1-22), the pattern that was used in the linear model that incorporates all post-hoc modifica-
tions (the “all information” model), for both the regression and classification scenarios. The timecourses for all electrodes
are shown overlaid.
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steered towards being spherical (i.e. equal in all directions). Both initial models already apply

`2 regularization. In the regression scenario, Kronecker shrinkage, which controls the amount

of shrinkage for the spatial and time dimensions separately, outperforms the `2 regularization

approach (Figure 5, left, “kronecker”). In the classification scenario, Kronecker shrinkage is

beneficial in some cases, but detrimental in others (Figure 5, right, “kronecker”).

Inspecting the pattern matrices (Figure 6), computed with equation 2, reveals another con-

tributing factor that influences the performance of the models. The N400 component is a

prominent signal of interest for determining FAS from EEG data.57 In some patterns (e.g, partic- 57 Kutas and Federmeier, 2011

ipants 3 and 20), the N400 is clearly visible as a peak at around 400 ms. However, in almost all

patterns, there are other peaks, indicating that the model has learned other signals of interest

as well. The question is how well these features generalize beyond the training set.

By taking a weighted average between the participant-specific pattern and the grand-average

pattern, signals of interest that are present for all participants can be given priority. Further-

more, if too much noise is present, the model may not be able to accurately learn a signal of

interest from the training data alone, in which case using the grand-average template can be

beneficial. This procedure increases the performance of both the ridge regression and logistic

regression models (Figure 5, “multiple subjects”).

Another approach is to put the focus on the N400 potential by limiting the pattern in time

(Figure 4), as this signal of interest is likely to generalize beyond the training set. This procedure

also increases the performance of both the ridge regression and logistic regression models

(Figure 5, “temporal information”).

Finally, the result of combining all the above modification strategies was evaluated, yielding the

best performing regression and classification models (Figure 5, “all information”). Inspecting

the modified pattern matrices (Figure 7) reveals that the N400 potential is a much more

prominent signal of interest for the best performing model.

4 Discussion

We have demonstrated how general purpose models can be made more task specific with the

post-doc modification framework. In our example, we have modified a ridge regression and

logistic regression model to:

1. employ Kronecker shrinkage that takes the spatio-temporal nature of EEG into account

2. use the grand-average pattern across multiple recordings as a prior for the current model

3. use information about the temporal characteristics of the N400 potential as a further

prior

The resulting models show a remarkable improvement over the initial general purpose models.

However, we also note a diminishing return when too many parameters are introduced, since

it increases the risk of overfitting. The final “all information” model should theoretically never

perform worse than the “temporal information” or “multiple subjects” models, since σ can be

set to a large value to disable restricting the pattern in time, and ρ can be set to zero to disable

incorporating any data from other recordings. Yet, due to overfitting, the optimal settings were

not always chosen during the inner-cross validation loop.

The presented modification strategies are only a few EEG-specific examples, meant to demon-

strate the capabilities of the post-hoc modification framework. The post-hoc modification

framework opens up a wide range of possibilities to design such modification strategies, and

we hope that our examples can serve as inspiration. For example, the N400 potential has a well
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defined spatial signature58 that may be used in addition to a temporal prior. Alternatively, one 58 Kutas and Federmeier, 2011

may define more informative priors for the covariance matrix, for example, a recording of the

empty measurement room, without any participant, is often used in magnetoencephalography

(MEG) studies. For other decoding tasks, wholly new modification strategies can be designed

that are appropriate for the characteristics of the noise and signal of interest.

In our examples, we focused on optimizing the decoding performance of the model, but this

may not always be the main criterion for such models. Decoding models are often employed

to explore the signal of interest that was learned, in which case interpretability of the model is

more important.59 60 61 In this case, the pattern matrix is a valuable tool,62 which contains the 59 Haufe et al., 2014

60 Kia, Pedregosa, Blumenthal, and

Passerini, 2017

61 Parra et al., 2003

62 Haufe et al., 2014

signals of interest that were learned by the model. However, the fact that a signal is useful for a

decoding task does not necessarily mean that it is of interest to the study. For instance, in our

example EEG study, eye artifacts are a good predictor for FAS and, despite the preprocessing

steps to attenuate them, are likely still present in the pattern matrices (e.g., Figure 6, participant

22). Furthermore, given that most models in neuroimaging are overfitting, due to the ratio of

number of features versus the size of the training set, the pattern matrix can be noisy and/or

biased.

We propose to combine the pattern matrix that was learned from the data with a prior that is

based on domain information. Using the decoding performance of the model as a guide, the

initial pattern matrix may be pushed towards the prior, attenuating some of the noise. In our

example study, the initial models sometimes failed to find a signal that clearly resembles the

N400 potential, yet when a template N400 signal was mixed in with the pattern matrix, the

decoding accuracy increased, which suggests that the N400 potential was present in the EEG of

the participant after all (e.g., compare Figure 6 and Figure 7 for participant 5).

If the goal of the analysis is to study a specific signal of interest, it may be desirable to fix

aspects of the pattern. For example, if the goal is to measure the timing of the N400 potential,

we may explicitly set the pattern matrix to a time-shifted version of a suitable N400 template.

Restricting the pattern allows for precise control over which aspects are “learned” from the

data and which are dictated by the researcher. This enables an interative process, where first

some initial restrictions are placed by the data analyst, then the model is fitted to the data,

followed by an inspection of the resulting pattern matrices, leading to more refined restrictions,

until finally, a model is obtained that satisfies all requirements.

If P̃ is completely fixed, the model is transformed into a beamformer63 and no ground truth 63 van Vliet et al., 2016

(Y) is required to train the model. For example, it is possible to train a model on a dataset for

which a ground truth is available, and transplant the resulting pattern matrix into a new model

that is fitted to a dataset for which no ground truth is (yet) available.64 64 van Vliet et al., 2018

5 Conclusion

The post-hoc modification framework can be used to decompose the weight matrix of any

linear model into three components: a covariance matrix, a pattern matrix and a normalizer.

Domain knowledge can often be straightforwardly incorporated into the model by modifying

these components and re-assembling them into a modified weight matrix.

We have presented some strategies for incorporating domain knowledge and demonstrated

their effectiveness on an example EEG dataset, where the task of the linear model was to

predict, given a single epoch, the associated relatedness between the two words that were

presented during the epoch. Through post-hoc modification of two general purpose models, a

ridge regression and logistic regression model, information was incorporated about the spatio-
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temporal nature of EEG data, the recordings performed on other participants and the N400

potential. The resulting domain specific models achieved an increase in decoding performance

compared to the initial, general purpose models.

However, the presented modification strategies merely serve as examples. Post-hoc modifica-

tion offers many possibilities to implement modification strategies to suit the many different

purposes of linear models in neuroimaging and other fields.
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Appendix A: Optimizing covariance computation

Computing the empirical covariance matrix ΣX and its inverse Σ−1
X can be time consuming,

given the number of features in EEG and especially MEG epochs. Typically, however, the number

of features far exceeds the number of epochs, which allows us to compute equation 5 efficiently

by applying the matrix inversion lemma,65 which states that for any matrices A, B, U, and V of 65 Tylavsky and Sohie, 1986

appropriate size, the following holds:

(A−UBV)−1 = A−1 +A−1U(B−1 −VA−1U)−1VA−1. (15)

This allows us to reformulate XTX, which is for our example EEG dataset a 1600×1600 matrix,

in terms of XXT, which is in our example a 200×200 matrix.

For example, in the case of Kronecker shrinkage, equation 5 may be computed as:

W̃ = [αγI+ (1−α)(βΣs ⊗ It + (1−β)XTX)]−1 P̃ Σ̃Ŷ, (16)

= [αγI+ (1−α)βΣs ⊗ It + (1−α)(1−β)XTX]−1 P̃ Σ̃Ŷ, (17)

A =αγI+ (1−α)βΣs ⊗ It, B = I, U =−(1−α)(1−β)XT, V = X, (18)

G = A−1U, K = I+XG, (19)

W̃ = (A−1 +GK−1XA−1)P̃Σ̃Ŷ. (20)

Appendix B: Optimizing the inner cross-validation loop

Our optimization strategy (section 2.11) depends on evaluating the leave-one-out performance

of the model many times. The computationally most expensive operation in equation 20 is

computing K−1. However, this matrix only needs to be computed once, whereafter the leave-

one-out case where one observation i is left out can be obtained efficiently by only computing

the change caused by leaving one observation out, instead of re-computing the matrix from

scratch. Let K(i ) denote the leave-one-out version of K, which in the case of this matrix means

the i ’th row and column are removed. Salmen, Schlipsing, and Igel (2010) have devised an

efficient updating algorithm for this case, using the matrix inversion lemma.

Begin by computing K(1) and K−1
(1) in a conventional manner. Then, K(i ) can be constructed for

i > 1 by replacing the (i −1)’th row and column of K(1) with the first observation. Note that this

results in a non-standard ordering of the rows and columns of K(i ), so care must be taken to
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order the leave-one-out versions of X and Y in the same manner. The update rule of the inverse

can then be formulated as:

K−1
(i ) = (K(1) +D)−1, (21)

D = K(1) −K(i ) =



0 · · · k1,1 −k2,i · · ·0
0 · · · ... · · ·0

k1,1 −ki ,2 · · · k1,i −ki ,i · · ·k1,n −ki ,n

0 · · · ... · · ·0
0 · · · kn,1 −kn,i · · ·0


, (22)

where ki , j refers to the element at row i and column j of the original matrix K and n is the total

number of observations in K.

To apply the inversion lemma (equation 15), D must be formulated in terms of UBV, which

yields:

U =



k1,1 −k2,i 0

k2,1 −k3,i 0
...

...

k(i−1),1 −k(i−1),i 0

ki ,1 −ki ,i 1

k(i+1),1 −k(i+1),i 0
...

...

kn,1 −kn,i 0



, B =
(

1 0

0 1

)
, (23)

V =
(

0 0 · · · 0 1 0 · · · 0

k1,1 −k2,i k2,1 −k3,i · · · k(i−1),1 −k(i−1),i 0 k(i+1),1 −k(i+1),i · · · kn,1 −kn,i

)
.

(24)

Then, applying equation 15:

K−1
(i ) = (K(1) +UBV)−1 = K−1

(1) −K−1
(1)U(B−1 +VK−1

(1)U)
−1

VK−1
(1). (25)
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