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Abstract 

 The function of spontaneous brain activity is an important issue in neuroscience. 

Here we test the hypothesis that patterns of spontaneous activity code representational 

patterns evoked by stimuli and tasks. We compared in human visual cortex multi-vertex 

patterns of spontaneous activity to patterns evoked by ecological visual stimuli (faces, 

bodies, scenes) and low-level visual features (e.g. phase-scrambled faces).  Specifically, 

we identified regions that preferred particular stimulus categories during localizer scans 

(e.g. extra-striate body area for bodies), measured multi-vertex patterns for each 

category during event-related task scans, and then correlated over vertices these 

stimulus-evoked patterns to the pattern measured on each frame of resting-state scans. 

The mean correlation coefficient was essentially zero for all regions/stimulus categories, 

indicating that resting multi-vertex patterns were not biased toward particular stimulus-

evoked patterns.  However, the spread of correlation coefficients between stimulus-

evoked and resting patterns, i.e. both positive and negative, was significantly greater for 

the preferred stimulus category of an ROI (e.g. body category in body-preferring ROIs).  

The relationship between spontaneous and stimulus-evoked multi-vertex patterns also 

governed the temporal correlation or functional connectivity of patterns of spontaneous 

activity between individual regions (pattern-based functional connectivity). Resting 

patterns related to an object category fluctuated preferentially between ROIs preferring 

the same category, and patterns related to different categories fluctuated independently 

within their respective preferred ROIs (e.g. body- and scene-related multi-vertex 

patterns within body- and scene-preferring ROIs). These results support the general 
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proposal that spontaneous multi-vertex activity patterns are linked to stimulus-evoked 

patterns, consistent with a representational function for spontaneous activity.  
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Introduction 

Spontaneous neural activity is observed throughout the brain, yet its function 

remains mysterious.  An important clue, however, comes from work that has uncovered 

striking similarities between spontaneous activity and the activity evoked by a task 

(Arcaro et al 2015, Berkes et al 2011, Cole et al 2016, Fiser et al 2004, Fox et al 2007, 

Heinzle et al 2011, Kenet et al 2003, Omer et al 2018, Raemaekers et al 2014, Ryu & 

Lee 2018, Tavor et al 2016, Tsodyks et al 1999). For example, the temporal correlation 

of spontaneous activity between brain regions (functional connectivity, FC) closely 

resembles the spatial topography of task-evoked activity (Biswal et al 1995, de 

Pasquale et al 2010, Greicius et al 2003, He et al 2008, Power et al 2011, Yeo et al 

2011), links distributed brain regions into functional networks, and can be used to 

predict task activation (Cole et al 2016, Osher et al 2019, Tavor et al 2016). 

The remarkable spatiotemporal regularities of spontaneous activity and 

widespread findings that abnormalities in inter-regional correlations of spontaneous 

activity in humans are associated with neurological and psychiatric disorders (e.g. 

(Grefkes & Fink 2014, Northoff & Duncan 2016)) have motivated a search for functional 

explanations. One hypothesis is that spontaneous activity has a role in the synaptic 

homeostasis of structural connections (Deco et al 2013). Another idea is that 

fluctuations of spontaneous activity between regions constitute a spatiotemporal prior 

that facilitates the recruitment of task circuitries during behavior (Petersen & Sporns 

2015, Raichle 2011).  A third hypothesis is that spontaneous activity has a role in 

representing information about external (Fiser et al 2010) and internal states 

(Harmelech & Malach 2013). Genetically determined circuitries generate spontaneous 
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activity that is shaped in the course of development by experience through Hebbian 

statistical learning (Berkes et al 2011). Conversely, spatial and temporal patterns of 

spontaneous activity constrain task-evoked patterns. As a result of this cyclic process, 

both spontaneous and task-evoked activity code similar representations of internal and 

external states (Fiser et al 2010). The same process determines the spontaneous 

interactions between regions, which reflect connectivity patterns that are coded as 

synaptic efficacies in cortical networks (Harmelech & Malach 2013, Strappini et al 2018). 

Figure 1 illustrates schematically the representation hypothesis of spontaneous brain 

activity. 

 

Figure1 

The representation hypothesis has been supported by human and animal work. 

In animals, imaging of neural activity at a scale that extends across many cortical 

columns has shown that the macro-scale spatial pattern of spontaneous neural activity 

within a sensory area in an anesthetized animal mirrors the pattern of activity evoked by 
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stimulation of a specific visual feature (Kenet et al 2003, Omer et al 2018).  In humans, 

fMRI studies of early visual cortex have shown that FC between individual voxels 

respects the stimulus-evoked selectivity of voxels for polar angle, eccentricity, and low-

level stimulus features (Arcaro et al 2015, Heinzle et al 2011, Raemaekers et al 2014, 

Ryu & Lee 2018). Recent work has also shown that voxel-wise resting FC in visual 

cortex is better approximated by the FC evoked by movies than by more artificial stimuli 

such as rotating checkerboards or static pictures of stimuli (Strappini et al 2018, Wilf et 

al 2017). Finally, Chen and colleagues (Chen et al 2017) measured the voxelwise 

resting FC between regions of ventral visual cortex and a second region that was 

functionally related to a specific visual category (e.g. tools).  The multivoxel pattern of 

voxelwise FC values in a ventral visual region was similar to the multivoxel pattern of 

activity evoked in that region by exemplars of the category.  

Here we further test the representation hypothesis in human visual cortex by 

determining whether multi-vertex patterns of resting activity resemble stimulus-evoked 

patterns of activity. This analysis bears some resemblance to a representational 

similarity analysis, which is a standard methodology for identifying the representational 

content of evoked activity in a brain region (Kriegeskorte et al 2008). Unlike Chen et al 

(Chen et al 2017), we examine the multi-vertex pattern of resting activity at each 

timepoint rather than separately analyzing each individual vertex over timepoints in a 

resting FC analysis. 

Specifically, we measured the similarity of resting and stimulus-evoked multi-

vertex patterns in different category specific regions of human visual cortex (e.g. 

extrastriate body area, EBA, fusiform face area, FFA, and parahippocampal place area, 
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PPA), for different stimulus categories (e.g. bodies, faces, places). We also examined 

the similarity of resting and stimulus-evoked patterns in early visual cortex and in 

category specific regions of visual cortex for the low-level features comprising phase-

scrambled and grid-scrambled stimuli.  Finally, we examined whether in the resting-

state, fluctuations over time in the amplitude of stimulus-evoked patterns were 

correlated across regions (hereafter termed ‘pattern-based functional connectivity’).  For 

example, do fluctuations in the amplitude of a resting multi-vertex pattern of activity in a 

region that is related to a particular category (e.g. bodies) correlate over time with 

fluctuations in the amplitude of the multi-vertex pattern of activity for the same category 

in a different region? Because this analysis measures the correlated fluctuations of 

spontaneous patterns of activity across regions, it differs from a standard functional 

connectivity (FC) analysis, in which the activity of a single voxel is temporally correlated 

with the activity of other voxels, or the activity averaged across the voxels of a region is 

temporally correlated with the activity of other voxels or averaged regions. Similar multi-

vertex, pattern-based FC analyses have previously been reported, but only for task-

evoked activity, not for resting activity (Anzellotti & Coutanche 2018, Chen et al 2018, 

Coutanche & Thompson-Schill 2013). 

The representation hypothesis of spontaneous activity makes several specific 

predictions about the expected multi-vertex pattern of activity within a region and the 

interaction of that pattern with the patterns from other regions.  First, if spontaneous 

activity carries information about stimulus categories such as faces, bodies, or scenes, 

then spontaneous multi-vertex activity patterns, i.e. patterns of activity observed at rest 

in the absence of any stimulation, in functionally specialized occipital regions such as 
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the extrastriate body area (EBA, (Downing et al 2001)) should be more related to the 

activity patterns evoked by a preferred stimulus category (e.g. bodies) than by non-

preferred categories. This predicted relationship between spontaneous and task-evoked 

multi-vertex patterns putatively reflects the entrainment of task-evoked patterns into 

spontaneous activity during development and through experience. Second, if the FC 

between regions reflects in part correlated fluctuations of the spontaneous 

representational content of those regions, then the magnitude of resting pattern-based 

FC between two regions should depend on whether the regions prefer the same visual 

stimulus category and on whether the tested patterns that are being correlated in the 

two regions code that preferred category.   

 

Materials and Methods 

Participants 

The study included 16 healthy young adult volunteers (10 female; age 21 – 35 

years-old) with no prior history of neurological or psychiatric disorders. All participants 

were right-handed native English speakers with normal or corrected-to-normal vision. All 

participants gave informed consent to take part in the experiment, and the study was 

approved by the Institutional Review Board (IRB) of Washington University in St. Louis 

School of Medicine.  

 

Stimuli.  
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Nine categories of color images subtending 8o x 8o of visual angle were included 

in event-related ‘task’ fMRI scans. Seven ‘whole-object’ categories consisted of images 

that are encountered in real-world environments: human faces, human bodies, 

mammals, chairs, tools, scenes, and words. Stimuli, excluding the word category, were 

obtained from Downing et al., 2006 (Downing et al 2006). Faces, bodies and mammals 

served as animate categories, and chairs, tools and scenes as inanimate categories 

(Kriegeskorte et al 2008). Word stimuli were included for exploratory analyses and 

results for those stimuli will not be considered in this paper.  

Two control stimulus categories were constructed from the above stimuli 

excluding the word stimuli. A low-level control consisted of phase-scrambled stimuli that 

preserved the spatial frequency amplitude spectrum of the whole-objects images. An 

intermediate-level control consisted of grid-scrambled stimuli that included basic visual 

properties of the whole-objects images such as line segments and connectors. For the 

low-level control condition, 2D phase-scrambled images of the exemplars from the 6 

categories were generated by applying the same set of random phases to each 2-

dimensional frequency component of the original image while keeping the magnitude 

constant (Watson et al 2016). Exemplars from all six whole-objects categories except 

real word stimuli were 2D phase-scrambled, yielding a total of 144 2D Phase-scrambled 

stimuli. For the intermediate-level control condition, grid-scrambled images of exemplars 

from the six whole-objects categories were generated by sub-dividing each image into a 

10 x 10 grid (each grid is 0.8o x 0.8o) and randomly rearranging the individual grid 

segments. Figure 2 shows exemplar stimuli from the 8 categories used.  
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Figure 2 
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Color images of exemplars from seven categories were included in blocked-

design localizer scans: human faces, human bodies, objects (chairs and tools), scenes, 

words, false font character strings and phase-scrambled images. The categories for the 

localizer scans differed slightly from the categories for the task scans since the former 

was only used to define the regions of interest (ROIs). ROIs related to the false font and 

word stimuli will not be considered in this paper.  

Stimuli were presented using the Psychophysics Toolbox package (Brainard 

1997) in MATLAB (The MathWorks). Stimulus images were projected onto a screen and 

were viewed through a mirror mounted on the head coil. All stimuli were presented 

centrally on a gray background.  

 

Scanning Procedure.  

The study consisted of two separate sessions, each conducted on a separate 

day (Fig. 3). In session one, subjects received 3 resting state runs, 2 localizer runs, and 

8 task runs. In session 2, subjects received 2 resting state runs, 2 localizer runs, 8 task 

runs, and 2 post-task resting state runs. One subject had a total of 13 task runs over the 

two sessions instead of 16.  
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Figure 3 

Resting state runs. Participants received a total of 7 resting state scans, each 

lasting 5 min (300 TRs). During a scan the participant was asked to maintain fixation on 

a cross that was displayed at the center of the screen during the entire run. Five resting 

scans (3 for the first session and 2 for the second session) were conducted before any 

localizer or task scans to collect stimulus-free intrinsic activities. For the second session 

only, two additional 5 min resting state scans were conducted after the task scans to 

investigate potential post stimuli-driven effects on intrinsic activity. The results from the 

post-task resting scans will not be discussed here. 

Localizer runs. Each session included 2 localizer runs (4 in total), each lasting 5 

min and 40s (340 TRs), and each localizer scan was presented in a blocked fMRI 

design. Each block of a localizer run contained 20 images of a single category, and 

those images were different from the images used in the task scans. A fully randomized 
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sequence of eight blocks, consisting of the 7 stimulus categories and a fixation block, 

was repeated twice within each run. At the beginning and the end of each run, an 

additional fixation block was presented for 4s and 16s.  Within each category block, 

images were presented for 300ms with an inter-stimulus interval (ISI) of 700ms. A 

fixation cross was continuously present at the center of the screen during the ISI and 

during fixation blocks. During category blocks, participants performed a minimally 

cognitively engaging task by pressing a button if the initially presented image was 

changed in size or position during the 300ms presentation.  

Task runs. Each session included 8 task runs (16 in total), each lasting 5 min and 

15s (315 TRs). For each subject and for each run, stimulus presentation order and inter-

stimulus intervals were fully randomized using Optseq2 (Dale 1999).  Each stimulus 

presentation lasted for 300ms and the interval between stimuli was jittered between 

3.7s and 8.7s. A fixation cross was continuously present at the center of the screen 

during the ISI. In each whole-objects category, there were 24 separate exemplars (e.g. 

24 different faces) and each exemplar was repeated 4 times. In each scrambled 

category, there were 96 exemplars, each presented once. Participants performed a 

minimally cognitively engaging task by pressing a button if the presented image 

changed its size or position during a 300ms presentation, the same task as that 

performed during the localizer scans. 

 

Imaging Parameters and fMRI pre-processing.  
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Structural and fMRI images were obtained from a Siemens 3T Prisma MRI 

scanner. Structural images for atlas transformation and lesion segmentation were 

acquired using T1-weighted magnetization prepared-rapid gradient echo (MP-RAGE) (1 

x 1 x 1 mm voxels; echo time [TE] = 2.36 ms, repetition time [TR] = 1700 ms, TI=1000 

ms, flip angle = 8°) and T2-weighted fast spin echo sequences (1 x 1 x 1 mm voxels; TE 

= 564 ms, TR = 3200 ms). FMRI scans were collected using a gradient echo-planar 

sequence sensitive to BOLD contrast (TE = 26.6 ms, flip angle = 58°, 2.4 x 2.4 x 2.4 

mm voxels, 48 contiguous slices, TR = 1.0 s, and multiband factor of 4).   

 

fMRI pre-processing  

fMRI data underwent pre-processing as previously described (Siegel et al 2016). 

This included: (1) compensation for asynchronous slice acquisition using sinc 

interpolation; (2) elimination of odd/even slice intensity differences resulting from 

interleaved acquisition; (3) whole brain intensity normalization to achieve a mode value 

of 1000; (4) spatial realignment within and across fMRI runs; and (5) resampling to 2.4 

mm cubic voxels in atlas space, including realignment and atlas transformation in one 

resampling step. Cross-modal (e.g. T2-weighted to T1-weighted) image registration was 

accomplished by aligning image gradients.  

Surface generation and processing of functional data followed procedures similar 

to Glasser et al (Glasser et al 2013). First, anatomical surfaces were generated for each 

subject’s T1 MRI using FreeSurfer automated segmentation (Fischl et al 1999). This 

step included brain extraction, segmentation, generation of white matter and pial 
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surface, inflation of the surfaces to a sphere, and surface shape-based spherical 

registration to the subjects’ “native” surface to the fs_average surface. The left and right 

hemispheres were then resampled to 164,000 vertices and registered to each other 

(Van Essen et al). 

Data were passed through several additional preprocessing steps: (i) removal by 

regression of the following sources of spurious variance: (a) six parameters obtained by 

rigid body correction of head motion, (b) the signal averaged over the whole brain 

(global signal regression), (c) signal from ventricles and CSF, and (d) signal from white 

matter; (ii) temporal filtering retaining frequencies in the 0.009–0.08-Hz band; and (iii) 

frame censoring (framewise displacement (FD) ≥ 0.5mm). The first four frames of each 

BOLD run were excluded. 

To account for magnitude variability between different task and resting state runs, 

the BOLD timeseries for each vertex were Z-normalized across time within the task and 

the resting state runs. This Z-normalization was not applied to the localizer scans. Also, 

it was not applied to the Task scans for a separate analysis described below in which 

task-evoked activation magnitudes were determined (see below, Task scans: multi-

vertex activation patterns). 

 

Defining ROIs from localizer activation contrasts.  

The next step was to define ROIs for each subject that showed a preference for 

specific categories or features. For this purpose, subject-specific ROIs were defined 
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from univariate vertex-wise statistical contrasts on the localizer activation magnitudes 

for different categories. For example, face-selective areas were defined from the 

vertices for the contrast of faces minus objects, where objects consisted of chairs and 

tools. First, for each participant a general linear model (GLM) was applied to their 

functional localizer scans. The GLM consisted of separate regressors for each stimulus 

category (e.g. faces) using an assumed hemodynamic response function from the 

Statistical Parametric Mapping (SPM12), a baseline term, and a linear trend term. 

Condition contrasts were formed to identify vertices showing a preference for each 

category, using a scheme similar to that of Bracci and Op de Beeck (2016) (Bracci & Op 

de Beeck 2016): body-preference (body > objects, i.e. chairs and tools), face-preference 

(face > objects), scene-preference (scene > objects), whole-objects-preference (face + 

body + scene + object (chair+tool) > phase-scrambled), and phase-scrambled-objects-

preference (phase-scrambled  > face + body + scene + object (chair+tool)).  

A group random-effect statistical Z-map for each contrast was then computed 

from the single-subject localizer GLMs (see Fig. 4A for the group z-statistic maps for 

body-, face-, and scene-preferences). The Z-values obtained were sorted in magnitude. 

From the highest Z-values from the map, the group peak with the next highest Z-value 

was generated until the Z-value was <= 2.0. Group peaks had to be separated by at 

least 38.4mm (9.6 mm x 4) in the sphere mesh to prevent a vertex being assigned to 

multiple ROIs in a subject. ROIs were then defined separately for each participant 

based on the individual’s univariate statistical maps (Oosterhof et al 2012, Wurm et al 

2016). From each group peak defined above, the corresponding peak for an individual 

subject peak was defined as the vertex with the highest Z-value within a sphere of 9.6 
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mm radius centered around the group peak in each subject’s sphere mesh. The single-

subject ROI was formed from the vertices exceeding Z= 2.0 in a sphere of 9.6 mm 

radius centered around the peak in the subject’s mesh. All ROIs used in the following 

analysis contained at least 175 vertices in at least 14 subjects. ROIs in individual 

subjects with less than 175 vertices were discarded.  

 

Figure 4 
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To remove differences in BOLD magnitude across MR frames, for each ROI a z-

normalization was applied across the vertices of each frame of the resting and task 

scans. This within-frame z-normalization was not applied to the localizer scans. Also, it 

was not applied to the Task scans for a separate analysis described below in which 

task-evoked activation magnitudes were determined (see below, Task scans: 

estimation of multi-vertex activation patterns). 

Two sets of ROIs were created for use in different analyses. The first set was 

created from the localizer-defined ROIs that preferred a specific category (face, body, or 

scene) as compared to the object category (chairs + tools), and was used to compare 

the similarity of stimulus-evoked and resting multi-vertex patterns in high-level, 

category-preferring regions of visual cortex. Vertices from all ‘constituent’ ROIs that 

preferred a category (e.g. bodies) were grouped into a single ‘joint-ROI’, excluding all 

vertices located in early visual areas (V1 to V3) (Strappini et al 2018), as estimated from 

surface topology using the template created by Wang et al. (Wang et al 2015). For 

instance, the body joint-ROI included constituent regions such as left and right EBA, left 

and right fusiform body area (FBA) , and the scene joint-ROI included constituent 

regions such as PPA, the transverse occipital sulcus (TOS), and retrosplenial cortex 

(RSC). 

The rationale for combining all the vertices that prefer a category into a single 

‘joint’ ROI was as follows.  First, we had no apriori reason in our analysis of 

spontaneous activity patterns to expect different results for regions preferring the same 
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category.  Second, the use of joint-ROIs reduced the total number of statistical 

comparisons in our subsequent analyses of spontaneous activity patterns, simplifying 

the analysis.  Third, the use of joint-ROIs increased the number of vertices over which 

spontaneous activity patterns were assessed, increasing the reliability of the analysis. 

 Mean MNI 
across subjects 

  # Vertices  

Contrast Hemisphere x y z Group Peak 
Z-value # Subjects Mean STD ROI 

Name 
Face > Objects RH 41 -50 -16 3.76 14 262 70 R FFA 

  54 -49 12 2.71 15 232 74 R STG 
Body > Objects LH -41 -73 12 6.61 16 289 45 L EBA 

  -37 -44 -17 4.42 14 253 73  
 RH 42 -65 15 6.28 15 312 52 R EBA 
  41 -44 -13 4.62 14 280 69  
  56 -52 4 3.91 14 276 73  

Scene > Objects LH -21 -47 -4 8.14 16 327 37 L PPA 
  -14 -51 7 5.88 16 294 56 L RSC 
  -17 -59 21 3.95 14 236 42  
  -30 -80 23 3.19 14 211 57 L TOS 
 RH 20 -41 -10 8.35 16 279 45 R PPA 
  27 -68 -10 6.79 16 254 43  
  21 -54 10 6.02 14 285 76 R RSC 
  35 -77 29 4.55 15 273 64 R TOS 
  13 -36 41 4.01 14 237 65  

Whole-Objects > Phase-Scrambled Objects LH -41 -73 -1 8.46 16 374 31 L LO 
  -35 -66 -12 7.50 16 334 36  
  -20 -72 30 5.92 15 252 42  
  -30 -83 11 5.71 16 280 63  
  -26 -39 -14 5.57 15 243 48  
  -22 -56 45 4.12 14 245 70  
  -51 -59 8 3.10 14 231 49  
 RH 44 -72 -7 8.18 16 322 38 R LO 
  36 -44 -20 6.47 16 295 43  
  26 -74 30 5.03 15 237 60  
  40 -64 16 4.74 14 263 82  

Phase-Scrambled Objects > Whole-Objects LH -5 -89 3 8.25 16 276 34  
  -8 -80 -11 5.84 16 267 40  
  -19 -89 16 3.71 15 282 54  
 RH 10 -93 4 7.41 16 354 37  
  9 -77 -4 7.4 16 247 35  

Table 1 
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A second set of contrasts identified ROIs that preferred whole-objects relative to 

phase-scrambled objects (face + body + scene + object > phase-scrambled) or the 

reverse (phase-scrambled > face + body + scene + object).  This set of ROIs was used 

to compare resting and task-evoked patterns for whole objects vs. low level features. 

Whole-Object and Phase-Scrambled Object ‘constituent’ ROIs were grouped, 

respectively, into a Whole-Objects joint-ROI and a Phase-Scrambled Objects joint-ROI. 

Table 1 summarizes the mean MNI coordinate, mean Z-score for the obtained group 

peak, and mean number of vertices for all constituent ROIs in each joint-ROI. Figure 4B 

schematically indicates the position of all constituent ROIs in the Face-, the Body- and 

Scene-joint-ROIs based on their group peak locations. Figure 5B shows the location of 

all constituent ROIs in the Whole-Objects joint-ROI and the Phase-Scrambled Objects 

joint-ROI superimposed on a surface map of V1-V3 using the template from Wang et al. 

(Wang et al 2015). 
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Figure 5 

 

Task scans: estimation of multi-vertex activation patterns 

For each ROI from each subject, we separately estimated the multi-vertex activity 

pattern evoked by each stimulus and by each category in the task scans using two 

general linear models (GLM). One model used stimulus-specific β weights to estimate 

the multi-vertex activity pattern evoked by each individual stimulus, and the other used 

category-specific β weights to estimate the stimulus-evoked activity pattern associated 

with each category (e.g. the pattern outlined by the red square in Fig. 4A). Each GLM 
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also included a separate target regressor for trials in which a stimulus was perturbed in 

size or position, and baseline and linear trend regressors for each scan. In order to 

determine the task-evoked magnitude for each stimulus category, a β weight matrix was 

separately computed using spatially non-normalized BOLD timeseries from the task 

scans. As with the localizer scans, all GLMs for the task scans were constructed using 

an assumed hemodynamic response. 

 

Task scans: Representational Similarity Analysis of stimulus-evoked patterns 

We conducted a representational similarity analysis to verify that the estimated multi-

vertex patterns for exemplars of a category were more similar to the patterns for 

exemplars from the same category vs. a different category.    A representational 

similarity matrix (RSM) for each subject was computed by correlating across vertices 

the obtained β weights for each stimulus exemplar with the weights for each other 

stimulus exemplar. The individual RSMs were then averaged across all 16 subjects, 

with Fisher-Z transformations and reverse Fisher-Z transformations, to produce a group-

averaged RSM (Fig. 6A). We conducted a second representational similarity analysis to 

determine if the multi-vertex patterns for each category showed the expected cross-

category relationships, such as greater similarity between the patterns for the face and 

body categories than face and scene categories. For each individual an RSM was 

computed by correlating across vertices the obtained categorical β weights (e.g. the 

average scene-evoked multi-vertex pattern outlined by the red square in Fig. 4A) 

across categories, i.e. we correlated the multi-vertex pattern for scenes with the multi-
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vertex patterns for phase- or grid-scrambled, tools, chairs, mammals, bodies, and faces. 

A group-averaged RSM was then computed (Fig. 6B). 

 

Figure 6 
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Determining similarity of resting multi-vertex patterns and stimulus-evoked 

patterns 

The next step in the analysis determined the similarity of stimulus-evoked multi-

vertex patterns to the patterns observed on each frame of resting scans. For each 

participant’s individual joint-ROI and the associated constituent ROIs, we determined 

the degree to which the stimulus-evoked multi-vertex pattern for a category matched the 

multi-vertex pattern on each resting frame. The procedure is illustrated in Figure 7A for 

a single subject using real data. In the first step, as described above, the multi-vertex 

pattern evoked by a category in a region was determined (e.g. the ‘Scene’ activity 

pattern outlined by the red square in Fig. 7A, ‘Task BOLD’).  Then, the stimulus-

evoked pattern for a category was correlated across vertices with the resting activity 

pattern on a single frame of the resting-state scans (Fig. 7A, ‘Resting-state BOLD’). A 

high positive correlation coefficient indicates that the resting multi-vertex pattern on a 

given frame was very similar to the pattern evoked by the category (e.g. the resting 

frame with a ‘Scene’-like resting activity pattern outlined by the magenta square in Fig. 

7A). A near zero correlation coefficient indicates that the resting multi-vertex pattern on 

a given frame was not similar to the pattern evoked by the category (e.g. the resting 

frame with a not-‘Scene’-like resting activity pattern outlined by the green square in Fig. 

7A). Finally, a high negative correlation coefficient indicates that the resting multi-vertex 

pattern on a given frame was very similar to the inverse of the pattern evoked by the 

category (e.g. the resting frame with a ‘Scene’-inverted resting activity pattern outlined 

by the cyan square in Fig. 7A). This procedure was repeated across all resting frames, 

resulting in a ‘stimulus-pattern-to-rest’ correlation timeseries (one correlation coefficient 
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per resting frame) for each category in each ROI, as shown by the timeseries in Figure 

7A.  
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Figure 7 
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From each timeseries, we constructed a corresponding distribution of correlation 

coefficients (Fig. 7A, distribution shown in blue). The upper 90% value of each 

distribution, hereafter termed the U90-value, was then determined (Fig. 7C). The U90 

value computed for a category and ROI served as a measure of the relationship 

between resting activity patterns and the patterns evoked by a category mean. The 

U90-value was used as an alternative measure of variance since the U90-value refers 

to a correlation coefficient value, which indicates the degree of pattern similarity 

between the task-evoked and resting state activity pattern. Similar results were found 

using the variance of the distribution as a summary measure instead of the U90 value. 

For analyses that involved the Whole-Objects joint-ROI rather than joint-ROIs that 

preferred a particular object category such as faces, U90-values for the six whole-object 

categories (face, body, mammal, chair, tool, scene) were averaged together to form a 

whole-objects U90 value (Fig. 8B).   
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Figure 8 
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Finally, to observe a potential relationship in a joint-ROI between the magnitude 

of the category-evoked response (Fig. 9A) and the strength of the relationship between 

category-evoked multi-vertex patterns and spontaneous activity patterns (U90 values), 

the correlation across category between task activation magnitudes and U90 values of 

stimulus-evoked-to-rest pattern similarity was measured for each joint-ROI (Fig. 9B). 
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Figure 9 
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Statistical analysis of U90 values  

To statistically analyze the similarity between stimulus-evoked and resting multi-

vertex patterns, U90 values were analyzed via repeated measures ANOVAs and post-

hoc paired t-tests. For example, the statistical significance of an overall dependence of 

U90 values for a joint-ROI on the stimulus category was determined by conducting 

repeated-measures ANOVAs with Category-Type as factors. Paired t-tests were then 

conducted to test specific contrasts, with a Bonferroni-Holm correction for multiple 

comparisons.  

 

Pattern-based resting functional connectivity 

The preceding analyses examined the similarity between stimulus-evoked 

patterns and the patterns measured on single frames of resting scans. The analyses 

described next determined the temporal correlation over resting frames of the amplitude 

of stimulus-evoked patterns in two different regions (pattern-based FC). For the pattern-

based FC analysis, we used the constituent ROIs from the joint-ROI that preferred a 

category (face, body, or scene) relative to the object category (chairs + tools). Since 

only two face constituent ROIs were found and one of those ROIs largely overlapped 

with a Body constituent ROI in ventral temporal cortex, Face constituent ROIs were not 

included in the FC analysis. Therefore, pattern-based FC was computed over 14 ROIs: 

5 from the Body joint-ROI and 9 from the Scene joint-ROI. 
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The correlation over vertices of a stimulus-evoked pattern with the pattern on a 

single resting frame results in a single correlation coefficient.  Repeating this process for 

each successive resting frame results in a timeseries of correlation values, which we 

call a stimulus-pattern-to-rest correlation timeseries (see Determining similarity of 

resting multi-vertex patterns and stimulus-evoked patterns and Fig. 7A). Three 

pattern-based FC matrices were computed using stimulus-pattern-to-rest correlation 

timeseries. Figure 10A illustrates the procedure for computing the cells of an FC matrix 

using the stimulus-pattern-to-rest correlation timeseries from two scene regions (TOS, 

PPA) and two body regions (EBA, FBA). Figure 10B shows the resulting matrices. First, 

for each participant, stimulus-pattern-to-rest correlation timeseries for each of the 14 

ROIs were generated using only the body-evoked pattern for each ROI (i.e. the multi-

vertex activity pattern evoked by bodies in that ROI during the Task scans). The 

correlation between these body-pattern-to-rest timeseries for all pairings of the 14 ROIs 

was then computed (i.e. body-ROI-to-body-ROI, scene-ROI-to-scene-ROI, and body-

ROI-to-scene-ROI pairings). For example, the leftmost graphs in Figure 10A show the 

correlation between TOS and PPA (top graph) and the correlation between EBA and 

FBA (bottom graph) using the body-pattern-to-rest correlation timeseries generated in 

each ROI from the body-evoked pattern. The correlation coefficients were then entered 

into the corresponding cells of the pattern-based FC matrix, “Using Body pattern-to-rest 

correlation timeseries only”, shown in Figure 10B. 
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Figure 10 
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A similar procedure was used to generate a pattern-based FC matrix using only 

the scene-evoked pattern for each ROI. For example, the middle graphs in Figure 10A 

show the correlation between TOS and PPA, and between EBA and FBA using the 

stimulus-pattern-to-rest correlation timeseries generated in each ROI using the scene-

evoked pattern. Finally, the correlation coefficients were entered into the corresponding 

cells of the pattern-based FC matrix, “Using Scene pattern-to-rest correlation timeseries 

only”, shown in Figure 10B. 

To generate the third pattern-based FC matrix in Figure 10B (“using Preferred 

Stimulus pattern-to-rest correlation timeseries), the stimulus-pattern-to-rest correlation 

timeseries in a Body ROI was generated using the body-evoked pattern for that ROI 

and the stimulus-pattern-to-rest correlation timeseries in a Scene ROI was generated 

using the scene-evoked pattern for that ROI. Then the correlation between the 

correlation timeseries for all pairings of the 14 ROIs was computed and entered into the 

appropriate cells of the pattern-based FC matrix.  

Finally, a vertex-averaged FC matrix was computed by first averaging the resting 

BOLD timeseries across all vertices of an ROI to generate a vertex-averaged timeseries, 

and then temporally correlating these averaged timeseries for all pairs of ROIs (Fig. 11). 

Vertex-averaged FC matrices, which correspond to the standard regional FC matrices 

found in the literature, eliminate any information carried by the multi-vertex pattern of 

BOLD activity within ROIs. 
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Figure 11 

 

 Pattern-based FC values were analyzed via repeated measures ANOVAs and 

paired t-tests. For example, we statistically evaluated whether the magnitude of pattern-

based FC depended on both the category of the stimulus-evoked multi-vertex activity 

pattern and the preferred category of the ROIs by conducting a repeated-measures 

ANOVA with the Category-evoked pattern (body, scene) and ROI-Type (body, scene) 

as factors. Paired t-tests were conducted to test differences between specific evoked 

patterns/ROI combinations. For example, pattern-based FC values for body ROIs vs. 

scene ROIs were compared for correlation timeseries generated using body-evoked 

multi-vertex patterns. 
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Results 

The first goal of the experiment was to compare multi-vertex activity patterns 

measured in the resting state with fMRI to stimulus-evoked patterns for different 

stimulus categories, including ecological stimuli (e.g. photographs of faces, tools, and 

scenes) and stimuli that emphasized low-level features (e.g. phase-scrambled or grid-

scrambled images of those stimuli). This comparison was conducted in regions of 

higher-order visual cortex that activated more strongly to specific stimulus categories 

(e.g. bodies) relative to other categories (e.g. chairs and tools). In addition, resting and 

stimulus-evoked patterns for phase-scrambled, grid-scrambled, and whole-objects were 

compared in regions of visual cortex that responded more strongly to phase-scrambled 

objects than to whole-objects or showed the reverse relationship. To measure 

spontaneous activity, we ran a set of resting-state scans in which human observers 

fixated a central point on a blank screen. This activity was measured first to prevent 

possible learning effects from the other conditions (Fig. 3). 

 

Localization of regions with visual category preferences 

To identify category-specific visual regions, we ran a set of localizer scans in 

which multiple stimuli belonging to one of five stimulus categories (faces, bodies, 

scenes, man-made objects (chairs and tools), and phase-scrambled versions of these 
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stimuli) were presented in a blocked design (Figs. 2 and 3). We used standard 

contrasts (as in (Bracci & Op de Beeck 2016)) to identify category-preferring regions. 

For instance, activity evoked by body stimuli was subtracted from activity evoked by 

man-made objects (tools and chairs) to localize body-preferring regions such as EBA 

(see Figs. 4A and 4B, and Table 1 for all category-preferring regions). Separate 

contrasts identified regions more active for whole-objects 

(face+scene+bodies+(tools+chairs)) than for low-level visual features (phase-scrambled 

objects). Phase-scrambled objects activated more strongly in regions of early visual 

cortex (V1-V3 based on the maps of (Wang et al 2015)), while whole objects activated 

more strongly in lateral and ventral occipital cortex, including some category-preferring 

regions (Figs. 5A and 5B, Table 1).  

 

Representational similarity analysis of task-evoked patterns 

During task scans (Fig. 3), we randomly presented individual stimuli belonging to 

each category to extract the stimulus-evoked multi-vertex pattern in a particular ROI for 

each stimulus and corresponding category. Two general linear models (GLMs) were 

conducted to estimate the stimulus-evoked patterns. One model used stimulus-specific 

β weights to estimate the multi-vertex activity pattern evoked by each individual stimulus, 

and the other used category-specific β weights to estimate the stimulus-evoked multi-

vertex activity pattern associated with each category. 

To show that our stimuli and procedure generated multi-vertex patterns that were 

consistent with the literature, we conducted a representational similarity analysis (RSA). 
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The representational similarity analysis was conducted using the task scans, which 

were completely independent of the localizer scans used to determine category-

preferring ROIs. Figure 6A shows the similarity of multi-vertex patterns evoked by 

individual stimuli within several classical category-preferring ROIs. In left EBA the 

highest representational similarity was found between human bodies, and the next 

highest between pictures of mammals, which included their bodies. In the right fusiform 

face area (FFA (Kanwisher et al 1997)), faces and other animate stimuli (bodies, 

mammals) generated more similar patterns than stimuli from the inanimate categories 

chair, tool, and scene, with the most consistent representational similarity found 

between face exemplars (Grill-Spector & Weiner 2014, Kriegeskorte et al 2008). In the 

scene-preferring region right parahippocampal place area (PPA (Epstein & Kanwisher 

1998)), the activity patterns evoked by different scenes were well correlated, with low 

correlations between and within all other categories.  

We conducted a second representational similarity analysis using the pattern 

evoked by a stimulus category, as estimated by a category regressor in a separate GLM, 

rather than using the patterns evoked by individual stimuli. In addition, we grouped each 

set of category-preferential ROIs for an individual into a single joint-ROI instead of 

conducting the analysis separately within each localizer-defined ROI. For instance, the 

body joint-ROI included left and right EBA, left and right fusiform body area (FBA), and 

so forth, and the scene joint-ROI included constituent regions such as PPA, the 

transverse occipital sulcus (TOS), and retrosplenial cortex (RSC) (see Table 1 for a 

complete listing).   Therefore, a joint-ROI included all the vertices from visual regions 

that preferred a certain visual category.  This procedure simplified the analysis of the 
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similarity between stimulus-evoked and resting multi-vertex patterns (see Methods, 

Defining ROIs from localizer activation contrasts for the full rationale behind the use 

of joint-ROIs). 

The results of this second RSA procedure (Fig. 6B) were also consistent with the 

literature. Both in body and face joint-ROIs, the highest representational similarity was 

found between animate categories (face, bodies, mammals) as compared to other 

categories (Grill-Spector & Weiner 2014, Kriegeskorte et al 2008). For instance, the 

similarity of body- and face-evoked multi-vertex activity patterns in the face joint-ROI 

was ρ=0.73, while the similarity of face- and scene-evoked patterns in the face joint-ROI 

was ρ=0.41. Table 2 indicates the representational similarity between the task-evoked 

multi-vertex patterns corresponding to the face, body, and scene categories within each 

joint-ROI. 

 

Similarity (ρ) between  
Face-evoked activity pattern 
and 
Body-evoked activity pattern 

Similarity (ρ) between  
Face-evoked activity pattern 
and 
Scene-evoked activity pattern 

Similarity (ρ) between  
Body-evoked activity pattern 
and 
Scene-evoked activity pattern 

Face Joint-ROI 0.729 0.415 0.550 
Body Joint-ROI 0.618 0.421 0.423 
Scene Joint-ROI 0.506 0.356 0.379 

Table 2 

Stimulus-evoked-to-rest pattern similarity analysis in category-preferring regions 

We next tested the first prediction of the representation hypothesis, namely that 

multi-vertex patterns of spontaneous activity in category-preferring regions should be 

more related to the stimulus-evoked multi-vertex pattern for preferred than non-

preferred categories. For each joint-ROI and for each category, the category-evoked 

pattern for the joint-ROI was correlated over the vertices of the joint-ROI with the resting 
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pattern in the joint-ROI on each resting frame to determine a resting timeseries of 

correlation coefficients (termed a stimulus-pattern-to-rest correlation timeseries) and a 

corresponding frequency distribution of coefficient values. The upper 90% value (U90 

value) of the distribution was used as a summary measure of the relationship between 

the stimulus-evoked and resting multi-vertex activity patterns (see Methods, 

Determining similarity of resting multi-vertex patterns and stimulus-evoked 

patterns for the rationale behind using U90 values as opposed to measures of 

variance). 

.  

Figure 7A illustrates this procedure in a single subject using a single ROI that 

prefers scenes (PPA) and the category-evoked  pattern for scenes, which is a multi-

vertex set of normalized activation values (Fig. 7A, left). This evoked pattern is 

correlated over the vertices of PPA (ρ) with the spontaneous patterns of activity on each 

frame of the resting state scans. A timeseries of ρ-values is generated (Fig. 7A, middle), 

as well as a corresponding frequency distribution of ρ-values (Fig. 7A, the histogram in 

blue). A U90 value for the ROI and category is then determined from the distribution. 

The insets in the middle panel show resting frames in which the spontaneous activity 

(real data) was not correlated (ρ=0.003, outlined in green), positively correlated (ρ=0.81, 

outlined in magenta), or negatively correlated (ρ=-0.74, outlined in cyan) with the scene-

evoked multi-vertex pattern. The same procedure was used to generate a U90 value for 

each of eight categories (faces, bodies, mammals, chairs, tools, scenes, grid-scrambled, 

phase-scrambled) in each joint-ROI (body, face, scene). 
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Figure 7B shows the distributions of correlation coefficients across all subjects 

for each preferred category within its corresponding joint ROI (green hue). For example, 

the leftmost graph shows the distribution using the body-evoked multi-vertex pattern 

within the body joint-ROI.  A second distribution, generated using the pattern evoked by 

phase-scrambled objects within the same body joint-ROI, has been superimposed 

(black hue). Theoretically, the two distributions might differ in the mean, variance, 

skewness, or some other parameter. For each joint-ROI, the distribution of correlation 

coefficients for both the preferred stimulus category and the phase-scrambled category 

were symmetric and centered on zero. However, the spread of the distribution was 

higher for the preferred category-evoked multi-vertex pattern, meaning that larger 

correlation coefficients, both positive and negative, were observed for the preferred than 

phase-scrambled category (red arrows in Fig. 7B). Therefore, a larger U90 value 

indicates the presence of larger positive matches and larger negative matches between 

the resting multi-vertex pattern and the category-evoked pattern. Similar findings were 

obtained for face (middle panel) and scene multi-vertex patterns (rightmost panel) in the 

corresponding joint-ROIs, as compared to phase-scrambled patterns. 

The categorical specificity of spontaneous multi-vertex patterns in each joint-ROI 

was tested by comparing U90 values for different categories. Figure 7C shows mean 

U90 values for a joint-ROI’s preferred category, defined from its localizer contrast 

(green symbol; e.g. body in the Body joint-ROI), “non-preferred” categories (red 

symbols), grid-scrambled category (blue symbol) and phase-scrambled category (black 

symbol) averaged across subjects. We first conducted an overall repeated measures 

analysis of variance ANOVA on U90 values with joint-ROI (body, face, and scene) and 
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Category (8 levels) as factors.  The main effects of joint-ROI (F(2, 30)=50.4, p<.0001) 

and Category (F(7, 105)=3.46, p=.002), and the interaction of joint-ROI by Category 

(F(14, 210)=4.37, p<.0001) were all significant. Separate repeated measures ANOVAs 

for each joint-ROI with Category (8 levels) as a factor indicated a highly significant main 

effect of Category in each joint-ROI (Body: F(7,105)=7.25, p<.0001; Face: 

F(7,105)=3.25, p=.004; Scene: F(7,105)=3.93, p=.0008). Therefore, for each joint-ROI, 

the spread of stimulus-pattern-to-rest similarity values significantly depended on the 

category of the stimulus-evoked pattern. 

The significant main effect of Category for each joint-ROI indicated that resting 

multi-vertex patterns in each joint-ROI consistently showed larger U90 values for some 

category-evoked patterns than for other patterns.  The significant interaction of joint-ROI 

by Category indicated that these modulations of U90 values across category reliably 

differed across joint-ROIs. These results are consistent with representation hypothesis.  

To compare the U90 value for the joint-ROI’s preferred category vs. each other 

category, we conducted paired t-tests with a Holm-Bonferroni correction for multiple 

comparisons. Significant, multiple-corrected comparisons are indicated in Figure 7C by 

plus signs.  In the Body joint-ROI, the U90 value for bodies was significantly larger than 

for chairs, scenes, and phase-scrambled stimuli. In the Face joint-ROI, the U90 value 

for faces was significantly larger than for scenes. Conversely, in the Scene joint-ROI, 

the U90 value for scenes was significantly larger than for all other categories. 

Therefore, the ‘animate’ Body and Face joint-ROIs and the ‘inanimate’ Scene 

joint-ROI showed a significant double dissociation involving the corresponding 
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categories, with U90 values in the Face and Body joint-ROIs significantly greater for the 

face and body categories, respectively, than for scene categories, and the U90 value in 

the inanimate Scene joint-ROI significantly greater for scenes than for either faces or 

bodies. The U90 values for face and body categories within each joint ROI were similar, 

reflecting the fact that both are animate categories and have greater cross-category 

representational similarity with each other than with scenes (Table 2).  These results 

provide some support for the first prediction of the representation hypothesis, namely 

that spontaneous multi-vertex patterns in category-preferring regions are more related 

to the patterns for some categories than for others. However, ‘more related’ means a 

greater spread of extreme similarity values, both positive and negative, rather than a 

shift in the mean to more positive similarity values. 

 

Stimulus-evoked-to-rest pattern similarity analysis in regions preferring whole vs. 

phase-scrambled objects 

The above results showed that the multi-vertex pattern of spontaneous activity in 

regions of high-level visual cortex that respond preferentially to ecological visual 

categories was more related to the pattern evoked by one category than another (e.g. 

bodies vs. scenes).  We next asked whether a similar result would be found in regions 

that show stimulus preferences for low-level features as compared to more ecological 

categories such as face or body. This result would support a general conclusion that the 

stimulus preferences of a region largely drive the multi-vertex pattern of spontaneous 

activity. We used the localizer scans to identify ROIs in which stimulus-evoked 
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responses were stronger or weaker for phase-scrambled objects than for the union of 

the whole-object categories (face, body, mammal, chair, tool, and scene). The resulting 

‘Phase-scrambled objects’ joint-ROI comprised medial posterior visual regions in early 

visual cortex (V1-V3 according to the Wang template (Wang et al 2015) while the 

‘Whole-objects’ joint-ROI comprised regions in lateral and ventral visual cortex (Fig. 5B).  

A representational similarity analysis in the Phase-scrambled objects joint-ROI 

showed high similarity between phase-scrambled, grid-scrambled, and scene stimuli, 

while the Whole-objects joint-ROI showed low similarity between those categories (Fig 

8A).  Figure 8B shows the results of a stimulus-evoked-to-rest pattern similarity 

analysis based on U90 values in each joint-ROI, which support the general conclusion 

that stimulus-evoked-to-rest pattern similarities are not necessarily stronger for more 

ecological stimuli. Instead, stimulus-evoked-to-rest correspondences reflect a regions’ 

stimulus preferences, which are different in high- and low-level visual cortical regions 

(Fig. 8B). An ANOVA with ROI-type (Whole-objects, Phase-scrambled objects) and 

Stimulus-type (whole-objects, grid-scrambled, phase-scrambled objects) as factors 

indicated that the critical interaction of ROI-type by Category (F(2,30)=14.2, p<.0001) 

was significant.  A significant interaction was also found for a 2 x 2 sub-ANOVA 

restricted to the categories whole objects and phase-scrambled objects (F(1,15)=23.5, 

p<.0001). These results are again consistent with representation hypothesis. 

Within each joint-ROI, we compared the U90 value for the preferred category vs. 

the two “non-preferred” categories using paired t-tests with a Holm-Bonferroni correction 

for the four comparisons over the two joint-ROIs. In the Phase-scrambled joint-ROI, U90 

values were significantly higher for both scrambled stimulus categories than for the 
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whole-objects category, and in the Whole-objects joint-ROI, the U90 value for the 

whole-object category was significantly greater than for the phase-scrambled object 

category.  The grid-scrambled pattern, which contains both high-level and low-level 

features (e.g. a high density of contour terminators), showed U90 values both in early 

visual and higher-order visual cortex that were not distinguishable from the regions’ 

preferred stimulus category. 

These results demonstrate a second double dissociation relating the dependence 

of U90 values on both the category-evoked multi-vertex pattern and the joint-ROI in 

which the similarity of the evoked pattern to spontaneous patterns was evaluated. They 

are consistent with the interpretation that spontaneous activity patterns in visual cortex 

are strongly affected by the stimulus preferences of the region, irrespective of whether 

those preferences favor more or less ecological categories. 

  

U90 values correlate with activation strength 

The representation hypothesis maintains that task-evoked patterns entrain 

spontaneous activity patterns during development and through experience. Therefore, 

one might expect a positive relationship between the magnitude of the category-evoked 

response and the strength of the relationship between category-evoked multi-vertex 

patterns and spontaneous activity patterns (i.e. the U90 value). Figure 9A shows the 

mean activation strengths for different categories during the Task scans. The magnitude 

of the stimulus-evoked response in a joint-ROI was generally strongest for the preferred 
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category. Since joint-ROIs were defined from localizer scans that were independent of 

the task scans, this result indicates the stability of the ROI assignments. 

Figure 9B shows the correlation across category between task activation 

magnitude and U90 values of stimulus-evoked-to-rest pattern similarity for each joint-

ROI. There was a positive and significant correlation between task activation values and 

U90 values in each joint-ROI. The greater the activation strength of a category, the 

greater the U90 value, a relationship that held for joint-ROIs irrespective of their 

stimulus preferences. This relationship also was significant when the correlation 

coefficient between activation strength and U90 value was computed separately for 

each participant, and a group 1-sample t-test was conducted. Correlation coefficients 

were highly significant in all joint-ROIs (Body, p=.0004, Face, p=.0047, Scene, p=.0014; 

Whole-object, p=.0002; Phase-scrambled, p<.0001). 

 

Pattern-based functional connectivity at rest 

FC analyses typically evaluate the correlation between the timeseries of activity 

for single voxels or between voxel-averaged timeseries. However, recent studies have 

also measured the inter-regional temporal correlation of multi-vertex patterns during 

tasks (Anzellotti & Coutanche 2018, Chen et al 2018, Coutanche & Thompson-Schill 

2013). We used a similar approach to determine whether the signed magnitude of the 

resting multi-vertex pattern for a category in each constituent ROI of a joint-ROI, as 

determined on a resting frame by correlating over vertices the category-evoked and 

resting activity pattern, fluctuated synchronously or independently over frames between 
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pairs of constituent ROIs. For instance, we determined whether the amplitude of the 

multi-vertex patterns for scenes in regions such as PPA, TOS, and RSC, which were 

previously combined to form the Scene joint-ROI (Table 1), fluctuated synchronously at 

rest. Synchronous fluctuations (i.e. temporally correlated fluctuations) would indicate 

temporal variations of the amplitude of an inter-regional brain state specific for a 

particular category.  We conducted this analysis across the constituent ROIs of the 

Body and Scene joint-ROIs. The Face joint-ROI was not included in these analyses, 

since that ROI only included two regions and one of them overlapped with a constituent 

body ROI. In contrast, the Scene and Body joint-ROIs contained multiple ROIs that 

were all disjoint.  

For each body- and scene-preferring constituent ROI, separate body and scene 

“stimulus-pattern-to-rest” correlation timeseries were computed based, respectively, on 

the correlation over vertices of the multi-vertex pattern on each resting frame with the 

body-evoked pattern and the scene-evoked pattern. This procedure is illustrated in 

Figure 10A using data from segments of resting scans in one subject. Stimulus-pattern-

to-rest-correlation timeseries are shown for two scene-preferring regions (right PPA and 

right TOS) and two body-preferring regions (right EBA and right FBA). Each stimulus-

pattern-to-rest-correlation timeseries shows the similarity values over time of resting 

multi-vertex patterns to a category-evoked pattern in a single ROI.  For example, the left 

lower dark blue timeseries in Figure 10A shows the similarity of the resting pattern on 

each frame to the body-evoked pattern in the body constituent region EBA. The left 

lower graph shows that the body-pattern-to-rest correlation timeseries for body-

preferring regions (right EBA and right FBA), which were computed using body-evoked 
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multi-vertex patterns, are positively correlated. In contrast, the left upper graph shows 

that the body-pattern-to-rest correlation timeseries for scene-preferring regions (right 

PPA and right TOS), which again were computed using body-evoked multi-vertex 

patterns, are uncorrelated. Conversely, when stimulus-pattern-to-rest correlation 

timeseries were computed using the scene-evoked multi-vertex pattern, the opposite 

results are found. The scene-pattern-to-rest correlation timeseries for scene-preferring 

regions show positively correlated fluctuations (right upper graph), while the scene-

pattern-to-rest correlation timeseries for body-preferring regions are weakly correlated 

(right lower graph). 

The data from all resting scans of all subjects were analyzed and the results are 

summarized in Figures 10B and 10C. Figure 10B shows three resting ‘pattern-based 

FC’ matrices. A pattern-based ‘body’ FC matrix (leftmost matrix) was constructed by 

computing all pairwise inter-regional correlations between the body-pattern-to-rest 

correlation timeseries, which were computed using body-evoked multi-vertex patterns. 

Similarly, a pattern-based ‘scene’ FC matrix (middle matrix) was computed using scene-

pattern-to-rest correlation timeseries (i.e. timeseries computed using scene-evoked 

patterns). Qualitatively, body-preferring ROIs showed stronger positively correlated 

spontaneous fluctuations for body-evoked than scene-evoked patterns, and scene-

preferring ROIs showed stronger positively correlated spontaneous fluctuations for 

scene-evoked than body-evoked patterns.  

The graphs in Figure 10C summarize the pattern-based Body and Scene FC 

matrices by averaging the inter-regional correlations for body-preferring regions (the 

lower left block of each matrix in Fig. 10B outlined in blue) and scene-preferring regions 
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(the upper right block of each matrix outlined in red). The left and middle graphs show 

respectively the results when stimulus-pattern-to-rest timeseries were computed using 

body-evoked and scene-evoked multi-vertex patterns. A 2-factor ANOVA on the mean 

pairwise pattern-based FC values with ROI-type (body, scene) and Category-evoked-

pattern (body, scene) as factors yielded a main effect of ROI-type (F(1,15)=5.41, 

p=.035), reflecting the larger FC values in body-preferring regions and, critically, a 

significant interaction of ROI-type by Category-evoked pattern (F(1,15)=8.96, p=.009).  

This effect was further supported by paired t-tests of specific contrasts. When stimulus-

pattern-to-rest timeseries were computed using a body-evoked multi-vertex pattern, 

inter-regional correlations were significantly higher in body- than scene-preferring ROIs. 

Conversely, when stimulus-pattern-to-rest timeseries were computed using a scene-

evoked multi-vertex pattern, inter-regional correlations were significantly higher in 

scene- than body-preferring ROIs.  

Therefore, spontaneous fluctuations of multi-vertex patterns of activity were more 

strongly correlated for multi-vertex patterns corresponding to the regions’ preferred 

category. This result suggests that resting pattern-based FC is modulated by the 

putative representational content of spontaneous activity. In addition, a paired t-test 

indicated that in the pattern-based Body FC matrix, the average FC was less in the 

scene-body block than in the body-body block of the matrix (p<.001; Fig. 10B, leftmost 

matrix, orange vs blue outlined blocks). Similarly, in the pattern-based Scene FC matrix, 

the average FC was less in the scene-body block than in the scene-scene block of the 

matrix (p=.035; Fig. 10B, middle matrix, gray vs red outlined blocks). Therefore, pattern-
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based FC was greater between regions preferring the same category than between 

regions preferring different categories.  

A related question was whether putative body and scene representations 

fluctuated independently at rest. The rightmost matrix in Figure 10B shows a Preferred-

Category pattern-based FC matrix in which body-pattern-to-rest correlation timeseries 

were computed in body-preferring regions (i.e. timeseries were computed using body-

evoked multi-vertex patterns) and scene-pattern-to-rest correlation timeseries were 

computed in scene-preferring regions (i.e. timeseries were computed using scene-

evoked multi-vertex patterns). Accordingly, the lower left and upper right blocks of the 

Preferred-Category matrix match, respectively, the lower left block of the Body pattern-

based FC matrix and the upper right block of the Scene pattern-based FC matrix.  

The ‘scene-body’ block of the Preferred Category matrix outlined in green is of 

primary interest. The correlation between scene and body regions was uniformly low 

under conditions in which the inter-regional correlation involved timeseries from scene 

and body regions that respectively indicated the fluctuations of scene- and body-evoked 

multi-vertex patterns (see rightmost graph, Fig. 10C, for average correlation values for 

scene-body blocks. Therefore, periods in which a body-evoked pattern was maximally 

present in body-preferring ROIs were largely independent of periods in which a scene-

evoked pattern was maximally present in scene-preferring ROIs. Paired t-tests indicated 

that correlations in scene-body blocks from the Preferred-Category matrix were 

significantly lower than the correlations from scene-scene (p=.009) and body-body 

region blocks (p < .0001).  
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Finally, a standard FC matrix (Fig. 11, left panel) was constructed by computing 

vertex-averaged resting timeseries for each region, followed by pairwise correlation of 

the regional timeseries. As in previous work (Hutchison et al 2014, Konkle & Caramazza 

2017, Wang et al 2016, Zhu et al), vertex-averaged FC was category specific, with 

stronger FC between body-preferring regions and between scene-preferring regions, 

than between body- and scene-preferring regions. Pattern-based FC matrices were 

moderately-to-strongly correlated with the vertex-averaged FC matrix. The largest 

correlation was with the preferred-category matrix rather than the matrices generated 

using a single category (body-evoked pattern, r=0.57; scene-evoked pattern, r=0.48; 

preferred-category, r=0.65). 

 

Category selectivity of U90 values in constituent ROIs 

 Figure 12 shows the category selectivity of U90 values for the individual 

constituent ROIs within a joint-ROI. For each joint-ROI, we conducted a two-factor 

ANOVA with Category and Constituent-ROI as factors and U90 value as the dependent 

measure.  A main effect of Category with no interaction between Category and 

Constituent-ROI was observed for both the body joint-ROI (F(7,63)=2.45, p=.028) and 

the scene joint-ROI (F(7,63)=2.41, p=.03), indicating a consistent profile of U90 values 

over categories across the constituent ROIs of each joint-ROI.  Nevertheless, variability 

in the category profiles over the constituent ROIs is evident. Since there were many 

fewer vertices in each constituent ROI than in the associated joint-ROI, some variability 

in category selectivity over constituent ROIs is expected due to noise. Additionally, 
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however, we argue in the discussion that the category selectivity of U90 values for a 

joint-ROI is aided by the category selectivity of the pattern-based FC between its 

constituent ROIs. 

 

Figure 12 
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Discussion 

The goal of the experiment was to test representational theories of spontaneous 

activity by determining whether in regions of human visual cortex there is a link between 

multi-vertex patterns of spontaneous activity, measured in the resting-state, and the 

multi-vertex patterns evoked by ecological visual stimuli such as bodies or stimuli that 

emphasized low-level features such as phase-scrambled bodies.   

We obtained two main results. First, resting multi-vertex activity patterns in 

regions of visual cortex were more closely related to the patterns evoked by the regions’ 

preferred stimulus categories. This relationship did not reflect a greater average 

similarity of resting patterns to the patterns for preferred categories, but instead a 

greater spread of resting similarity values for preferred categories. As resting multi-

vertex patterns in a region fluctuated over time, we observed both larger positive and 

larger negative similarity values for the patterns evoked by stimulus categories preferred 

by the region. This result was demonstrated statistically by two significant double 

dissociations. Body- and face-preferring regions showed larger U90 values, indexing the 

spread of similarity values, for faces and bodies than for scenes, while scene-preferring 

regions showed larger U90 values for scenes than for faces and bodies (Fig. 7). 

Regions preferring whole objects vs. phase-scrambled objects showed a similar double 

dissociation (Fig. 8). This result was further strengthened by the positive correlation 

between U90 values and stimulus specific activation magnitudes. The more strongly a 

stimulus activated a region, the higher the spread of similarity values over resting 

frames between the stimulus-evoked multi-vertex pattern and the spontaneous pattern 
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(Fig.9). The latter result is consistent with the notion that task-evoked patterns entrain 

spontaneous activity patterns during development and through experience (Fig. 1).  

The second main result was that multi-vertex activity patterns evoked by a 

category fluctuated more synchronously at rest between cortical regions preferring that 

category. For example, in the resting-state the pattern evoked by bodies was more 

positively correlated between body-preferring ROIs than between scene-preferring ROIs. 

The pattern evoked by scenes showed the opposite result (Fig. 10). Finally, the multi-

vertex patterns evoked by scenes and bodies fluctuated largely independently at rest 

within the preferred regions for those categories.   

Therefore, the current results show that multi-vertex patterns of spontaneous 

activity within regions of human cortex, and fluctuations of those patterns between 

regions, code for stimulus and category specific information. In this respect, our work is 

more related to seminal work conducted in cats (Kenet et al 2003) and monkeys 

(Fukushima et al 2012, Omer et al 2018) than to previous work on category-selective 

visual regions in humans, which has focused on measurements of voxelwise functional 

connectivity rather than on measurements of the resting multi-vertex pattern of activity 

at a timepoint (Hutchison et al 2014, Stevens et al 2017, Strappini et al 2018, Turk-

Browne et al 2010, Wilf et al 2017, Zhang et al 2009, Zhu et al). The most closely 

related previous work in humans was reported by Chen and colleagues, who compared 

voxelwise functional connectivity measurements to evoked multi-vertex patterns (Chen 

et al 2017). 
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Spontaneous activity patterns for objects and features in visual cortex 

 Spontaneous activity patterns were not more similar on average to preferred 

stimulus evoked-patterns, but showed the greatest variation with respect to those 

patterns (Fig. 7). Interestingly, animal studies thus far have found the same result with 

some caveats.  For instance, Kenet et al. (Kenet et al 2003) recorded voltage sensitive 

dye imaging in anesthetized cat visual cortex and found a significant  correlation (r=0.6) 

between spontaneous activity patterns and orientation selective stimulus evoked 

patterns. Positive and negative values of the correlation distribution were higher (as in 

our experiment), rather than the mean, as compared to a control distribution obtained by 

flipping the orientation selective map.  This finding was replicated recently in 

anesthetized monkey visual cortex (Omer et al 2018). In auditory monkey cortex, 

spontaneous spatial covariations of gamma activity recorded with cortical grids from 

auditory cortex resemble tonotopic maps derived with auditory stimuli. Also in this case, 

the correlation involves both positive and negative high correlation values as compared 

to a control distribution obtained by shuffling the tonotopic map (Fukushima et al 2012). 

In our experiment, the control distribution was not spatially shuffled because this 

control might not preserve the local structure of the vascular architecture that is the 

anatomical basis of the measured BOLD signal. Therefore, we instead compared 

stimulus-evoked-to-rest correlation distributions for two different stimuli (e.g. bodies vs. 

scenes). Although the animal and human experiments differed in many ways, in all 

experiments the reported match between spontaneous and task-evoked activity was not 

a shift in the mean, but rather a higher frequency of more extreme matches/mismatches 

of the spatial patterns (e.g. Compare our Fig. 7B to (Omer et al 2018) Figs.1-2). 
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 An issue for future work is whether spontaneous activity patterns are more 

related to the average pattern evoked by a category or the patterns evoked by individual 

exemplars from the category. In rat hippocampus, spontaneous replay in anesthetized 

and awake animals of sequences of activity during navigation, a phenomenon 

qualitatively similar to what reported here (e.g. (Karlsson & Frank 2009); see also 

(Buzsaki & Draguhn 2004)), seem to reflect individual experiences rather than averages. 

Hippocampal replay sequences have been mainly conceptualized as reflecting a 

mechanism for consolidating information in long-term memory.  

One interpretation of the current results is that spontaneous activity serves as a 

prior for task processing such as object recognition. An important rationale for 

postulating a representational function of resting activity is that limits on the information 

processing capacity of the brain may be mitigated by the incorporation of useful prior 

information.  Appropriate priors will generally depend on context and therefore will 

change dynamically. The perceptual priors appropriate to walking alone through a forest 

vs. eating a family meal at the dinner table are quite different.  These putative dynamic 

changes are thought to reflect generative models of the expected input via top-down 

pathways (Mumford 1992). 

Resting scans are usually conducted under conditions in which subjects lie in a 

dark tube while fixating a cross in an otherwise blank display, which would not seem a 

fertile context for a perceptual prior. However, some aspects of an appropriate prior may 

not heavily depend on context.  For example, recent work in monkey inferotemporal 

cortex indicates that individual faces can be coded by face cell assemblies whose firing 

rate is distributed along a small number of orthogonal dimensions (Chang & Tsao 2017). 
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Therefore it is possible that the spontaneous activity patterns found in the present work 

reflect fluctuations along canonical low dimensional configurations.  

 

Synchronous fluctuations of representational content 

The second important result is that multi-vertex patterns that putatively code a 

stimulus category fluctuate more synchronously at rest between visual cortical regions 

that prefer the same category (what we call pattern-based FC).  Pattern-based FC 

between body-preferring regions was significantly larger when computed using a body- 

than scene-evoked pattern, while pattern-based FC between scene-preferring regions 

was significantly larger when computed using a scene-evoked than body-evoked 

pattern (Fig. 10).  

An interesting result from the pattern-based FC analysis was that at rest different 

putative representational states, as indexed by  multi-vertex patterns, fluctuated largely 

independently.  Synchronous fluctuations associated with body-evoked patterns in 

body-preferring ROIs occurred independently of synchronous fluctuations associated 

with scene-evoked patterns in scene-preferring ROIs, as shown by the very low 

correlations between scene and body regions in the analysis of the Preferred Category 

FC matrix (Fig. 10). Therefore, resting activity across category-selective regions of 

visual cortex cannot be described in terms of a single representational state. These 

results provide new constraints on theories of the function of FC.  

An interesting approach for identifying the representational content of resting FC 

has been reported in studies of early visual cortex, which have shown that resting FC 
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respects the tuning of single voxels for polar angle, eccentricity, and low-level stimulus 

features (Arcaro et al 2015, Heinzle et al 2011, Raemaekers et al 2014, Ryu & Lee 

2018). Most task-based studies of representation in higher-order visual and associative 

regions, however, have not involved measurements of voxelwise tuning functions but 

instead have identified task-evoked representations through measurements of regional  

patterns. Therefore, pattern-based FC (Anzellotti & Coutanche 2018, Chen et al 2018, 

Coutanche & Thompson-Schill 2013) can provide insights into the putative 

representational FC of spontaneous activity in high-level brain regions that are 

complementary to those provided by approaches based on the tuning properties of 

single voxels. 

 We suggest two additional ways in which pattern-based FC might inform studies 

of resting-state organization. First, pattern-based FC may help fractionate existing 

resting-state networks and identify the functional factors associated with that 

fractionation. For example, pattern-based resting FC between regions that prefer a 

particular category might depend on selectivity for features within the category, such as 

gender for face-preferring regions.  

Second, pattern-based FC might uncover resting FC organizations that differ 

substantially from the normative whole-brain structure that has been described over the 

past decade (Cole et al 2016, Gordon et al 2016, Power et al 2011, Yeo et al 2011), 

although this structure does vary over individuals (Gordon et al 2017, Gratton et al 2018, 

Laumann et al 2015). In the current work, pattern-based FC was measured within 

category-preferring regions.  Because regions that co-activate tend to show greater 

resting FC (Smith et al 2009), and because previous studies have shown that regions 
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preferring the same category show preferential FC (Hutchison et al 2014, Stevens et al 

2017, Turk-Browne et al 2010, Zhang et al 2009, Zhu et al), novel FC organizations 

were not expected. Accordingly, pattern-based FC matrices were moderately-to-strongly 

correlated with inter-regional vertex-averaged FC matrices.  However, divergent FC 

organizations may be more likely in studies that use task-evoked activity patterns based 

on frequently occurring processes that combine different domains: for example, activity 

patterns based on integration of voice and face information during person-to-person 

interactions, visuomotor coordination during object manipulation, or biologically 

significant stimulus-reward or response-reward contingencies. Cross-domain pattern-

based FC that cuts across standard networks might reflect synergies (Leo et al 2016, 

Santello et al 2013, Schieber & Santello 2004) or routines for implementing frequently 

occurring processes. 

 

Pattern-based FC and correspondence of resting and evoked activity patterns 

We suggest that the synchronous fluctuations of representational content 

evidenced by pattern-based FC (Fig. 10) is partly responsible for the correspondence of 

stimulus-evoked activity patterns and spontaneous activity patterns that was observed 

in joint-ROIs (Figs. 7 and 8). The largest positive or negative similarity values for a 

resting frame in a joint-ROI will occur when the similarity values in the constituent ROIs 

on that frame are simultaneously large and have the same sign. Otherwise, across 

constituent ROIs the similarity values will tend to cancel or average to a lower value.  

Therefore, a larger spread of similarity values in a joint-ROI is more likely to be 
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observed if the similarity values in the constituent ROIs fluctuate in a temporally 

correlated or synchronous fashion.  

This mechanism explains the pattern of U90 values across the different joint-

ROIs shown in Figure 7C. U90 values averaged across categories were highest in the 

face joint-ROI, intermediate for the body joint-ROI, and lowest for the scene joint-ROI, 

i.e. were inversely related to the number of constituent regions in each joint-ROI (2 for 

face, 5 for body, and 9 for scenes). The greater the number of constituent ROIs in a 

joint-ROI, the more the overall U90 value for the joint-ROI was decreased by sub-

optimal synchronicity. As noted in the results section, in a two-factor ANOVA on U90 

values with joint-ROI (body, face, scene) and Category (8 levels) as factors, the main 

effect of joint-ROI was significant. We additionally computed a single U90 value for each 

joint-ROI for each participant by averaging over categories.  Paired t-tests on these 

averaged U90 values, with a Bonferroni-Holm correction for multiple comparisons (3 

tests), indicated significantly larger U90 values within the Face than Body joint-ROIs 

(p<.0001), Face than Scene joint-ROIs (p<.0001), and Body than Scene joint-ROIs 

(p=.01).  

In addition, since the multi-vertex activity patterns for a non-preferred category do 

not fluctuate as synchronously across constituent ROIs as those for a preferred 

category (Fig. 12), the resulting similarity values across frames in the joint-ROI for that 

non-preferred category will show less variation from zero, resulting in smaller U90 

values. Therefore, within a joint-ROI, differences in U90 values between categories 

should be more reliable for joint-ROIs comprised of more constituent ROIs.  This 

suggestion is also consistent with the results in Figure 7C, with the fewest significant 
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differences found for the face joint-ROI and the most for the scene joint-ROI. Although 

other factors besides the number of constituent ROIs are clearly important in 

determining the category selectivity of U90 values in a joint-ROI, the larger point is that 

the greater pattern-based FC for the preferred category of the constituent ROIs 

increases the incidence of extreme similarity values between category-evoked and 

spontaneous patterns in a category specific fashion.  

 

Low- and high-level visual correspondences at rest 

The spread of similarity values between resting activity patterns and stimulus-

evoked patterns was determined by how well a stimulus activated the region, 

irrespective of whether the stimulus was more or less ecological.  In many higher-level 

visual ROIs, stimulus preferences favored a particular whole-stimulus category (e.g. 

bodies) over another whole-stimulus category (e.g. scenes) or over the phase-

scrambled category. Conversely, in early visual cortex, preferences favored stimuli that 

weighted low-level features, resulting in larger U90 values for scrambled than whole-

stimulus categories.  The larger U90 values for scrambled stimuli in early visual cortex 

do not contradict an overall framework in which resting activity patterns reflect the 

statistical distribution of features in the environment. Rather, this result suggests that 

resting activity patterns in regions that primarily extract low-level visual features are 

relatively independent of the patterns associated with higher-order features/statistics 

that define categories of more ecological stimuli. 
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Grid-scrambled objects showed greater U90 values than whole-objects in the 

Phase-scrambled joint-ROI and equivalent U90 values to whole-objects in the Whole-

object joint-ROI (Fig. 8).  This latter equivalence may have reflected the fact that the 

union of different category-preferential regions in the Whole-object joint-ROI eliminated 

or reduced the importance of features selective for a specific ecological category. 

Instead, the U90 value reflected features common to different ecological categories that 

were also present in grid-scrambled objects.  

Therefore, the relationship between resting patterns and stimulus-evoked 

patterns can be driven by a variety of stimulus features that reflect local (e.g. contour-

related features) or global (e.g. faces) stimulus characteristics depending on the tested 

regions. 

 

Limitations 

Stimuli were not controlled for low-level variables that might have differentially 

activated visual regions.  As noted, grid-scrambled stimuli may have included contour 

terminators to a larger degree than many whole-object stimuli, increasing the activation 

of early visual cortex.  However, this factor was not explicitly controlled or manipulated. 

Also, stimuli were presented in a non-naturalistic context.  Wilf et al. (Wilf et al 2017) 

have shown that in early visual cortex, resting FC patterns are better accounted for by 

movies than by standard retinotopic stimuli, while Strappini et al. (Strappini et al 2018) 

have shown that in higher-level visual cortex, resting FC patterns are better accounted 

for by movies than by static pictures of stimuli similar to those used here. Therefore, the 
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present results may have underestimated correspondences between resting and 

evoked multi-vertex patterns. 
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Figure Captions 

Figure 1. The putative cyclic interplay between brain activity evoked by real-world 

experiences and resting-state activity. 

 

Figure 2. Stimulus categories used in the experiment. 

 

Figure 3. Experimental design, with separate resting scans, blocked-design localizer 

scans, and event-related task scans.  

 

Figure 4. Body, Face, and Scene ROIs (regions of interest). (A) Group z-statistic 

Localizer maps for category-preferring visual regions. ROIs were separately 

defined for each individual from their localizer maps using the group foci as a 

constraint. (B) Schematic rendering of three sets of category-preferential ROIs 

for faces, bodies, and scenes using the object category (tools and chairs) as the 

baseline.   

 

Figure 5. Whole-object and Phase-scrambled ROIs. (A) Group z-statistic Localizer 

maps of visual regions that prefer whole-objects or phase-scrambled objects. (B) 

Schematic rendering of Whole-Objects and Phase-Scrambled ROIs.  ROIs were 

separately defined for each individual from their localizer maps using the group foci 
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as a constraint. Surface renderings of V1, V2, and V3 from the Wang et al. 

template (Wang et al 2015) are superimposed. 

 

Figure 6. Representational similarity analysis (RSA) of individual stimuli and categories. 

(A) RSA based on the multi-vertex patterns for individual exemplars for each 

‘whole-object’ category in 3 classical category-preferential areas. (B) RSA based 

on the multi-vertex pattern evoked for each category. 

 

Figure 7. Stimulus-evoked-to-rest pattern similarity analysis in visual regions preferring 

specific categories. (A) Procedure for computing U90-values: determining the 

category-evoked multi-vertex pattern on task scans, correlating that pattern over 

vertices with the pattern on each resting frame, computing a U90 value from the 

resulting distribution of correlation coefficients. (B) Superimposed distributions of 

correlation coefficients for a joint-ROI’s preferred stimulus category, which was 

defined by the corresponding localizer contrast (light green; e.g. Body in the 

Body-preferred joint-ROI) and the phase-scrambled category (gray). (C) Group-

averaged U90 values for the joint-ROI’s preferred category (green symbol), other 

whole-object categories (red symbols), grid-scrambled category (blue symbol), 

and phase-scrambled category (gray symbol). Black symbols indicate significant 

paired t-test between the joint-ROI’s preferred category and indicated category 

(++ = Bonferroni-Holm corrected p-val ≤ 0.005). Error bars indicate ±SEM. 
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 Figure 8. Stimulus-evoked-to-rest pattern similarity analysis in regions preferring 

phase-scrambled objects or whole-objects. (A) RSAs for Whole-Objects and 

Phase-Scrambled Objects joint-ROIs based on the multi-vertex pattern for each 

category. (B) Group-averaged U90 values. Black symbols indicate significant 

paired t-test between the whole-object category and scrambled category (++ = 

Bonferroni-Holm corrected p-val ≤ 0.005). Error bars indicate ±SEM. 

 

Figure 9. (A) Group mean activation strength from task scans for all stimulus categories 

in each joint-ROI. Error bars indicate ±SEM. (B) Correlation between activation 

strengths from task scans and U90 values across all categories and participants. 

 

Figure 10. Pattern-based FC. (A) Stimulus-pattern-to-rest correlation timeseries 

computed using body-evoked and scene-evoked activity patterns in two scene-

preferring and two body-preferring ROIs. (B) Pattern-based FC matrices 

computed using body-evoked, scene-evoked, or preferred category-evoked 

multi-vertex patterns (see text for details). (C) Left, Middle: Group-averaged 

pattern-based FC between body-preferring regions and between scene-

preferring regions computed using body-evoked patterns (left) or scene-evoked 

patterns (middle). Right: Group-averaged pattern-based FC between body and 

scene regions computed using body-evoked, scene-evoked, or preferred-

category-evoked patterns. Black symbols indicate significant group paired t-test 

comparing correlation (ρ) values (* = p-val ≤ 0.05). Error bars indicate ±SEM. 
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Figure 11. Vertex-averaged FC. A standard non-pattern-based FC matrix was 

computed by first averaging the vertex-wise timeseries of the BOLD signal 

across the vertices within each region, and then correlating the resulting vertex-

averaged timeseries across all pairs of regions (Left). All cells involving FC 

between body regions, between scene regions, and between body and scene 

regions are averaged and plotted (Right). 

 

Figure 12. Graphs of the profile of group-averaged U90 values across stimulus 

categories for each constituent body region, scene region, and face region. 

 

Table 1. ROI Summary 

 

Table 2. Correlation over vertices between face-evoked, body-evoked, and scene-

evoked multi-vertex patterns in three joint-ROIs. 
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