

Benchmarking Database Systems for Genomic
Selection Implementation
Yaw Nti-Addae1*, Dave Matthews2, Victor Jun Ulat3, Raza Syed1, Guil-
hem Sempéré4, Adrien Pétel5, Jon Renner6, Pierre Larmande7, Valentin
Guignon8, Elizabeth Jones1, Kelly Robbins9
1Department of Biotechnology, Cornell University, 2Boyce Thompson Institute, 3Centro Internac-
ional de Mejoramiento de Maíz y Trigo (CIMMYT), 4 INTERTRYP, Univ Montpellier, CIRAD,
IRD, 5 UMR PVBMT, CIRAD , 6University of Minnesota, 7UMR DIADE, IRD, University of Mont-
pellier, 8 Bioversity International, 9College of Agriculture and Life Sciences, Cornell University

*To whom correspondence should be addressed.

Abstract
Motivation: With high-throughput genotyping systems now available, it has become feasible to fully
integration genotyping information into breeding programs [22]. To make use of this information effec-
tively requires DNA extraction facilities and marker production facilities that can efficiently deploy the
desired set of markers across samples with a rapid turnaround time that allows for selection before
crosses needed to be made. In reality, breeders often have a short window of time to make decisions
by the time they are able collect all their phenotyping data and receive corresponding genotyping data.
This presents a challenge to organize information and utilize them in downstream analyses to support
decisions made by breeders. In order to implement genomic selection routinely as part of breeding
programs one would need an efficient genotype data storage system. We selected and benchmarked
six popular open-source data storage systems, including relational database management and colum-
nar storage systems.
Results: We found that data extract times are greatly influenced by the orientation in which genotype
data is stored in a system. HDF5 consistently performed best, in part because it can more efficiently
work with both orientations of the allele matrix.
Availability: http://gobiin1.bti.cornell.edu:6083/projects/GBM/repos/benchmarking/browse
Contact: yn259@cornell.edu

1 Introduction
The development of Next-generation sequencing (NGS) technologies

has made it feasible to generate huge volumes of genomic data. In the
field of plant breeding, the availability of cost-effective genomic data has
the potential to change the way crop breeding is done. Genomic selection
(GS) is a breeding method where the performance of new plant varieties
is predicted based on genomic information [1]. Multiple studies have
shown the potential of this methodology to increase the rates of genetic
gain in breeding programs by decreasing generation interval, the time it
takes to screen new offspring and identify the best performers for use as
parents in the next generation [2], [3]. Although model capabilities exist
for the implementation of GS, mainstream applications require the com-
putational infrastructure to manage NGS data, often generated from
highly multiplexed sequencing runs that generate low coverage data with
large amounts of missing information. The lack of computational infra-
structure remains a major barrier to routine use of genomic information
in public sector breeding programs.

The Genomic Open-source Breeding Informatics Initiative (GOBii) is
a project aimed at increasing the rates of genetic gain in crop breeding
programs serving regions in Africa and South Asia by developing the ca-
pabilities required for routine use of genomic information. To deal with
the technical challenges of storage, rapid access (i.e. query execution), and
computation on NGS data, the initial focus of GOBii has been the devel-
opment of an efficient genomic data management system (GOBii-GDM).
The system must be able to efficiently store huge volumes of genomic
information and provide rapid data extraction for computation. The system
must be scalable for large breeding programs, while being able to run ef-
fectively at institutions with limited access to large computational clusters.
While many open-source technologies exist for the management of large
two-dimensional datasets, it is unclear which technologies best suit the
needs of plant breeding and genetics research.

There are many appealing characteristics of traditional relational data-
base management systems (RDBMS), which are designed and built to
store, manage, and analyze large-scale data. However, performance can
be problematic when dealing with large matrix data like those commonly
encountered in genomic research. One common limitation of RDBMS is
database partitioning, which allows for a logical database to be divided
into constituent parts and distributed over a number of nodes, (e.g. in a

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/519017doi: bioRxiv preprint

https://doi.org/10.1101/519017
http://creativecommons.org/licenses/by-nd/4.0/

computer cluster) [4]. To address these performance issues, many
RDBMS have capabilities for working with binary large objects (BLOBs).
Current versions of PostgreSQL (version 9.3 and up) have support for
JSONB objects that could be used to store BLOBs of genomic data. How-
ever, this still does not solve the data retrieval performance issues [4]. An
alternative to storing genomic data directly in a RDBMS is to use a hybrid
system [5] with high-dimensional data being stored in files and key meta
information required for querying the data stored in an RDBMS.

Leveraging several decades of work of the database community on op-
timizing query processing, columnar store databases, such as MonetDB
are designed to provide high performance on complex queries against
large databases, such as combining tables with hundreds of columns and
millions of rows. In the biological context, experiences show that
MonetDB [8] enables the data to be stored in a format to allow fast queries
of vectors of genomic data based on marker or sample indexes, which
should improve performance relative to RDBMS. More recently NoSQL
systems have emerged as effective tools for managing high-dimensional
genomic data [9], [10], [11]. NoSQL systems for distributed file storage
and searching represent scalable solutions compare to RDBMS when deal-
ing with semi-structured data types [12], [13], and MongoDB, a docu-
ment-based NoSQL database has been used to develop a web-based tool
for exploring genotypic information [14].

The Hierarchical Data File Format (HDF5) is a member of the high-
performance distributed file systems family. It is designed for flexible, ef-
ficient I/O and for high-volume and complex data. It has demonstrated
superior performance with high-dimensional and highly structured data
such as genomic sequencing data [6] making it an appealing option for a
hybrid system approach. There are an increasing number of bioinformatics
applications, such as BioHDF [20], SnpSeek [7], Oxford Nanopore
PoreTools [21] and FAST5, all of which use HDF5 to scale up simple
queries execution on large number of documents. However, there is little
reported information on the performance of HDF5 when the system is
used to process more complex analytical queries that involve aggregations
and joins.

To determine the ideal technology to serve as the backend of the GO-
Bii-GDM, testing was performed using a large genotype-by-sequencing
(GBS) dataset [15], [16], [19]. Open-source RDBMS, PostgreSQL and
MariaDB, a community-developed fork under the GNU GPL of MySQL,
were used as a baseline for performance testing and compared with
HDF5, MonetDB, Elasticsearch [17], Spark [18], and MongoDB. Load-
ing and extraction times were measured using queries that would be
commonly run for applications of GS in a breeding program.

2 Methods
Six database systems were tested using a subset of a maize nested asso-

ciation mapping (NAM) population GBS SNP dataset [19] containing al-
lele calls for 5258 samples (germplasm lines) and 31,617,212 markers.
Each marker represents a physical position in the reference genome where
polymorphisms were detected in the samples. Each genotyping call was
encoded as a single ASCII character for the diploid result, using IUPAC
nucleotide ambiguity codes for heterozygotes and “N” for missing data.
The input and output format for all tests was a text file containing only the
tab-delimited allele calls.

(a) (b)
Genomic matrices can be stored in two different orientations as show-

ing in Figure 1. Given that traditional RDBMS (PostgreSQL and Mari-
aDB) or disk stores are optimized for extracting data by rows, and

columnar stores (MonetDB and Parquet) are optimized for extracting data

by columns, we stored data in these two different orientations where pos-
sible for each of the database systems. Unfortunately, due to size and tech-
nology restricts, not all systems could handle both orientations. We tested
if the orientation of genotype matrix has an impact on query execution
times. For the purposes of this benchmarking, we will define “marker-
fast” orientation as the orientation of the genotype matrix in a system that
favors the extract of markers, and converse, “sample-fast” as orientation
of data in a system that favors the extract of samples. For example, in
MonetDB, sample-fast orientation will have samples in columns and
markers in rows and as such favor the querying of samples to markers.
Vice versa, sample-fast orientation in PostgreSQL will have samples in
rows and markers as indexes in a binary JSON object.

Three use cases were used to test the performance of systems with que-
ries set up to extract data by:

I. All samples for a list of markers (USECASE I)
II. All markers for a list of samples (USECASE II)

III. A block of data defined by a list of markers and samples
(USECASE III)

For each use case, we tested extracting a contiguous list of markers or
samples versus a random list. Care was necessary to avoid unrepeatable
timing results due to memory caches in the system. All tests were run on
a single node server with a 10 gigabit ethernet connection to a fast-access
file server. the server specifications and version of the tested systems are
listed in Table 1.

Table 1. Server configuration and software versions.

Server Configuration

Processor
Intel Xeon E5 2620 V3 2.4GHz 6C
15Mb

Number of Processors 24

Memory 128GB DDR-4 2133MHz ECC/REG

Raid 6

Network File Storage 50TB

Operating System Debian

Software Version

HDF5 1.8

MariaDB 10.1

MonetDB 1.1

MongoDB 3.6.0 (compression level : snappy)

Figure 1: Different orientation of genotyping data. (a) markers
in rows and samples in columns, whereas (b) shows markers in
columns and samples in rows

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/519017doi: bioRxiv preprint

https://doi.org/10.1101/519017
http://creativecommons.org/licenses/by-nd/4.0/

Benchmarking database systems for GS

PostgreSQL 9.5

Spark 2.3

Java Hotspot 1.8 (64 bit)

Elasticsearch 2.3.3 (under Java 1.8.0_92 64bit)

Database Implementation

The default parameters were applied to each benchmarked system, with
some parameters critical for performance, such as memory allocation,
manually optimized.

PostgreSQL Implementation

PostgreSQL is one of the most widely used open source object-rela-
tional database systems. Tests where done in version 9.5 and its configu-
ration file was modified to consume up to 30GB of memory per query,
whereas the default configurations use only 250MB of memory. Data was
stored in “marker-fast” orientation for USECASE I as shown in Table 2.

Marker Data*
S6_120018 {“B73(PI550473):250028951”:”C”,”B97

(PI564682):250027958”:”T”,”CML103(A
mes27081):250027883”:”C”,”CML228(Am
es27088):250027960”:”C”}

S6_120046 {“B73(PI550473):250028951”:”A”,”B97
(PI564682):250027958”:”A”,”CML103(A
mes27081):250027883”:”A”,”CML228(Am
es27088):250027960”:”A”}

*Data stored as JSONB objects

Conversely, data was stored in sample-fast orientation for USECASE II,
where samples were in one column and associated markers and SNP allele
calls in JSONB format in another column. We recognize that PostgreSQL
can be optimized in cases of highly sparse data by storing only non “N”
SNPs, which allows PostgreSQL to act like a document store, thereby re-
ducing the size of stored information by many folds. For the purposes of
this benchmarking, all data was treated as complete as many USECASEs
in genomic selection will pull information in which missing data has been
imputed.

MariaDB Implementation

MariaDB is a community-developed, commercially supported fork of
MySQL relational database. MariaDB was configured to utilize up to the
maximum available memory on the server. Similar to PostgreSQL, data
was stored in marker-fast for USECASE I, as shown in Table 3, and sam-
ple-fast for USECASE II. Dynamic columns allow one to store different
sets of columns for each row in a table. It works by storing a set of columns
in a BLOB and having a small set of functions to manipulate it.

Marker Data*
S6_120018 {“B73(PI550473):250028951”:”C”,”B97

(PI564682):250027958”:”T”,”CML103(A
mes27081):250027883”:”C”,”CML228(Am
es27088):250027960”:”C”}

S6_120046 {“B73(PI550473):250028951”:”A”,”B97
(PI564682):250027958”:”A”,”CML103(A
mes27081):250027883”:”A”,”CML228(Am
es27088):250027960”:”A”}

*Data is stored as dynamic columns

MongoDB Implementation

MongoDB is an open source document-oriented database system. Mon-
goDB tests were performed using version 3.6.0 configured with the
WiredTiger storage engine and the snappy compression level, a choice
driven by a comparison work done in [14]. MongoDB was tested with data
stored in both orientations, marker-fast and sample-fast. For the marker-
fast orientation, two types of documents were used:
- one for storing the genotype array corresponding to each marker, as
follows:

{
 "_id" : "S6_120018",
 "g" : [
 "T",
 "A",
 "C",
 "N", ...]
}

- the second for mapping sample names to indices in the latter array
{
 "_id" : "CML247(PI595541):250027894",
 "n" : NumberInt(0)
}

In the sample orientation, the sample collection remained the same as
above, but the documents storing genotypes were refactored as:

{
 "_id" : {
 "ii" : "B73(PI550473):250028951",
 "c" : NumberInt(0)
 },
 "g" : [
 "C",
 "A",
 "G",
 "C", ...]
}

Ideally, the document id would have been just the sample name, and the
genotype array length would have been equal to the number of markers,
i.e. 31,617,212. But because MongoDB has a 16Mb document-size limi-
tation, we had to split each sample’s genotype array into chunks of maxi-
mum size 100,000. This explains why the id here is composite and consists
in the following pair: sample name + chunk index.

HDF5 Implementation

Hierarchical Data Format (HDF5) file format is designed to store and
organize extremely large and complex data collections. The allele matrix
was stored in one-byte cells in both orientations, marker-fast with samples
as columns (HDF5 dimension 1) and markers as rows (dimension 0) and
the other in the opposite orientation. When extracting data for a list of
samples and a list of markers, USECASE III, the most straightforward ap-
proach would be to use HDF5’s H5Sselect_elements function to address
each allele call by its (sample, marker) coordinates. However, it was
found to be much faster to extract all the data for each marker into a
memory array using H5Sselect_hyperslab, and then look up the results for
the desired samples in that array. The speed increase from this approach
was more than 30-fold under all conditions tested.

Under some conditions HDF5 performance can be improved by struc-
turing the HDF5 data file in a “chunked” format, depending on the patterns
of data access in actual use. A chunk is a contiguous two-dimensional
block of the data array that is stored and retrieved as a unit whenever any
element within it is accessed. The results reported above were obtained
without chunking. Separate tests were performed to compare the

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/519017doi: bioRxiv preprint

https://doi.org/10.1101/519017
http://creativecommons.org/licenses/by-nd/4.0/

unchunked format with four different (marker, sample) chunk dimensions:
(256, 256), (1000, 1000), (1000, 5258), and (1, 5258). Loading the HDF5
file was no faster for any of these configurations, and 7-fold slower for
(1000, 1000). Retrieval times were also not improved by chunking, using
the H5Sselect_hyperslab procedure described above.

Spark Implementation

Spark is an open source distributed general purpose cluster-computing
framework. Spark version 2.3.0 was used, using the PySpark (Python
3.6.5) interface. The Java VM used was Java Hotspot 64 bit 1.8.0_171. It
is possible there might be a small improvement in benchmark results using
the pure Scala interface for Spark, though in general the overhead for us-
ing PySpark is not large. Spark benchmarks were run by reading from pre-
prepared Parquet file-format version of the genotype matrix. Parquet is an
open source file format for Hadoop and stores nested data structures in a
flat columnar format. Besides Spark, Parquet can be used in any Hadoop
ecosystem like Hive, Impala and Pig. Data was stored in sample-fast ori-
entation with samples in columns and markers in rows, and vice versa for
marker-fast orientation.

MonetDB Implementation

MonetDB is an open source column-oriented database management
system, and version 1.1 of MonetDB was used for the benchmarking. Sim-
ilar to Parquet file format in Spark, data was stored in sample-fast orien-
tation with samples as columns and markers in rows. Due to number of
column restriction in MonetDB, we were not able to store data in marker-
fast orientation as the number of markers exceeded the limit for number
of columns. MonetDB out of the box is configured to use any available
memory on the server.

3 Results and Discussion

3.1 Data Loading
The load times for each system are presented in Figure 2. HDF5 was

the fastest, with MongoDB also performing reasonably well. The two
RDMS performed poorly, with MariaDB being the worst, taking approxi-
mately 90 times longer than HDF5. While loading time is a lower priority
than extraction times, the tight turnaround times from receiving marker
data from the lab and generating genomic predictions for selection makes
loading times of more than a day for large datasets undesirable for routine
implementation of GS. While the process used for loading the data was
not optimized, it is unlikely that loading times for MariaDB could be re-
duced to an acceptable level of performance. The performance of Post-
greSQL could potentially be reduced to less than 1 day, but the large gap
in performance compared to HDF5, MonetDB, and MongoDB is undesir-
able. Based on some preliminary testing (data not reported) MongoDB
outperformed Elasticsearch (ES). To achieve optimal performance, ES
settings must be tuned according to each dataset, hardware environment
and expected response time. Furthermore, ES is not designed to return
large amounts of data at once, using a scrolling API instead, which com-
plicates the task of gathering query results. Based on these initial results
and the complexity of implementing ES as part of GOBii-GDM solution,
the decision was made to not pursue further benchmarking on ES.

3.2 Data Extraction
Data extraction tests intentionally extended to very large result sets to

test performance beyond the limits expected in actual use. Figure 3 shows
the extraction times for increasing number of markers, for all samples in
the dataset. For a contiguous block of markers, HDF5 showed the best
performance, with the next best solution, MonetDB, performing 11 times
slower. On the other hand, for a random list of markers, although HDF5
shows better performance overall, Spark showed a steady performance
across different marker blocks, and seems to outperform HDF5 at high
marker numbers. The big discrepancy in performance of Spark between
contiguous and random list of markers can be explained in the columnar
nature of Spark. Spark Parquet file format is a column-oriented data for-
mat, so it does not have an "index" of rows and their order, so to ask for a
contiguous chunk of rows is antithetical to the design of the data format.
Results for MariaDB were greater than 25 hours for all points, off scale in
Figure 2a and 2b. When selecting random markers for all samples,
MonetDB extraction times exceeded 25 hours for even modest numbers
of markers. This is likely due to the orientation of the data stored in the
system. Due to limitations in the number of columns for the MonetDB and
Spark set-up used for benchmarking, data could not be stored with markers
as the columns (> 31 million columns). Given MonetDB is designed for
fast querying of columns, the system did not perform well for marker
(row) queries.

Figure 2: Load times for database systems

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/519017doi: bioRxiv preprint

https://doi.org/10.1101/519017
http://creativecommons.org/licenses/by-nd/4.0/

Benchmarking database systems for GS

Extraction times for retrieving all markers for subsets of samples are
shown in Figure 3. Again, the results for MariaDB were greater than 25
hours for all queries. As expected MonetDB performed significantly better
with queries on samples (columns). As with queries on markers, HDF5
performed best, with the next best solution, Spark, 1.2 and 2.2 times
slower than HDF5 for the contiguous and random sample scenarios re-
spectively. For queries on samples, the relative performance of Post-
greSQL dropped substantially, with extract times exceeding 20 hours for
all data points. The drop in relative performance, and insensitivity to num-
ber of samples in the random sample scenario, may be related to the way
in which the data is stored in PostgreSQL. A JSONB object is stored for
each marker, with each object containing the allele calls for all samples.
The observed performance indicates that the total extraction time is influ-
enced more strongly by the time to fetch the JSONB objects from disk into
memory, than to extract data for desired samples from the JSONB objects
in memory. For the queries extracting all markers from selected samples,
two data orientations were tested for MongoDB, with the sample-fast ori-
entation (shown) performing significantly better.

Results from USECASE III, extraction based on varying lists of mark-
ers and samples. Results for a list of 1 million markers and varying num-
bers of samples is shown in Figure 5. Once again HDF5 gave the best
performance with the next best system performing 5.7 and 1.8 times
slower for the largest contiguous and random marker and sample lists, re-
spectively. For the contiguous scenario, MonetDB gave the second-best
performance, twice as fast as MongoDB, but exceeded 48 hours for the
random list selecting data from 4000 samples and 1 million markers. Nei-
ther of the RDBMS performed well for scenario 3, with all extractions
taking more than 48 hours for 4000 samples and 1 million markers.

4 Conclusion
For all USECASEs the orientation of the data storage had a substantial
impact on the performance time of extraction. The fact that PostgreSQL
and MonetDB had limitations on storing the data in sample fast and
marker fast orientations, reduces their utility for systems that would be
regularly queried based on either markers or samples. For systems using
HDF5 or MongoDB, best performance would be obtained by storing the

Figure 3a: Times for extracting set of contiguous markers for
all samples. Times for MongoDB and MonetDB where essen-
tially identical

Figure 3b: Times for extracting set of random markers for all
samples

Figure 4a: Times for extracting set of contiguous samples for all
32 million markers

Figure 4b: Times for extracting set of random samples for all 32
million markers

Figure 5a: Times for extracting a cross-section of a number of
contiguous samples and 1 million contiguous markers

Figure 5b: Times for extracting a cross-section of a number of
random samples and 1 million random markers

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/519017doi: bioRxiv preprint

https://doi.org/10.1101/519017
http://creativecommons.org/licenses/by-nd/4.0/

data in both orientations with queries being directed to the optimal orien-
tation. While HDF5 showed consistently superior performance in extrac-
tion times and loading, implementation in a genomic data management
system would require a hybrid approach, with critical meta information
likely stored in a RDBMS. A final determination on whether to build a
system around HDF5 would need to account for the performance and com-
plexity of developing and deploying a hybrid system. All performance
tests were done using a fixed number of cores, but previous studies have
shown that the performance of NoSQL distributed file systems, such as
MongoDB and Spark, increase with access to more cores [8]. Further test-
ing is required to determine if the performance of MongoDB or Spark
would surpass HDF5 when deployed on large clusters.

Funding
This work has been supported by the Bill & Melinda Gates Foundation
and Agropolis Foundation grant E-SPACE (1504-004)

Conflict of Interest: none declared.

References
[1] T. H. E. Meuwissen, B. J. Hayes, and M. E. Goddard, “Prediction of Total

Genetic Value Using Genome-Wide Dense Marker Maps,” Genetics, vol. 157,
no. 4, p. 1819 LP-1829, Apr. 2001.

[2] J. M. Hickey, T. Chiurugwi, I. Mackay, W. Powell, and I. G. S. in C. B. P.
W. Participants, “Genomic prediction unifies animal and plant breeding pro-
grams to form platforms for biological discovery,” Nat. Genet., vol. 49, p. 1297,
Aug. 2017.

[3] Z. Lin, B. J. Hayes, and H. D. Daetwyler, “Genomic selection in crops, trees
and forages: a review,” Crop Pasture Sci., vol. 65, no. 11, pp. 1177–1191, 2014.

[4] S. Wang et al., “High dimensional biological data retrieval optimization with
NoSQL technology,” in BMC genomics, 2014, vol. 15, no. 8, p. S3.

[5] U. Röhm and J. Blakeley, “Data management for high-throughput genomics,”
arXiv Prepr. arXiv0909.1764, 2009.

[6] M. M. Hoffman, O. J. Buske, and W. S. Noble, “The Genomedata format for
storing large-scale functional genomics data,” Bioinformatics, vol. 26, no. 11,
pp. 1458–1459, 2010.

[7] N. Alexandrov et al., “SNP-Seek database of SNPs derived from 3000 rice
genomes,” Nucleic Acids Res., vol. 43, no. D1, pp. D1023–D1027, 2014.

[8] R. Cijvat et al., “Genome sequence analysis with MonetDB,” Datenbank-
Spektrum, vol. 15, no. 3, pp. 185–191, 2015.

[9] V. Guimaraes et al., “A study of genomic data provenance in NoSQL docu-
ment-oriented database systems,” in Bioinformatics and Biomedicine (BIBM),
2015 IEEE International Conference on, 2015, pp. 1525–1531.

[10] G. Manyam, M. A. Payton, J. A. Roth, L. V Abruzzo, and K. R. Coombes,
“Relax with CouchDB—Into the non-relational DBMS era of bioinformatics,”
Genomics, vol. 100, no. 1, pp. 1–7, 2012.

[11] M. Gabetta, I. Limongelli, E. Rizzo, A. Riva, D. Segagni, and R. Bellazzi,
“BigQ: a NoSQL based framework to handle genomic variants in i2b2,” BMC
Bioinformatics, vol. 16, no. 1, p. 415, 2015.

[12] W. L. Schulz, B. G. Nelson, D. K. Felker, T. J. S. Durant, and R. Torres,
“Evaluation of relational and NoSQL database architectures to manage genomic
annotations,” J. Biomed. Inform., vol. 64, pp. 288–295, 2016.

[13] E. Dede, M. Govindaraju, D. Gunter, R. S. Canon, and L. Ramakrishnan,
“Performance evaluation of a mongodb and hadoop platform for scientific data
analysis,” in Proceedings of the 4th ACM workshop on Scientific cloud compu-
ting, 2013, pp. 13–20.

[14] G. Sempéré, F. Philippe, A. Dereeper, M. Ruiz, G. Sarah, and P. Larmande,
“Gigwa—Genotype investigator for genome-wide analyses,” Gigascience, vol.
5, no. 1, p. 25, 2016.

[15] M. D. McMullen et al., “Genetic properties of the maize nested association
mapping population,” Science (80-.)., vol. 325, no. 5941, pp. 737–740, 2009.

[16] J. C. Glaubitz et al., “TASSEL-GBS: a high capacity genotyping by sequenc-
ing analysis pipeline,” PLoS One, vol. 9, no. 2, p. e90346, 2014.

[17] C. Gormley and Z. Tong, Elasticsearch: The Definitive Guide: A Distributed
Real-Time Search and Analytics Engine. “ O’Reilly Media, Inc.,” 2015.

[18] M. Zaharia et al., “Apache spark: a unified engine for big data pro-
cessing,”Commun. ACM, vol. 59, no. 11, pp. 56–65, 2016.

[19] Robert Bukowski, Xiaosen Guo, Yanli Lu, Cheng Zou, Bing He,
Zhengqin Rong, Bo Wang, Dawen Xu, Bicheng Yang, Chuanxiao Xie, Longjiang

Fan, Shibin Gao, Xun Xu, Gengyun Zhang, Yingrui Li, Yinping Jiao, John F
Doebley, Jeffrey Ross-Ibarra, Anne Lorant, Vince Buffalo, M Cinta Romay, Ed-
ward S Buckler, Doreen Ware, Jinsheng Lai, Qi Sun, Yunbi Xu; Construction of
the third-generation Zea mays haplotype map, GigaScience, Volume 7, Issue 4,
1 April 2018, gix134, https://doi.org/10.1093/gigascience/gix134

[20] Mason C.E. et al. (2010) Standardizing the Next Generation of Bioinformatics
Software Development with BioHDF (HDF5). In: Arabnia H.

 (eds) Advances in Computational Biology. Advances in Experimental Medicine
and Biology, vol 680. Springer, New York, NY

[21] Nicholas Loman, Aaron Quinlan , Poretools: a toolkit for analyzing nanopore
sequence data, bioRxiv 007401;

doi: https://doi.org/10.1101/007401

[22] Thomson, Michael J. “High-Throughput SNP Genotyping to Accelerate Crop

Improvement.” (2014).

Appendix 1
Table 1: Results for extracting M markers for all samples

Con-

tigu-

ous

of

markers

(mil)

MonetD

B

HDF5 Mon-

goDB

Post-

greSQ

L

Mari-

aDB

Spark

Yes 0 0 0 0 0 0 0
Yes 0.001 0.1 0 0 0.1 1566 19.5
Yes 0.005 0.2 0 0.1 0.5 1623 43.45
Yes 0.01 0.3 0 0.3 0.8 1523 71.3
Yes 0.05 1.2 0.1 1.4 3.9 1579 373.08
Yes 0.1 3.7 0.3 2.5 7.8 1663 423.07
Yes 0.5 10 1.2 12.3 39.2 1520 420.32
Yes 1 21.7 2.3 26.8 78.4 1632 426.8
Yes 5 134.2 11.6 134.3 391.8 475
No 0 0 0 0 0 0 0
No 0.001 44.5 0.1 0.2 0.5 1545 252
No 0.005 47.2 0.4 0.7 0.6 2043 251
No 0.01 47.8 0.9 1.8 1.2 2108 251
No 0.05 58.6 4.4 7.1 6 3017 252
No 0.1 74.8 8.6 13.7 13.2 6021 252
No 1 2700 80.8 130.8 149.5 264
No 5 443 858.8 945.6 316

Table 2: Results for extracting N samples for all markers

Contigu-

ous

of

sam-

ples

MonetD

B

HDF

5

Mon-

goDB

Post-

greSQL

Mari-

aDB

Spark

Yes 0 0 0 0 0 0 0
Yes 50 1.8 2 190.8 1282 1830 2.7
Yes 100 4 4 195.8 1301 1868 2.82
Yes 500 42.1 19.6 234.4 1401 13.73
Yes 1000 103.2 40.5 291.4 1528 32.63
Yes 2000 238.5 84.7 405.5 1804 92.52

Yes 3000 432.5

128.

4 518.2 2069

149.3

8

Yes 4000 698.5 169 632.8 2327

211.5

2
No 0 0 0 0 0 0 0

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/519017doi: bioRxiv preprint

https://doi.org/10.1101/519017
http://creativecommons.org/licenses/by-nd/4.0/

Benchmarking database systems for GS

No 50 1.9 1.7 188.5 1482 1575.63 2.9
No 100 4.7 2.4 195.6 1505 1535.53 3.3
No 500 48.7 15.6 239.3 1648 14
No 1000 118.3 22.6 295.7 1696 35.5
No 2000 306.6 58.5 409 1678 108
No 3000 547 81.6 621.3 1674 171

No 4000 626.9

107.

7 677.9 1681 239

Table 3: Results for extracting M markers by N samples

Contigu-

ous?

of

mark-

ers

of

Sam-

ples

MonetD

B

HDF

5

Mon-

goDB

Post-

greSQL

Mari-

aDB Spark
Yes 1k 0 0.00 0.0 0.00 0.00 0.00 0.00
Yes 1k 1000 0.00 0.0 0.00 0.10 1287 1.60
Yes 1k 3000 0.10 0.0 0.00 0.10 1684 8.55
Yes 1k 4000 0.10 0.0 0.00 0.10 1718 13.37
No 1k 0 0.00 0.0 0.00 0.00 0.00 0.00
No 1k 1000 8.40 0.1 0.20 0.20 1073 20.4
No 1k 3000 28.60 0.1 0.20 0.20 1163 144
No 1k 4000 24.70 0.1 0.20 27.10 1662 201
Yes 50k 0 0.00 0.00 0.00 0.00 0.00 0.00
Yes 50k 1000 0.10 0.10 0.70 2.60 1726 38.08
Yes 50k 3000 0.40 0.10 1.20 3.40 1635 204.3
Yes 50k 4000 0.80 0.20 1.50 3.80 1111 299.3
No 50k 0 0.00 0.00 0.00 0.00 0.00 0.00
No 50k 1000 10.80 4.10 6.60 5.00 1297 20.05
No 50k 3000 33.20 4.20 7.20 5.20 1623 145
No 50k 4000 32.40 4.20 8.00 4.80 1756 203
Yes 1m 0 0.00 0.00 0.00 0.00 0.00 0.00
Yes 1m 1000 3.40 0.90 12.10 49.90 1045.00 41.32

Yes

1m

3000 10.60 2.10 22.10 68.20 1048.00

222.1

2
Yes 1m 4000 14.70 2.60 29.60 76.10 1492.00 314.2
No 1m 0 0.00 0.00 0.00 0.00 0.00 0.00
No 1m 1000 192.1 72.6 109.60 121.80 1802.00 22.77
No 1m 3000 1846.6 78.5 138.10 143.40 1911.00 152.5
No 1m 4000 3291.7 83.0 153.90 151.00 1935.00 212.6

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/519017doi: bioRxiv preprint

https://doi.org/10.1101/519017
http://creativecommons.org/licenses/by-nd/4.0/

