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Abstract 

The major DNA sequencing technologies in use today produce either highly-accurate 
short reads or noisy long reads.  We developed a protocol based on single-molecule, 
circular consensus sequencing (CCS) to generate highly-accurate (99.8%) long reads 
averaging 13.5 kb and applied it to sequence the well-characterized human 
HG002/NA24385.  We optimized existing tools to comprehensively detect variants, 
achieving precision and recall above 99.91% for SNVs, 95.98% for indels, and 95.99% 
for structural variants.  We estimate that 2,434 discordances are correctable mistakes in 
the high-quality Genome in a Bottle benchmark.  Nearly all (99.64%) variants are 
phased into haplotypes, which further improves variant detection.  De novo assembly 
produces a highly contiguous and accurate genome with contig N50 above 15 Mb and 
concordance of 99.998%.  CCS reads match short reads for small variant detection, 
while enabling structural variant detection and de novo assembly at similar contiguity 
and markedly higher concordance than noisy long reads. 

Introduction 

DNA sequencing technologies have improved at rates eclipsing Moore’s law1 
revolutionizing biological sciences. Beginning in the 1970s, Sanger sequencing2, and 
subsequent automation3 facilitated large scale DNA sequencing projects and paved the 
way for modern genomic research4–7.  The first reference genomes were followed by the 
advent of several high-throughput sequencing technologies (next-generation 
sequencing or NGS) including 454™, Solexa/Illumina®, ABI® Solid™, Complete 
Genomics™, and Ion Torrent™. These methods employed a range of chemistries and 
detection strategies8–13.  All produce relatively accurate reads but are limited in read 
length, typically to less than 300 basepairs.  These accurate short reads are well-suited 
for calling single-nucleotide variants (SNVs) and small insertions and deletions (indels), 
but are lacking for long-range applications such as de novo assembly, haplotype 
phasing, and structural variant detection. 

For these applications, vastly superior results14–16 are obtained with technologies like 
PacBio® SMRT Sequencing17 and Oxford Nanopore sequencing18 that produce long 
reads (>10 kb).  These technologies rely on single-molecule detection and are 
characterized by reduced read accuracy (75-90%)17,18.  High consensus accuracy has 
been demonstrated through read-to-read error correction, but the process is 
computationally intensive, and errors remain from mis-mapping reads and mixing 
haplotypes during correction15,19.  As a result of the error rate, long-read technologies 
are rarely used to detect SNVs and indels.  

Today, human genomes are sequenced at population scales, but it remains necessary 
to combine sequencing technologies to cover all types of genetic variation, which 
increases cost and adds complexity to projects.  A sequencing technology with long 
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read length and high accuracy would enable a single experiment for comprehensive 
variant discovery. 

Recent gains in read length for SMRT Sequencing and optimized DNA template 
preparation suggested an opportunity to unify high accuracy with long read lengths 
using circular consensus sequencing (CCS)20,21.  CCS derives a consensus sequence 
from multiple passes of a single template molecule, producing accurate reads from 
noisy individual subreads. 

Here, we highlight the performance of these highly-accurate, long CCS™ reads by 
sequencing and analyzing the well-characterized human male HG002/NA2438522,23.  
The HG002 sample is one of the benchmark samples available from the Genome in a 
Bottle (GIAB) Consortium.  GIAB provides physical reference materials along with 
detailed characterization of the sample genome, defining “high-confidence regions” at 
which the sequence of the sample is known and “high-confidence variants” within those 
regions at which the sample differs from the human reference genome.  Thus, it is an 
ideal sample for study of sequencing accuracy and variant detection.  We apply and 
extend standard analysis tools to identify variation in HG002, demonstrating 
performance that rivals or surpasses existing technologies for short and large variation 
detection as well as genome assembly and haplotype phasing. 

Results 

CCS Library Preparation and Sequencing 
A SMRTbell library tightly distributed at 15 kb was chosen for circular consensus 
sequencing (Figure 1a, Supplementary Figure 1) based on estimates of 150 kb 
polymerase read length and a requirement of 10 passes to achieve Q30 read accuracy 
(Figure 1b).  CCS reads with a predicted accuracy of at least Q20 (99%) were retained 
(Supplementary Figure 2).  The total CCS read yield was 89 Gb, an average of 2.3 Gb 
per SMRT Cell, with an average read length of 13.5 kb ± 1.2 kb (Figure 1c).  The 
predicted accuracy of the CCS reads has a median of Q30 (99.9%) and a mean of Q27 
(99.8%) (Figure 1c).  Predicted accuracy matches well with concordance to the 
GRCh37 human reference genome (average [Qpredicted – Qconcordance] = -0.9), which 
indicates that the predicted accuracy is well calibrated (Supplementary Figure 3).  
Average mapped coverage of the genome is 28-fold, with minimal difference across 
[GC] content (Supplementary Figure 4). 

Quality Evaluation of CCS Reads 
To characterize the few residual errors in CCS reads, discordances between the reads 
and the reference genome at high-confidence, non-variant positions in HG002 were 
tallied.  The large majority of discordances are indels in homopolymer contexts: 3.4% 
are mismatches, 4.6% are indels in non-homopolymer contexts, and 92.0% are indels in 
homopolymers.  This equates to a mismatch every 13,048 bp in CCS reads, a non-
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homopolymer indel every 9,669 bp, and a homopolymer indel every 477 bp 
(Supplementary Table 1). 

To confirm independently the high quality of CCS reads, error rates were measured 
through read-to-read alignments24.  Consistent with the reference-based methods, the 
average read accuracy is estimated at 99.8%.  A putative large artifact is detected in 
0.6% of reads: 0.5% are molecular chimeras, likely due to ligation of DNA fragments 
during library construction, 0.1% contain a “low quality” run of bases, anecdotally in 
microsatellites, and 0.03% have a missing SMRTbell adapter on one end.  Overall, the 
read-to-read comparison supports the predicted quality of the CCS reads. 

Increased Mappability of CCS Reads 
To evaluate increases in mappability with long reads, the 13.5 kb CCS reads and a 
coverage-matched number of 2×250 bp NGS short reads were mapped to GRCh37.  A 
genomic position was considered to be mappable if it is covered by least ten reads.  At 
the highest reported mapping quality (60), 97.5% of the non-gap GRCh37 is mappable 
with 13.5 kb CCS reads, while 94.8% is mappable with NGS short reads (Figure 2a). 

The additional regions that are now accessible with longer CCS reads include 
numerous medically-relevant genes which have been previously reported as recalcitrant 
to NGS sequencing25.  Of the 193 reported medically-relevant genes with at least one 
NGS problem exon, 152 are fully mappable with the CCS data, including CYP2D6, 
GBA, PMS2, and STRC (Figure 2b,c). 

The 13.5 kb CCS reads also resolve complex regions, like the HLA class 1 and 2 
genes, which are fully phased and typed to four-field resolution26 (Supplementary 
Figure 5). 

Small Variant Detection with CCS Reads 
GATK27 was used to call SNVs and small indels with CCS reads.  Evaluated against the 
GIAB benchmark23, precision for SNVs is 99.468% and recall is 99.559%.  For indels, 
precision is 78.977% and recall is 81.248%. While GATK performance with CCS reads 
is comparable to NGS for SNVs, it is lower for indels (Table 1).  Unlike NGS read 
errors, which are mostly mismatches, CCS read errors are mostly indels 
(Supplementary Table 1), contributing to the low indel precision and recall of GATK for 
CCS reads.  

Variant callers based on deep learning have an inherent ability to adapt to the error 
profiles of new data types.  To evaluate variant calling with a deep learning framework, 
Google DeepVariant28 was used to call SNVs and indels from CCS reads.  Using a 
model trained on Illumina reads, precision is 99.533% and recall is 99.793% for SNVs, 
and precision is 23.991% and recall is 81.692% for indels (Supplementary Table 2).  
Training a model on CCS reads provides a large boost in precision and recall for both 
SNVs and indels.  For SNVs, DeepVariant achieves precision of 99.914% and recall of 
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99.959%.  For indels, DeepVariant achieves 96.901% precision and 95.980% recall 
(Figure 3a, Table 1).  The plurality of discordant indels occur in homopolymer runs, 
matching the most common discordance in CCS reads (Supplementary Figure 6). 

Phasing Small Variants with CCS Reads 
To determine whether CCS reads could provide both highly-accurate variant calls and 
long-range information needed to generate haplotypes, we used WhatsHap29 to phase 
the DeepVariant variant calls.  Nearly all (99.64%) autosomal heterozygous variants 
were phased into 19,215 blocks with an N50 of 206 kb (Supplementary Table 3).  The 
phase block size distribution closely matches the theoretical limit estimated by creating 
breaks between variants that are separated by more than the average CCS read length 
of 13.5 kb.  This suggests that the phase block size is limited by read length and the 
amount of variation in HG002, not by coverage or the quality of the variant calls (Figure 
3b).  Evaluated against the GIAB benchmark phase set, the switch error rate is 0.37% 
and the Hamming error rate is 1.91% (Supplementary Table 3). 

Improving Small Variant Detection with Haplotype Phasing 
GATK and DeepVariant do not directly incorporate long-range haplotype phase 
information when calling variants.  To evaluate whether phase information improves 
results, CCS reads were haplotype-tagged based on trio-phased variants from GIAB 
and a DeepVariant model was then trained on reads passed in haplotype-sorted order.  
The haplotype-sorted model performs similarly to the original DeepVariant CCS model 
for SNVs but provides a large improvement for indels achieving precision of 97.835% 
and recall of 97.141% (Table 1). 

Structural Variant Detection with CCS Reads 
Insertion and deletion structural variants ≥50 bp were called using two read mapping-
based tools, pbsv (https://github.com/PacificBiosciences/pbsv) and Sniffles30.   The 
callsets show similar precision (>94%) and recall (>91%) against the GIAB benchmark 
(Supplementary Table 4).  Precision is consistent across variant size, but recall is 
lower for variants ≥3kb (Supplementary Figure 7).  To increase recall for larger 
variants, haplotype-resolved FALCON and Canu de novo assemblies were analyzed 
with paftools31 (see “De Novo Assembly of CCS Reads”), with precision >93% and 
recall >89% (Supplementary Table 4). 

An integrated callset produced with SURVIVOR32 includes 8,432 deletions and 12,091 
insertions.  Precision is 96.13% and recall is 95.99% (Figure 3c, Supplementary 
Table 4), with similar performance for insertions as deletions and for variants <1kb as 
≥1kb (Figure 3d), indicating the complementarity of mapping- and assembly-based 
structural variant calling. 

For comparison, structural variants were called in Illumina 2×250 bp short reads (with 
Manta33 and Delly34) and 10X Genomics linked reads (with LongRanger35) available 
from GIAB22.  The Manta callset has precision of 85.34% and recall of 55.88%, with 
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much worse recall for insertions (39.65%) than deletions (76.90%).  The LongRanger 
callset has precision of 83.79% and recall of 39.83%, again with worse recall for 
insertions (16.41%) than deletions (70.18%).  A callset from paftools run on a linked-
read SuperNova assembly has precision of 64.52% and recall of 52.74% 
(Supplementary Table 4, Supplementary Figure 8).  All considered short- and linked-
read callsets have worse performance than all CCS callsets in both precision and recall. 

De Novo Assembly of CCS Reads 
Three different algorithms – FALCON36, Canu37, and wtdbg2 
(https://github.com/ruanjue/wtdbg2) – were used to assemble the full CCS read set, 
which is a mix of paternal and maternal reads.  By skipping the initial read-to-read error 
correction step, the algorithms completed 10-100× faster than is typical for long-read 
assemblies19 (Supplementary Table 5).  All assemblies have high contiguity with a 
contig N50 from 15.43 to 28.95 Mb.  The total assembly size is near the expected 
human genome size for FALCON and wtdbg2.  The Canu assembly has a total genome 
size of 3.42 Gb, larger than the expected haploid human genome, because it resolves 
some heterozygous alleles into separate contigs (Table 2, Supplementary Figure 9). 

Short reads from the parents of HG002 were used to identify k-mers unique to one 
parent and then partition (“trio bin”) the CCS reads by haplotype38.  Three different 
k-mer sizes were evaluated: 21 bp (previously reported for trio binning) and longer k-
mers of 51 bp and 91 bp enabled by the accuracy of CCS reads.  The 21-mer binning 
assigns 35.3% of reads to the mother and 33.6% to the father (68.9% binned).  The 51-
mer binning is more complete at 78.5% binned; using longer 91-mers provides only a 
small additional gain to 79.2% binned.  The 51-mer binning was selected for assembly 
(Supplementary Table 6). 

FALCON, Canu, and wtdbg2 were run separately on the paternal and maternal reads, 
with the unassigned reads included in both sets.  All algorithms produce highly 
contiguous and nearly complete assemblies for the parental genomes, with N50 from 
12.10 to 19.99 Mb and genome size from 2.67 to 3.04 Gb (Table 2).  From 95.3% to 
98.2% of human genes are identified as single-copy in each parental assembly (Table 
2).  Assembly-based structural variant calls have high precision and recall, suggesting 
few large-scale mis-assemblies (Supplementary Table 4).  Furthermore, analysis of 
the phase-consistency39 of maternal and paternal haplotigs shows the assemblies are 
phased properly (Supplementary Figure 10). 

All mixed and parental assemblies are high quality with concordance to the HG002 
benchmark ranging from Q44-Q48 for polished40 and Q26-Q45 for unpolished 
assemblies (Table 2, Supplementary Table 7).  This greatly exceeds that of previously 
published and accessioned assemblies at Q40 (6× worse) for PacBio noisy long reads 
and Q29 (77× worse) for Oxford Nanopore reads with Illumina polishing (Figure 4a, 
Supplementary Table 7). 
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Large segmental duplications often result in contig breaks in de novo assemblies, and 
assemblies of noisy long reads typically span less than 50 of 175 Mb of segmental 
duplications in the human genome15,41,42.  The most contiguous assemblies of CCS 
reads span over 60 Mb of segmental duplications, a 20% improvement 
(Supplementary Table 8).  A model of assembly contiguity based on large repeat 
resolution suggests that the current assemblies of CCS reads resolve 15 kb repeats of 
99 to 99.5% identity (Figure 4b).  

Coverage Requirements for Variant Calling and De Novo Assembly 
To evaluate the depth of CCS read coverage required for variant calling and assembly, 
we randomly subsampled from the full dataset.  For SNVs, precision and recall with 
DeepVariant remain above 99.5% for coverage down to 15-fold; performance decays 
steeply below 10-fold (Supplementary Figure 11a).  For indels, DeepVariant remains 
comparable to typical NGS performance (>90%) down to 17-fold coverage 
(Supplementary Figure 11b).  For structural variants, precision with pbsv is above 
95% for all evaluated coverage levels.  Recall is above 90% down to 15-fold coverage, 
and decays steeply below 10-fold (Supplementary Figure 11c).  For phasing with 
WhatsHap, the phase block N50 remains above 150 kb down to 10-fold coverage 
(Supplementary Figure 11d).  Mixed-haplotype wtdbg2 assemblies have consistent 
size above 2.7 Gb, contig N50 around 15 Mb, and concordance above Q42 until 
coverage falls below 15-fold (Supplementary Figure 12). 

Revising and Expanding Genome in a Bottle Benchmarks 
High-quality callsets from CCS reads provide an opportunity to identify mistakes in the 
GIAB benchmarks, particularly for structural variants where the benchmark is still in 
draft form.  Sixty small variant and 40 structural variant discrepancies between the GIAB 
benchmark (small variant v3.3.2, structural variant v0.6) and the CCS callsets 
(DeepVariant haplotype-sorted, structural variant integrated) were selected for manual 
curation.  Selected variants were spread across variant types, discrepancy types, and 
both inside and outside homopolymers and tandem repeats. 

For small variants, 29 of 31 discrepancies in homopolymers were classified as correct in 
the benchmark.  Outside of homopolymers, 19 of 29 were classified as errors in the 
benchmark.  Most of these benchmark errors (13 of 19) are true variants in L1 elements 
called homozygous reference in GIAB (Supplementary Figure 13, Supplementary 
Table 9). The identified benchmark errors overlap with putative errors in a DeepVariant 
Illumina whole genome case study (https://github.com/google/deepvariant).  Of 745 
putative false positive SNVs in the case study, 344 agree with the CCS callset, with 282 
(82.0%) falling within large interspersed repeats.  Fewer of the false negative SNVs 
(8%), false negative indels (25%), and false positive indels (19%) from the case study 
agree with the CCS callset.  Extrapolating from manual curation, we estimate that 2,434 
(1,313-2,611; 95% confidence interval) errors in the current GIAB benchmark could be 
corrected using the CCS reads. 
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For structural variants, curator classification was unclear for 11 of 40 discrepancies, 
typically because of tandem repeat structure that permits multiple representations of a 
variant.  For the remainder, 15 of 16 false negative discrepancies were classified as 
correct in the benchmark.  However, for false positive discrepancies, 11 of 13 were 
classified as errors in the benchmark (Supplementary Figure 13, Supplementary 
Table 10).  This suggests that the GIAB structural variant benchmark set is precise but 
incomplete. 

The high-quality CCS callsets also provide an opportunity to expand the benchmarks 
into repetitive and highly polymorphic regions that have been difficult to characterize 
with confidence using short reads.  Adding the CCS DeepVariant callset to the existing 
GIAB small variant integration pipeline would expand the benchmark regions by up to 
1.3% and 418,875 variants (210,184 SNVs and 208,691 indels).  For structural variants, 
only 9,232 of 18,832 autosomal variant calls overlap benchmark regions, which means 
that the number of variants in the benchmark would more than double if all CCS 
variants calls were incorporated. 

Discussion 

We present a protocol for producing highly-accurate long reads using circular 
consensus sequencing (CCS) on the PacBio Sequel System.  We apply the protocol to 
sequence the human HG002 to 28-fold coverage with average read length of 13.5 kb 
and an average read accuracy of 99.8%.  We analyze the CCS reads to call SNVs, 
indels, and structural variants; to phase variants into haplotype blocks; and to de novo 
assemble the HG002 genome. 

The CCS performance for SNV and indel calling rivals that of the commonly-used 
pairing of BWA and GATK on 30-fold short-read coverage.  Interestingly, though the 
overall accuracy of CCS reads is similar to short reads, direct application of the GATK 
pipeline to CCS reads produces inferior results, especially for indels.  The major 
residual error in CCS reads – indels in homopolymers – is not as frequent in short 
reads.  We suspect that the current GATK, which was designed for short reads, does 
not properly model the CCS error profile, and thus performance lags for indels.  This is 
supported by results with DeepVariant.  When a DeepVariant model trained on Illumina 
reads is run on CCS reads, the performance is poor for indels.  When DeepVariant is 
trained on CCS reads, performance improves dramatically.  As more CCS datasets are 
made available, both model-based callers like GATK and learning-based callers like 
DeepVariant will have the opportunity to improve on the performance reported here, 
including by incorporating haplotype phase information and evaluating and training 
against updated GIAB benchmarks that correct errors with CCS reads.  Further, 
advances in sequencing chemistry or consensus base calling (such as the application of 
deep learning) that reduce the residual indel errors in CCS reads also could improve 
variant calling performance.  
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Structural variant calling and de novo genome assembly with CCS reads match or 
exceed that reported for noisy long reads.  The CCS reads have an advantage of high 
accuracy, which eliminates the need for read correction, allows more stringent criteria to 
be used in variant calling or read overlapping, and ultimately produces more accurate 
assemblies and variant calls.  Noisy long reads have an advantage of longer maximum 
read length, but increased accuracy of CCS reads compensates for the length required 
for highly contiguous assembly.  Modeling (Figure 4b) suggests modest advances in 
accuracy (to 99.9%) at 15 kb read length would double the current contiguity, which 
already matches the best published de novo assemblies43. 

The CCS read approach alleviates some other challenges of long-read sequencing.  
First, aiming for fragments in the 10-20 kb size range relaxes the need to isolate ultra-
long genomic DNA.  Second, increased accuracy allows for more stringent alignment 
and overlap comparisons, greatly reducing the compute time and cost while improving 
assembly results by recognizing fine-grained repeat and haplotype phase information.  
Third, familiar tools like GATK that were developed for accurate short reads are readily 
applied to CCS reads. 

The major current limitation of CCS reads compared to noisy long reads is reduced 
throughput per run, and thus higher cost per basepair.  A lower coverage requirement 
partially compensates; variant calling and assembly with CCS reads perform well down 
to 15-fold coverage.  This shortcoming ultimately will be alleviated with more unique 
reads per run (5-10× is expected) and increased read length to allow larger fragment 
sizes.  Such advances should facilitate rapid, population-scale analysis of full genomes 
to improve human health. 

Methods 

CCS Library Preparation 
PacBio library preparation and sequencing was performed on the human reference 
genome sample HG002 obtained from NIST.  Genomic DNA was sheared using the 
Megaruptor® from Diagenode with a long hydropore cartridge and a 20 kb shearing 
protocol. Prior to library preparation, the size distribution of the sheared DNA was 
characterized on the Agilent 2100 BioAnalyzer System using the DNA 12000 kit.  A 
sequencing library was constructed from this sheared genomic DNA using the 
SMRTbell™ Template Prep Kit v 1.0 (Pacific Biosciences Ref. No. 100-259-100). In 
order to tighten the size distribution of the SMRTbell™ library, the sample was 
separated into 3 kb fractions using the SageELF System from Sage Science.  Fractions 
having the desired size distribution ranges were identified on the Agilent 2100 
BioAnalyzer using the DNA 12000 kit (Supplementary Figure 1). The fraction centered 
at 15 kb was used for sequencing. 
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Sequencing 
Sequencing reactions were performed on the PacBio Sequel System with the Sequel 
Sequencing Kit 3.0 chemistry. The samples were pre-extended without exposure to 
illumination for 12 hours to enable the polymerase enzymes to transition into the highly 
processive strand-displacing state and sequencing data was collected for 24 hours to 
ensure suitably long read lengths. 

Consensus reads (“CCS reads”) were generated using the ccs software version 3.0.0 
(https://github.com/pacificbiosciences/unanimity/) with --minPasses 3 --
minPredictedAccuracy 0.99.  Average run time is 3,035 CPU core hours per 
SMRT Cell (118,365 total). 

Read Mapping 
CCS reads were mapped to the GRCh37 human reference genome using pbmm2 
version 0.10.0 (https://github.com/PacificBiosciences/pbmm2) with --preset CCS --
sample HG002 --sort.  For read mapping and subsequent analysis, GRCh37 refers 
to the hs37d5 build from the 1000 Genome Project44. 

Measuring HG002 Concordance 
To measure concordance to HG002, alignments to GRCh37 were evaluated at positions 
within GIAB v3.3.2 high-confidence regions that have no high-confidence variant call23.  
Concordance = 1-(M+D+I)/(X+M+D) where M is the number of matches, X is the 
number of mismatches, D is the number of deletion basepairs, and I is the number of 
insertion basepairs.  Phred = -10*log10(1-concordance).   Reads with perfect 
concordance are assigned a Phred score of 60. 

A deleted basepair is considered a homopolymer deletion when it matches the 
preceding or following basepair in the reference genome.  An insertion is considered a 
homopolymer insertion when the basepairs of the insertion are identical and match 
either the preceding or following basepair in the reference genome. 

Coverage by [GC] content 
To measure coverage by local [GC] content, bedtools45 version 2.27.1 was used to 
divide the GRCh37 reference genome into 500 bp windows (bedtools makewindows 
-w 500) and then to calculate the [GC] content (bedtools nuc) and average 
coverage (bedtools coverage -mean) of each window. 

Reference-independent Quality Evaluation 
The Dazzler suite (https://dazzlerblog.wordpress.com/) was used to evaluate the 
accuracy of the CCS reads without relying on a reference genome.  Briefly, daligner24 
was used to produce all local alignments longer than 1 kb between pairs of CCS reads.  
Each CCS subject read was partitioned into 100 bp panels, within which its coverage by 
and concordance to aligned target reads was calculated.  Panels with a concordance in 
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the worst 0.1% were considered low quality.  Abrupt breaks in read-to-read alignments 
were used to estimate library artifacts like chimeric molecules and missing adapters. 

Mappability of CCS and NGS Reads 
To compare with the mappability of 13.5 kb CCS reads, a coverage-matched (89 Gb) 
set of 2×250bp Illumina HiSeq 2500 reads for HG002 were obtained from GIAB22 and 
mapped to GRCh37 with minimap231 version 2.14-r883 with -x sr. 

A genome position is considered mappable if it is covered by alignments for at least ten 
reads at a specified mapping quality or higher, which was evaluated using bedtools 
bamtobed and bedtools genomecov -bga.  Gaps (“N” basepairs in the reference) 
were excluded. 

Previously-reported NGS problem exons25 were considered mappable if every basepair 
in the exon is covered by a read at mapping quality of 60. 

HLA Typing 
The HLA-A and HLA-DPA1 genes were typed by comparing the sequence of CCS 
reads that span the genes to entries in the IMGT database46 version 3.19.0. 

Small Variant Detection and Benchmarking 
To develop a workflow for calling variants in CCS reads with GATK27 HaplotypeCaller 
v4.0.6.0, different values of the HaplotypeCaller parameter --pcr-indel-model and 
VariantFiltration parameter --filter-expression were considered to maximize 
SNV and indel F1 without excessive complication, starting from the GATK best 
practices for hard filtering.  In the end, HaplotypeCaller was run on reads with a 
minimum mapping quality of 60 using allele-specific annotations (--annotation-
group AS_StandardAnnotation) and --pcr_indel_model AGGRESSIVE.  
Autosomes and the pseudo-autosomal regions (PARs) on chromosome X were called 
with --ploidy 2; chromosome Y and the non-PAR regions of chromosome X were 
called with --ploidy 1.  Multi-allelic variant sites were split into separate entries for 
filtration with a custom script 
(https://gist.github.com/williamrowell/16cd89fcb23ab9f11a7bd387c308d29d).  SNVs 
were filtered using GATK VariantFiltration with --filter_expression of 
AS_QD < 2.0 for SNVs and indels longer than 1bp, and AS_QD < 5.0 for 1 bp indels.  
A similar pipeline was used to call variants in coverage-matched 2×151 bp Illumina 
NovaSeq reads with a few differences: a minimum mapping quality of 20, --pcr-
indel-model NONE,  --standard_min_confidence_threshold_for_calling 
2.0, and no variant filtration. 

A Google DeepVariant model for CCS reads was generated as previously reported28 
using DeepVariant version 0.7.1.  Briefly, models were trained using CCS reads for 
chromosomes 1-19 and the HG002 GIAB v3.3.2 high-confidence regions and variants.  
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A single model was selected based on performance in chromosomes 21 and 22 to 
avoid overfitting.  Neither training nor model selection considers chromosome 20, which 
is available for accuracy evaluations.  To support long reads, local reassembly is 
disabled for DeepVariant with CCS reads.  The wgs_standard model version 0.7.1 was 
used to call variants in NovaSeq reads and to apply a model trained on Illumina reads to 
CCS reads. 

To incorporate long-range haplotype information, DeepVariant was modified to produce 
pileups with reads sorted by the BAM haplotype (“HP”) tag.  Haplotype information was 
added to the pbmm2 CCS alignments using WhatsHap v0.17 (whatshap haplotag) 
with the trio-phased variant calls from GIAB (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_MPI_whatshap_082
32018/RTG.hg19.10x.trio-whatshap.vcf.gz).  A new DeepVariant model then was 
trained as described above. 

Small variant callsets were benchmarked against the GIAB v3.3.2 HG002 set23 by 
vcfeval47 (https://github.com/RealTimeGenomics/rtg-tools) with no partial credit run 
through hap.py version 0.3.10 (https://github.com/Illumina/hap.py).  Only PASS calls 
were considered. 

Phasing Small Variants 
Small variant calls were phased using WhatsHap v0.17 (whatshap phase).  The 
number of switch and Hamming errors was computed against trio-phased variant calls 
from GIAB using whatshap compare. 

To model the phase blocks achievable with a given read length, cuts were introduced 
between heterozygous variants in the GIAB trio-phased variant callset that are 
separated by more than the read length, which effectively assumes that adjacent 
heterozygous variants separated by less than the read length can be phased. 

Structural Variant Detection 
pbsv version 2.1.0 (https://github.com/PacificBiosciences/pbsv) was run on pbmm2 
CCS read alignments.  The pbsv discover stage was run separately per 
chromosome with tandem repeat annotations 
(https://github.com/PacificBiosciences/pbsv/tree/master/annotations) passed with --
tandem-repeats.  The pbsv call stage was run on the full genome. 

Sniffles version 1.0.10 was run on pbmm2 CCS reads alignments with -s 3 --
skip_parameter_estimation and with the variant sequence obtained from reads. 

Structural variants in the maternal and paternal Canu and FALCON assemblies from 
CCS reads (see “De novo Assembly”) were called using a previously described 
workflow48.  Briefly, contigs were mapped to GRCh37 using minimap2 --paf-no-
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hit --cxasm5 --cs -r2k; variants were called with paftools.js call31; 
maternal and paternal variants were concatenated; and indel calls at least 30 bp were 
retained. 

An integrated callset was produced from the pbsv, Sniffles, and paftools/Canu callsets 
using SURVIVOR32 and custom scripts.  Two calls were considered supporting if the 
calls had the same structural variation type, a start position with 1 kb, and a difference 
in length less than 5%.  One call from each matching set was retained with precedence 
given to pbsv, then Sniffles, and then paftools.  Because pbsv and Sniffles have poor 
sensitivity for calls larger than 1 kb, all non-matched calls from paftools that are larger 
than 1 kb were retained. 

NovoAlign (http://www.novocraft.com) alignments to GRCh37 of 300-fold coverage of 
HG002 with 2×250bp Illumina HiSeq 2500 reads were obtained from GIAB.  Structural 
variants were called with Manta33 version 1.4.0 with all coverage, and Delly34 version 
0.7.6 with coverage subsampled to 30-fold using samtools view -b -s 0.1. 

Structural variant callsets on 10X Genomics reads from LongRanger version 2.2 were 
obtained from GIAB (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/10XGenomics_Chromium
Genome_LongRanger2.2_Supernova2.0.1_04122018/).  Insertion and deletion variants 
at least 30 bp were combined from the sequence-resolved indels and large deletion 
calls (NA24385_LongRanger_snpindel.vcf.gz, 
NA24385_LongRanger_sv_deletions.vcf.gz).  Another callset was produced using 
paftools on the diploid Supernova 2.0.1 assembly as described above. 

Structural variant callsets were benchmarked against the GIAB v0.6 HG002 structural 
variant set (ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.
6) using Truvari (https://github.com/spiralgenetics/truvari) commit 600b4ed7 modified to 
allow a single variant in the truth set to support multiple variants in the callset.  Truvari 
was run with -r 1000 -p 0.01 --multimatch --includebed 
HG002_SVs_Tier1_v0.6.bed -c HG002_SVs_Tier1_v0.6.vcf.gz.  The -p 0 
option was used to disable sequence checks for callsets that report symbolic alleles 
instead of sequence-resolved calls (LongRanger, Delly). 

De novo Assembly 
Mixed haplotype assemblies were produced using all CCS reads.  Canu37 version 1.7.1 
was run with -p asm genomeSize=3.1g correctedErrorRate=0.015 
ovlMerThreshold=75 batOptions="-eg 0.01 -eM 0.01 -dg 6 -db 6 -dr 
1 -ca 50 -cp 5" -pacbio-corrected.  FALCON36 kit version 1.2.0 was run with 
ovlp_HPCdaligner_option = -v -B128 -M24 -k24 -h1024 -e.97 -l2500 
-s100, ovlp_DBsplit_option = -s400, and overlap_filtering_setting = 
--max-diff 90 --max-cov 120 --min-cov 2.  Wtdbg2 
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(https://github.com/ruanjue/wtdbg2) version 2.2 was run with -k 0 -p 21 -AS 4 -s 
0.5 -e 2 -K 0.05 and followed by wtdbg2-cns. 

CCS reads from HG002 were “trio binned” as maternal, paternal, or unassigned as 
previously described38.  Briefly, 2×250 bp Illumina HiSeq 2500 reads for the father 
(HG003/NA24149) and mother (HG004/NA24143) of HG002 were obtained from GIAB.  
Sequence k-mers unique to the mother or father were identified and used to categorize 
CCS reads (https://github.com/skoren/triobinningScripts), using k-mer size of 21, 51, 
and 91 and excluding k-mers that occur 25 times or fewer.  The maternal and 
unassigned reads were used for the “maternal” assemblies; paternal and unassigned 
reads were used for the “paternal” assemblies. 

The maternal and paternal assemblies were generated with Canu and wtdbg2 using the 
same software version and same options as for the mixed haplotype assembly.  For the 
maternal and paternal assemblies, FALCON  version 0.7 was run with 
length_cutoff_pr = 2000, ovlp_HPCdaligner_option =  -k24 -e.95 -
s100 -l1000 -h600 -mdust -mrep8 -mtan -M21, ovlp_DBsplit_option = 
-x2000 -s400, falcon_sense_option = --min_idt 0.70 --min_cov 4 -
-max_n_read 200, and overlap_filtering_setting = --max_diff 40 --
max_cov 80 --min_cov 2 --min_len 500. 

The maternal and paternal Canu assemblies were polished with Arrow version 2.2.2 run 
through ArrowGrid (https://github.com/skoren/ArrowGrid) using subreads that 
correspond to the CCS reads used for each assembly.  The maternal and paternal 
FALCON assemblies were polished with Arrow version 2.2.2 using all subreads. 

Assembly Evaluation 
For each assembly, contigs were broken into 100 kb chunks with remainders shorter 
than 100 kb ignored.  The chunks were aligned to GRCh37 using minimap2 --eqx -
x asm5, and primary alignments that span at least 50 kb in the reference at higher than 
50% identity were retained.  The concordance of each chunk was evaluated just as for 
CCS reads (see “Measuring HG002 Concordance”).  The overall assembly 
concordance was calculated as the average concordance of the 100 kb chunks. 

Gene completeness was measured using BUSCO49 version 3.0.2 using the Mammalia 
ODB9 gene set.  The single plus duplicated gene count in the BUSCO summary is 
reported.  For a human-specific measure of completeness, we calculated the fraction of 
single-copy human genes that remain single-copy in each assembly.  The human 
transcript sequences from ENSEMBL50 build r94 were mapped to each assembly with 
minimap2 -cx splice -B 4 -O 4,34 -C9 -uf --cs and evaluated with 
paftools.js asmgene -i 0.98, which retains the longest of overlapping 
transcripts, and counts a transcript hit if 99% of the transcript sequence maps at 98% 
identity or higher.  A single-copy transcript has exactly one hit.  Counts are normalized 
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to the number of transcripts that are considered single-copy by these criteria in GRCh38 
(GCA_000001405.15). 

To measure the number of segmental duplications spanned by each assembly, the 
assemblies were processed with segDupPlots42 
(https://github.com/mvollger/segDupPlots), which maps contigs to GRCh38 and 
considers a segmental duplication to be spanned by the assembly if a contig alignment 
extends through the segmental duplication with at least 50 kb on each flank. 

Model of Assembly Contiguity 
To predict assembly contiguity at different read lengths and read accuracies, a 
previously described model19 was updated with improvements for high-accuracy reads.  
Briefly, all repeat annotations for GRCh38 were downloaded from the UCSC Genome 
Browser.  Repeat identity was defined as by each track except for: the nested repeat 
track where identity was 50+50*score/1000, RepeatMasker where identity was 1-
((mismatches + deleted + inserted)/1000), and microsat and windowmasker/sdust which 
does not define identity and thus was treated as 100%.  Gaps were included as 100% 
identity repeats.  Additional repeats were added from self-matches using MashMap51 
(https://github.com/marbl/MashMap). 

The assembly contiguity was predicted based on the ability to resolve repeats.  At a 
given percent identity, repeats below that identity were excluded and remaining repeats 
separate by 15 bp or fewer were merged.  Then, cuts were introduced at each at 
repeats of each given length, and assembly NG50 was calculated assuming that contigs 
end at each cut. 

Coverage Titration 
To evaluate the performance of variant calling and assembly at different coverage 
levels, CCS reads were downsampled from the 28-fold dataset and processed.  For 
small variant calling, alignments were subsampled in DeepVariant version 0.7.1 from 
4% to 100% in steps of 3%.  Variants were called on each subsample using the 
DeepVariant CCS model.  Precision and recall for SNVs and indels were evaluated with 
hap.py as described above (see "Small Variant Detection and Benchmarking").  For 
phasing, alignments were subsampled (samtools view -s) at rates from 10% to 
100% in steps of 10%.  The DeepVariant callset from the full 28-fold coverage data was 
phased using WhatsHap v0.17 (whatshap phase) with the subsampled alignments.  
For structural variants, alignments were subsampled (samtools view -s) at rates 
from 10% to 100% in steps of 10%.  Variants were called on the subsampled 
alignments with pbsv version 2.1.0 and benchmarked with Truvari as described above 
(see "Structural Variant Detection").  For assembly, reads were subsampled at rates 
from 10% to 100% in steps of 10%.  Sampling was performed based on read name 
(10% sample is reads that end in 0, 20% is reads that end in 0-1, and so on).  Assembly 
of subsamples reads was performed with wtdbg2 version 2.2 and benchmarked as 
described above (see "De novo Assembly" and "Assembly Evaluation"). 
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Revising and Expanding Genome in a Bottle Benchmarks 
Discrepancies between the GIAB v3.3.2 small variant benchmark and the DeepVariant 
callset from haplotype-sorted CCS reads were identified with vcfeval and hap.py.  
Discrepancies between the GIAB v0.6 structural variant benchmark and the integrated 
structural variant callset from CCS reads were identified with Truvari.  A sample of 60 
small variant and 40 structural variant discrepancies were selected for manual curation 
by random sampling across discrepancy types (false positive, false negative, genotype 
difference), variant types (SNV, indel, insertion structural variant, and deletion structural 
variant), both inside and outside homopolymers and tandem repeats.  Curators 
evaluated variants in IGV along with alignments of CCS reads, 10X Genomics reads, 
Illumina short reads, and Illumina reads from a 6 kb mate pair library, all obtained from 
GIAB.  The benchmark error rate was estimated by variant type and discrepancy type 
and used to extrapolate from the sample to the number of errors in the full GIAB 
benchmark.  Confidence intervals were calculated assuming a binomial distribution. 
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Figures 

Figure 1 

 

Figure 1.  Sequencing HG002 with highly-accurate, long reads.  (a)  Circular 
consensus sequencing (CCS) derives a consensus read from multiple passes of a 
single template molecule, producing accurate reads from noisy individual subreads 
(passes).  (b)  Predicted quality for CCS reads with different numbers of passes, for 
sequencing of the human male HG002.  At 10 passes, the median read achieves Q30 
predicted quality.  (c) Length and predicted quality of CCS reads.
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Figure 2 

 

Figure 2.  Mappability of the human genome with CCS reads.  (a) Percentage of the non-gap GRCh37 human 
genome covered by at least 10 reads from 28-fold coverage NGS (2×250 bp) and CCS (13.5 kb) datasets at different 
mapping quality thresholds.  (b) Coverage of the congenital deafness gene STRC in HG002 with 2×151 bp NGS 
(NovaSeq) reads and 13.5 kb CCS reads at a mapping quality threshold of 10.  (c) Improvement in mappability with 
13.5 kb CCS reads for 193 human genes previously reported as medically-relevant and problematic to map with NGS 
reads25.
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Figure 3 

 

Figure 3.  Variant calling and phasing with CCS reads.  (a) Agreement of DeepVariant SNV and indel calls with 
Genome in a Bottle v3.3.2 benchmark measured with hap.py.  (b) Phasing of heterozygous DeepVariant variant calls with 
WhatsHap, compared to theoretical phasing of HG002 with 13.5 kb reads.  (c) Agreement of integrated CCS structural 
variant (SV) calls with the Genome in a Bottle v0.6 structural variant benchmark measured with Truvari, (d) by variant 
size.  Negative length indicates a deletion; positive length indicates an insertion.  The histogram bin size is 50 bp for 
variants shorter than 1 kb, and 500 bp for variants >1 kb. 
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Figure 4 

 

Figure 4.  Impact of read accuracy on de novo assembly.  (a) The concordance of seven assemblies to the reference 
genome at non-variant positions in Genome in a Bottle high-confidence regions (Supplementary Table 7).  Contigs 
longer than 100 kb were segmented into 100 kb chunks and aligned to GRCh37.  Concordance was measured per chunk, 
and chunks with no discordances were assigned concordance of Q51.  PB=PacBio, ONT=Oxford Nanopore, 
CLR=continuous (“noisy”) long reads.  (b) Predicted contiguity of a human assembly based on ability to resolve repeats of 
different lengths (x-axis) and percent identities (colored lines)19.  The solid line indicates the contiguity of GRCh38.  The 
97.0% identity line is representative of CLR assemblies using standard read-to-read error correction.  The points show 
example CCS and CLR43 assemblies using Canu.  Repeat identity and length are proxies for read accuracy and length.  
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Tables 

Table 1 
 

  

Variant Caller (training model) 

SNVs Indels 

Platform Coverage Precision Recall F1 ^ Precision Recall F1 
Illumina (NovaSeq) 30-fold DeepVariant (Illumina model) 99.960% 99.940% 99.950% 99.633% 99.413% 99.523% 
PacBio (CCS) 28-fold DeepVariant (CCS model) 99.914% 99.959% 99.936% 96.901% 95.980% 96.438% 
PacBio (CCS) 28-fold DeepVariant (haplotype-sorted CCS model) 99.904% 99.963% 99.934% 97.835% 97.141% 97.486% 
Illumina (NovaSeq) 30-fold GATK HaplotypeCaller (no filter) 99.852% 99.910% 99.881% 99.371% 99.156% 99.264% 
PacBio (CCS) 28-fold GATK HaplotypeCaller (hard filter) 99.468% 99.559% 99.513% 78.977% 81.248% 80.097% 

 

Table 1.  Performance of small variant calling with CCS reads.  Precision, recall, and F1 of small variant calling 
measured against the Genome in a Bottle v3.3.2 benchmark using hap.py.  Bold indicates the highest value in each 
column.  Underline indicates a value higher than the GATK HaplotypeCaller run on 30-fold Illumina NovaSeq reads.  
Rows are sorted (“^”) based on F1 for SNVs.
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Table 2 
 

Haplotype Assembler 
Total Size 

(Gb) Contigs 
N50 
(Mb) 

NG50 
(Mb) 

Max 
(Mb) 

E-size52 
(Mb) 

HG002 
Concordance 

(Phred) 
BUSCO 
Genes 

RefSeq 
Genes 

Mixed Canu 3.42 18,006 22.78 25.02 108.46 30.16 31.1 92.3% 93.2% 
Mixed FALCON 2.91 2,541 28.95 24.51 110.21 38.04 25.8 87.6% 97.6% 
Mixed wtdbg2 2.79 1,554 15.43 12.62 84.67 22.61 44.6 94.2% 96.1% 
Maternal Canu* 3.04 5,854 18.02 17.04 48.81 19.78 47.2 94.1% 98.1% 
Maternal FALCON* 2.80 924 19.99 15.54 74.33 24.07 43.5 95.1% 97.8% 
Maternal wtdbg2 2.75 2,637 12.10 9.29 66.34 16.55 43.5 93.8% 95.6% 
Paternal Canu* 2.96 6,868 16.14 14.90 64.83 20.19 47.7 93.4% 98.2% 
Paternal FALCON* 2.70 1,489 16.40 14.06 95.34 25.61 43.5 93.6% 97.7% 
Paternal wtdbg2 2.67 1,444 13.96 10.86 50.51 15.36 42.1 92.6% 95.3% 

 

Table 2.  Statistics for de novo assembly of CCS reads. The “mixed” haplotype assemblies use all reads.  The 
“maternal” and “paternal” assemblies use parent-specific reads from trio binning plus unassigned reads.  HG002 
concordance is measured at non-variant positions in Genome in a Bottle high-confidence regions.  BUSCO gene 
completeness uses the Mammalia ODB9 gene set.  RefSeq genes is the percentage of genes from Ensembl R94 that are 
full-length, single-copy in the assembly relative to the full-length, single-copy count for GRCh38.  Contigs shorter than 13 
kb were excluded from genome size and contiguity measurements; contigs shorter than 100 kb were excluded from the 
concordance measurement.  “*” indicates polishing with Arrow.
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