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Abstract 9 

A fundamental challenge in immunology is diagnostic classification based on repertoire se-10 

quence. We used the principle of maximum entropy (MaxEnt) to build compact representations 11 

of antibody (IgH) and T-cell receptor (TCRβ) CDR3 repertoires based on the statistical biophysi-12 

cal patterns latent in the frequency and ordering of repertoires’ constituent amino acids. This 13 

approach results in substantial advantages in quality, dimensionality, and training speed com-14 

pared to MaxEnt models based solely on the standard 20-letter amino-acid alphabet. De-15 

scriptor-based models learn patterns that pure amino-acid-based models cannot. We demon-16 

strate the utility of descriptor models by successfully classifying influenza vaccination status 17 

(AUC=0.97, p=4×10-3), requiring only 31 samples from 14 individuals. Descriptor-based MaxEnt 18 

modeling is a powerful new method for dissecting, encoding, and classifying complex reper-19 

toires.	  20 
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Introduction 21 

A major challenge in systems immunology is determining how to describe the sequence-level 22 

heterogeneity of antibody (immunoglobulin; Ig) and T-cell receptor (TCR) repertoires in ways 23 

that facilitate the identification of meaningful patterns. Sequence-frequency distributions—for 24 

example, counts of unique IgH or TCRβ CDR3s—are commonly used but not ideal for interper-25 

sonal comparisons, since repertoires from different people are largely disjoint (Robins et al., 26 

2010; Arnaout et al., 2011). Motif-frequency distributions, which count how often each of the 20n 27 

possible n-mers appears in a repertoire (for some choice of n), are more likely to overlap be-28 

tween individuals, but may fail to detect probabilistic or higher-order patterns and are subject to 29 

sampling-related bias unless n is small. Comparisons of frequency distributions between reper-30 

toires from different individuals have yielded important insights (Parameswaran et al., 2013; 31 

Kaplinsky et al., 2014; Emerson et al., 2017; Sun et al., 2017) but the limitations of this ap-32 

proach suggest a need for complementary methods. One such method is maximum-entropy 33 

(MaxEnt) modeling (Fig. 1).	34 

MaxEnt models, which were first developed for statistical physics and information theory 35 

(Jaynes, 1957), can be used to describe repertoires (or other complex ensembles of proteins, 36 

nucleic acids, etc.) in terms of constraints called biases that determine the ways in which a giv-37 

en repertoire differs from a uniform distribution of sequences (Yeo and Burge, 2004; Russ et al., 38 

2005; Seno et al., 2008; Mora et al., 2010; Marks et al., 2011). Given a set of features—for ex-39 

ample, the frequencies of the 20 amino acids and the 202=400 nearest-neighbor amino-acid 40 

pairs (“neighbors” being defined as contiguous N-to-C-terminus amino acids)—a MaxEnt model 41 

describes the degree to which each feature is biased away from its value in a uniform repertoire, 42 

taking all the other biases into account. For example, the bias for the pair cysteine-alanine (CA) 43 

describes the extent to which the frequency of CA in the repertoire differs from what would be 44 

expected given the frequencies of the individual amino acids C and A, the pairs XC and AX (for 45 

all amino acids X), and so on. MaxEnt models deconvolute the hundreds or thousands of inter-46 

actions among features into separate components, which then together govern the generation 47 

of the observed sequence- and motif-frequency distributions. Thus MaxEnt models can be 48 

thought of as capturing the underlying generative structure of the repertoire.	49 

MaxEnt modeling of IgH and TCRβ CDR3s, as well as of other protein families, has shown that 50 

the frequencies of a single set of neighboring amino-acid pairs capture a remarkable amount of 51 

information (Russ et al., 2005; Seno et al., 2008; Mora et al., 2010; Marks et al., 2011), but not 52 
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all of it (Bialek and Ranganathan, 2007). Additional sets of pairs—for example, second-, third-, 53 

or fourth-nearest neighbors (Mora et al., 2010)—add precision but at the cost of a substantial 54 

increase in the number of model parameters (400 per set of pairs). This increase can affect the 55 

coverage per feature (the total number of instances of the features in the sample divided by the 56 

number of features), model quality and interpretability, and training time. The root of the problem 57 

is that the amino-acid alphabet has 20 letters: as a result, parameters, data, and computational 58 

requirements scale roughly as powers of 20. The alphabet also causes a second important 59 

problem: letters in and of themselves, while a familiar and useful shorthand, lack information 60 

about similarities and differences among the multi-faceted biophysical entities they represent—61 

the amino acids—for example, that A is more like glycine (G) than tyrosine (Y)—that may well 62 

contain meaningful patterns that are not obvious from, or captured by, the shorthand alone.	63 

These two problems can be addressed simultaneously by swapping the traditional amino-acid 64 

alphabet for a smaller set of descriptors derived from amino acids’ physicochemical properties, 65 

especially for pairs and higher-order associations (e.g. consecutive triples) (Fig. 1a). Over two 66 

dozen lipophilic (e.g., hydrophobicity), steric (e.g. molecular weight) and electrical (e.g. charge) 67 

properties have been precisely measured (Sandberg et al., 1998; Kim et al., 2016). These prop-68 

erties have been shown to correlate with each other, such that the first few principal compo-69 

nents (PCs) explain a majority of the overall variance (Hellberg et al., 1987; Sandberg et al., 70 

1998). These PCs are natural candidates for a reduced alphabet: they define orthogonal dimen-71 

sions of a continuous space in which the discrete amino acids are embedded (Fig. 1a). Where-72 

as in “letter space” there is no concept of distance between amino acids, in “descriptor space” 73 

amino acids with similar properties are closer together (e.g., with A nearer G than Y) (Fig. 1b). 74 

Such embeddings have been explored in immune-repertoire analysis (Greiff et al., 2017; 75 

Ostmeyer et al., 2017, 2019) and other contexts (Dosztányi and Torda, 2001; Walter et al., 76 

2005; Susko and Roger, 2007; Stephenson and Freeland, 2013). We investigated whether de-77 

scriptor-based MaxEnt models of IgH and TCRβ CDR3 repertoires could improve on models 78 

based on amino acids alone by allowing more data per parameter (less sampling error), shorter 79 

training time, and better interpretability (Fig. 1c-d), in principle leading to better models useful for 80 

classification of states of health and disease.  81 
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Results 82 

Using 26 measurements carried out on the 20 standard amino acids, we derived five biophysical 83 

descriptors that together explained 92% of the variance in amino acids’ physicochemical proper-84 

ties. Each descriptor is a PC, i.e. a linear combination of the measurements. The first three de-85 

scriptors corresponded roughly to surface area/chromatographic properties (explaining 41% of 86 

the overall variance), van der Waals volume (25%), and charge (14%) and together explained 87 

79% of variance, an increase over the 68% previously reported for the first three descriptors de-88 

rived from measures of both the standard and additional non-canonical amino acids (Sandberg 89 

et al., 1998).	90 

We trained amino-acid- and descriptor-based MaxEnt models on representative IgH and TCRβ 91 

CDR3 repertoires (Fig. 2) and asked which type of model better described test sets of CDR3 92 

sequences set aside from each repertoire, using a nearest- and next-nearest-neighbor amino-93 

acid model as the benchmark (Methods) (Mora et al., 2010). We compared this benchmark to 94 

two descriptor models: one that fit similar positional information but with fewer parameters, and 95 

one that fit more positional information with a more similar number of parameters. To score  96 

these comparisons, we calculated the (logarithm of the) relative probability that each sequence 97 

σ in the relevant test set belonged to its repertoire according to each of the two models (Md, de-98 

scriptor model; Ma, amino-acid model):	99 

ln
𝑝 𝜎|𝑀!

𝑝 𝜎|𝑀!
 

and calculated the percent of sequences for which each model was a better fit. A score of 100% 100 

for a given model meant that that model gave a higher probability for every sequence in the test 101 

set. As validation, we confirmed that IgH models scored >99% of IgH sequences better than 102 

TCRβ models (Fig. 3a, left), and TCRβ models scored >99% of TCRβ sequences better than 103 

IgH models (Fig. 3a, right). 104 

Test 1: Similar positional information. We first compared models that incorporated similar posi-105 

tional information: single-amino-acid positions and nearest- and next-nearest neighbor pairs 106 

(see Methods). The amino-acid models required 2×202=800 parameters to capture the pairwise 107 

information vs. just 2×52=50 parameters for the descriptor models (for each of IgH and TCRβ). 108 

We predicted that amino-acid models would outperform descriptor models on this test, since for 109 

every pair of positions the amino-acid model should have a slight edge, given that descriptors 110 
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capture only 92% of the variance in amino acids’ biophysical properties. Thus this test was ex-111 

pected to provide an estimate of the cost of swapping alphabets. As predicted, amino-acid 112 

models outperformed descriptor models, by a wide margin: 94.2% to 5.8% for IgH (Fig. 3b, left) 113 

and 99.6% to 0.4% for TCRβ (Fig. 3b, right). The median sequence had a probability that was 114 

~240 (IgH) and ~87,000 (TCRβ) times as high according to the amino-acid model as according 115 

to the descriptor model. For the amino-acid models, sequences from the final samples often 116 

contained the canonical CDR3 stems (see Discussion), but these were rare for final samples 117 

from these simple descriptor models.	118 

Test 2: Similar numbers of parameters. A primary motivation for developing descriptor models is 119 

their ability to capture information at a given set of positions with fewer parameters than amino-120 

acid models; the corollary is that for a given number of parameters, descriptor models can cap-121 

ture more positional information. Specifically, for the 400 parameters amino-acid models require 122 

to capture information about nearest-neighbor pairs, descriptor models can also capture infor-123 

mation about next-nearest-neighbor pairs and cross-loop (Buck, 1992; Weitzner et al., 2015) 124 

pairs, both for the stem (or “torso;” see Methods) and the entire CDR3, as well as about con-125 

secutive three-amino-acid motifs (n=325 non-length parameters for descriptor models vs. 420 126 

for amino-acid models, including the 20 single-amino-acid biases). We therefore first compared 127 

420-parameter amino acid models against 325-parameter descriptor models that fit this addi-128 

tional information. 129 

We expected the descriptor models to outperform these amino-acid models, which, unlike our 130 

benchmark amino-acid models, did not fit next-nearest-neighbor pairs, reflecting the utility of 131 

additional positional constraints for defining CDR3s. We found that descriptor models outper-132 

formed amino-acid models handily, with scores of 85.6% to 14.4% for IgH (Fig. 3c, left) and 133 

86.9% to 13.1% for TCRβ (Fig. 3c, right). The median sequence in the test set was 217- and 82-134 

fold more likely to have been produced by the descriptor model for IgH and TCRβ, respectively. 135 

More remarkably, descriptor models also outperformed our benchmark amino-acid models, 136 

even though the descriptor models had less than half the parameters (820 vs. 325 non-length 137 

parameters), by almost the same margin for IgH, 80.7% to 19.3% (Fig. 3d, left), but by much 138 

less for TCRβ, at 54.6% to 45.4% (Fig. 3d, right), leaving the main advantages in this case be-139 

ing coverage and training time. In contrast to the amino-acid models, the familiar start and end 140 

motifs (see Discussion) had already been learned in just a few iterations/minutes, requiring just 141 

a few hundred sample sequences on which to learn.	142 
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Test 3: Classification. Finally, we sought to test the utility of descriptor models in distinguishing 143 

between states of health. As proof of principle, we fit descriptor models on 31 before-and-after 144 

IgG+ repertoires (including three replicates) from 14 healthy human volunteers who were admin-145 

istered a seasonal trivalent influenza vaccine (Vollmers et al., 2013). We had previously shown 146 

that vaccination leads to prominent changes in both repertoires’ raw and functional diversity 147 

(Arora et al., 2018), but withheld diversity measurements from the present study in order to test 148 

the discriminatory power of the models in the absence of that additional information. Using strat-149 

ified 3-fold cross-validation, we found that descriptor models distinguished between pre- and 150 

post-vaccination pairs with median AUC of 0.97 (p=4×10-3; Fig. 4). It is worth noting that apply-151 

ing PCA to the models to reduce them to two dimensions, failed to distinguish between day 0 152 

and day 7, consistent with a lack of necessity for directions of greatest variance to correlate with 153 

differences in states of health.	154 

Discussion 155 

MaxEnt is a powerful method for modeling highly complex systems such as IgH and TCRβ rep-156 

ertoires but exhibits practical limitations related to speed and dimensionality when fit on amino 157 

acids using only the standard 20-letter alphabet. Here we demonstrate significant advantages 158 

by fitting on biophysical descriptors. We show that appropriate descriptor models can capture 159 

more of the information in the repertoire with fewer parameters, and that they can successfully 160 

classify health-based states with high accuracy, using the IgG+ B-cell response to influenza 161 

vaccination as proof of principle.	162 

A key finding was that descriptor models outperformed amino acid models only once additional 163 

positional information was included; when fit on similar positional information—single/overall 164 

frequencies and nearest- and next-nearest neighbors—amino-acid models performed better. 165 

This finding raises the question of what the relative contributions are of the additional types of 166 

positional information fit by the winning descriptor models. There were three additional types of 167 

positional information beyond nearest-neighbors: parameters for the stem, cross-pairs, and tri-168 

ples. We chose to fit the stem explicitly because the first and last few amino acids in CDR3s of 169 

both IgH and TCRβ are stereotypical, almost canonically beginning with a cysteine (excluded in 170 

some definitions), followed by a hydroxylic or small aliphatic amino acid (most often glycine, al-171 

anine, or threonine) at the second position, and a basic amino acid (arginine/lysine) at the third 172 

position and ending with a methionine or phenylalanine, followed by an aspartate, then valine or 173 

tyrosine, and finally tryptophan for IgH, and starting with cysteine, alanine, and a pair of hydrox-174 
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ylic or basic amino acids and often ending with glutamate, a variable amino acid, and two aro-175 

matic amino acids for TCRβ. These amino acids are important in establishing the stem-loop (or 176 

“torso-head”) configuration of CDR3s (Buck, 1992; Weitzner et al., 2015). In IgH and TCRβ the 177 

stem is most often encoded by the end of the V gene segment and start of the J, not by the 178 

highly variable D gene segment and adjacent non-templated nucleotides (Lefranc et al., 1999); 179 

fitting the stem may be allowing the remaining parameters to better fit the more variable region. 180 

Fitting cross pairs—the product of descriptor values at the first and last amino acids, second 181 

and second-to-last, etc.—was similarly inspired by CDR3s’ stem-loop architecture and may be 182 

having a similar benefit. Amino-acid triples are important parts of binding motifs and have been 183 

shown to have discriminatory power in IgH in model systems (Sun et al., 2017); it is reasonable 184 

that the biophysical patterns they represent also add resolving/discriminatory power. A system-185 

atic dissection of these contributions is left for future work.	186 

A further finding was the disparity between the performance of the top descriptor model for IgH, 187 

relative to the benchmark amino-acid model, vs. that for TCRβ: the descriptor model scored 188 

80.7% for IgH vs. only 54.6% for TCRβ. A value over 50% indicates that the descriptor model is 189 

capturing more information than the amino-acid model, but in the case of TCRβ, the benefit was 190 

modest. We considered three possible explanations. First, it is possible that both models cap-191 

tured substantially all of the information present in the training set; however, had this been the 192 

case, the models’ final samples would likely have been nearly identical to the training set, and 193 

they were not. Second, the additional information in the TCRβ repertoire may not be well cap-194 

tured by the additional positional relationships fit by these models (stem, cross-pairs, triples), 195 

but may reside instead in some other relationship(s). Third, the modest benefit may mean that 196 

there are isolated (i.e. discontinuous) probability densities in this training set, which the Markov 197 

chain used to generate samples (Fig. 1c) has difficulty navigating (van Ravenzwaaij et al., 2018). 198 

If so, it may be that somatic hypermutation in the IgH CDR3s bridges probability densities in IgH 199 

repertoires that in TCRβ repertoires, which lack somatic hypermutation, remain separate. Con-200 

versely, the greater improvement noted for IgH may reflect descriptor models’ ability to detect 201 

biophysical similarities among these related sequences, which may be less prominent in TCRβ 202 

repertoires but simultaneously difficult to capture in amino-acid models. 203 

The success of descriptor models in correctly discriminating between pre- and post-influenza 204 

vaccination suggests potential medical applications. We note that vaccination, like many immu-205 

nological perturbations, results in systems- as well as sequence-level changes; for example, 206 

changes in immunological/repertoire diversity (Jiang et al., 2013; Vollmers et al., 2013). We pre-207 
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viously showed that the combination of raw and functional diversity, measured with various fre-208 

quency weightings, can discriminate between pre- and post-vaccination sample pairs with high 209 

accuracy, likely in part by detecting clonal expansion with selection (Arora et al., 2018). Howev-210 

er, changes in diversity, while potentially useful as part of a screening test, are not sufficiently 211 

specific to serve as a general diagnostic modality. The present study shows that even without 212 

the powerful discriminatory information that diversity adds, descriptor models are capable of 213 

highly sensitive and specific diagnostic discrimination, with high AUC and low p-value from 214 

small numbers of subjects and samples. The relatively small number of parameters and these 215 

parameters’ relatively straightforward interpretability (compared to, for example, parameters in 216 

deep-learning models) suggest that leveraging the statistical biophysics of repertoires’ amino-217 

acid composition is a promising direction for dissecting immune responses for diagnostic and 218 

therapeutic purposes. This method is extensible to more or all of IgH or TCRβ, to the comple-219 

mentary chain (IgL/TCRα), and indeed to other proteins or biopolymers, leveraging the power of 220 

functional relationships to shrink alphabets while increasing their information density.	221 
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Methods  228 

Descriptors. Twenty-six biophysical measurements were previously made on a set of 87 amino 229 

acids, which included the standard 20 (Sandberg et al., 1998). We filtered out non-standard 230 

amino acids and applied PCA to the standard 20 amino acids (using Python; 231 

sklearn.decomposition.PCA library). The top five PCs, which together explained 92% of the ob-232 

served variance, were each normalized to a mean of 0 and maximum range [-1, 1] and used as 233 

biophysical descriptors.	234 

Data. IgG (Vollmers et al., 2013), memory IgH (DeWitt et al., 2016), and TCRβ (Emerson et al., 235 

2017) CDR3 repertoires were obtained and processed as previously described (Arora et al., 236 

2018). For each dataset in Tests 1 and 2, 500,000 sequences were chosen at random and split 237 

90:10 into training and test sets; for Test 3 all sequences were used.	238 
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Models. MaxEnt models were trained on features’ expectation values, with one parameter per 239 

feature (the bias). For Tests 1 and 2, amino-acid models were trained on the observed frequen-240 

cies of the single amino acids (n=20 parameters) and nearest- and next-nearest-neighbor ami-241 

no-acid pairs (n=202×2=800) and the frequencies of CDR3 lengths (n=38 for IgH and 26 for 242 

TCRβ), following previous reports (Mora et al., 2010). Descriptor models were trained on the 243 

frequencies of the single amino acids (n=20 parameters), the product of each pair of descriptors 244 

at different positions (n=52=25 per set), lengths, and, as indicated, on amino-acid frequencies 245 

for the first- and last-four amino acids (roughly corresponding to the CDR3 stem or “torso” 246 

(North et al., 2011; Finn et al., 2016); n=20), the product of each (non-redundant) pair of de-247 

scriptors at the same position (n=(5×4)/2=10), the product of each pair of descriptors for the 248 

stem (n=25 per set), and the product of descriptors at each three (n=53=125). For Test 3, mod-249 

els were trained on the expectation values of each descriptor for the stem (n=5) and full-length 250 

CDR3 (n=5), pairs of descriptors at the same position, cross-loop pairs, and nearest- and next-251 

nearest-neighbor pairs for the full-length CDR3 and the stem (n=25 per set), anchoring se-252 

quences with an initial cysteine and terminal tryptophan for speed.	253 

Fitting was performed using Metropolis-Hastings Markov-chain Monte Carlo sampling with the 254 

acceptance criterion 255 

𝐴 𝜎!,𝜎 = min
𝑝 𝜎!

𝑝 𝜎
𝑔 𝜎!|𝜎
𝑔 𝜎|𝜎! , 1 	

where 𝜎 is the original sequence and 𝜎′ is proposed according to the proposal distribution 256 

𝑔 𝜎|𝜎! , updating biases via gradient descent using an adaptive step size, using an adaptive 257 

burn-in period and autocorrelation time, and a time limit of 24 hours/fit as a stopping condition. 258 

Each model was trained for 24 hours on 44 parallel CPUs using the National Science Founda-259 

tion’s high-performance supercomputing cluster, XSEDE (Towns et al., 2014). To avoid overfit-260 

ting, we prohibited sample size from exceeding the size of the training set.	261 

Probabilities. The probability of a sequence σ according to a MaxEnt model M was calculated as 262 

𝑝 𝜎 𝑀 =
1
𝑍 𝑒

!!!∨! 
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where Eσ|M is the energy of σ and the normalization constant 𝑍 = 𝑒!!!|!!  was estimated via 263 

bridge sampling (Meng and Wong, 1996; Gelman and Meng, 1998) using Harvard Medical 264 

School’s high-performance computing cluster.	265 

Classification (Test 3). We fit descriptor models on each of the day 0/day 7 before-and-after 266 

IgG+ repertoire pairs (n=31: n=17 from day 0, including replicates, and n=14 day 7) from the in-267 

fluenza vaccination dataset (Vollmers et al., 2013; Arora et al., 2018) and used a support-268 

vector-machine (SVM) on the final models for classification (excluding length biases, which in-269 

teract with the normalization constant), using the median area under the receiver-operator-270 

characteristic curve (AUC/ROC) as the quality measure (taken over n=10,000 repeats; mean 271 

preferred over median given the observed highly skew AUC distributions expected from strong 272 

performance with outliers; Fig. 4 top inset), with stratified k-fold cross-validation (without over-273 

sampling; 17 vs. 14 was considered sufficiently balanced, but see null-model comparison below) 274 

to avoid overfitting (for k=2, 3, 5, and 10 to confirm robustness) and comparison to the AUC of 275 

randomly relabeled data as a null model (also n=10,000 repeats) to assess statistical signifi-276 

cance. Mann-Whitney U p-value was calculated to test that the two AUC distributions were dif-277 

ferent. The significance of the AUC was understood as the probability that it could arise from a 278 

random classifier by chance; the p-value for significance of the AUC was therefore calculated as 279 

the fraction of the area under the null-model distribution to the right of the AUC. Histograms 280 

were plotted. All analyses were performed using Python’s numpy and scipy libraries.	281 

Figure Legends 282 

Figure 1. MaxEnt Based on Amino Acids’ Biophysical Properties. (a) Amino acids as vectors, 283 

shown here as a heatmap, in a 5-dimensional descriptor space. (b) Amino acids with similar 284 

properties lie near to each other in descriptor space. These similarities can be visualized by cal-285 

culating all pairwise Euclidean distances of the amino acids in descriptor space, constructing a 286 

(complete, K20) network with the amino acids as nodes and the distances as weighted edges, 287 

and then for clarity keeping only edges with weights ≤1.1. For example, aspartate (D) and glu-288 

tamate (E) (red boxes in (a)) lie near to each other in descriptor space, illustrated by their similar 289 

pattern in the heatmap (with prominent differences only in the dimension corresponding to de-290 

scriptor 4), and so are adjacent in the network. Amino acids are colored according to a familiar 291 

groupings (basic, aliphatic, etc.) to demonstrate that their configuration in descriptor space 292 

agrees with these groupings. (c) Data preparation and model training. Repertoires were first 293 

split into training and test sets, and the features of the training set measured. Models were 294 
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trained through iterative sampling, comparing of sample and observed features, and updating 295 

biases. (d) Example using a highly simplified toy repertoire consisting of a training set of two 296 

unique 3-amino-acid sequences, CTR and DVW (common in stems of IgH CDR3s). The models 297 

learn constraints that distinguish the training set from random 3-mers. For amino-acid models, 298 

constraints are the frequencies of letters; for descriptor models, constraints are expectation val-299 

ues of descriptors and descriptor products at given positions (here, nearest-neighbor pairs). 300 

Model output is shown in the last row. The descriptor model has learned the pattern of biophysi-301 

cal relationships, such that sequences that are biophysically similar to sequences in the training 302 

set also appear in the sample, albeit at lower frequency than the sequences in the training set.	303 

Figure 2. Training and normalization. Distance (root-mean-squared error, RMSE) between train-304 

ing data and model sample as a function of iterations of model training. Data shown is for all 305 

models in Tests 1 and 2. Insets, bridge sampling for representative fits showing overlap be-306 

tween model- (blue) and randomly sampled sequences (gray). 307 

Figure 3. Comparison of amino-acid vs. descriptor models. Head-to-head tests on IgH (left) and 308 

TCRβ (right) repertoires; the better performer is shaded green. (a) Validation comparison of 309 

models of IgH vs. TCRβ repertoires; IgH models strongly prefer IgH sequences (yellow) and 310 

TCRβ models strongly prefer TCRβ sequences (red; results shown are for the 325-parameter 311 

descriptor models). (b)-(d) Comparisons of an amino-acid model to a descriptor model, both 312 

trained/tested on the same training/test set. Density to the left of the vertical dashed line repre-313 

sents sequences for which the amino-acid model gave the higher probability; density to the right 314 

(filled) represents higher probability per the descriptor model. Vertical red lines denote medians 315 

of the probability densities. (b) Test 1: models fitting similar positional information (single posi-316 

tions plus nearest- and next-nearest neighbors); amino-acid models perform better. (c) Test 2: 317 

models fitting similar numbers of parameters (420 non-length parameters for the amino-acid 318 

model vs. 325 for the descriptor model); descriptor models perform better. (d) Test 2, continued: 319 

amino-acid benchmark model (820 parameters; nearest- and next-nearest neighbors) vs. the 320 

descriptor model in (c); descriptor models perform better. 321 

Figure 4. Classification of pre- vs. post-flu vaccination in human subjects. Shown is the median 322 

AUC (red) for 10,000 training-test splits using stratified 3-fold cross-validation of an SVM on 31 323 

pre- and post-vaccination samples from the same subjects. Insets show the distributions of 324 

AUCs from all 10,000 splits of the real data (blue) and from 10,000 splits in which the data was 325 

randomly relabeled, to measure the probability that the median performance could have been 326 
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the result of chance (gray). Red, median. The p-value is the area in the random-relabeling dis-327 

tribution to the right of the median.	  328 
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Figure 2 331 

	  332 

0.01	

0.10	

1.00	

10.00	

0	 500	 1000	 1500	 2000	 2500	 3000	 3500	

10

1

0.1

0.01
0 500 1,000 1,500 2,000 2,500 3,000 3,500

Iteration

R
M
S
E

100

0
0             100 0             100 0             100

-ln(p)

ln
(d
en
si
ty
)

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/519108doi: bioRxiv preprint 

https://doi.org/10.1101/519108
http://creativecommons.org/licenses/by-nc/4.0/


16	

Arora et al. (2019) Repertoire-Based Diagnostics Using Statistical Biophysics 

	

Figure 3 333 

	 		  334 

IgH model TCRβ model

IgH test sequences TCRβ test sequences

ln(p(σ|Md)/p(σ|Ma)) ln(p(σ|Md)/p(σ|Ma))

AA model Descr. model

a

b

c

d

99.91% 0.09% 99.06%0.94%

94.20% 5.80% 99.59% 0.41%

14.38% 85.62%

80.69%19.31%

13.10% 86.90%

45.43% 54.57%

AA model Descr. model

IgH model TCRβ model

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 13, 2019. ; https://doi.org/10.1101/519108doi: bioRxiv preprint 

https://doi.org/10.1101/519108
http://creativecommons.org/licenses/by-nc/4.0/


17	

Arora et al. (2019) Repertoire-Based Diagnostics Using Statistical Biophysics 

	

Figure 4 335 
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