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Abstract8

In allosteric proteins, the binding of a ligand modifies function at a distant active site. Such al-9

losteric pathways can be used as target for drug design, generating considerable interest in inferring10

them from sequence alignment data. Currently, different methods lead to conflicting results, in par-11

ticular on the existence of long-range evolutionary couplings between distant amino-acids mediating12

allostery. Here we propose a resolution of this conundrum, by studying epistasis and its inference in13

models where an allosteric material is evolved in silico to perform a mechanical task. We find four14

types of epistasis (Synergistic, Sign, Antagonistic, Saturation), which can be both short or long-range15

and have a simple mechanical interpretation. We perform a Direct Coupling Analysis (DCA) and16

find that DCA predicts well mutation costs but is a rather poor generative model. Strikingly, it can17

predict short-range epistasis but fails to capture long-range epistasis, in agreement with empirical18

findings. We propose that such failure is generic when function requires subparts to work in concert.19

We illustrate this idea with a simple model, which suggests that other methods may be better suited20

to capture long-range effects.21
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Author summary

Allostery in proteins is the property of highly specific responses to ligand binding at a distant

site. To inform protocols of de novo drug design, it is fundamental to understand the im-

pact of mutations on allosteric regulation and whether it can be predicted from evolutionary

correlations. In this work we consider allosteric architectures artificially evolved to optimize

the cooperativity of binding at allosteric and active site. We first characterize the emergent

pattern of epistasis as well as the underlying mechanical phenomena, finding four types of

epistasis (Synergistic, Sign, Antagonistic, Saturation), which can be both short or long-range.

The numerical evolution of these allosteric architectures allows us to benchmark Direct Cou-

pling Analysis, a method which relies on co-evolution in sequence data to infer direct evolu-

tionary couplings, in connection to allostery. We show that Direct Coupling Analysis predicts

quantitatively mutation costs but underestimates strong long-range epistasis. We provide an

argument, based on a simplified model, illustrating the reasons for this discrepancy and we

propose neural networks as more promising tool to measure epistasis.

22

Introduction23

Allosteric regulation in proteins allows for the control of functional activity by ligand binding at a distal24

allosteric site [1] and its detection could guide drug design [2, 3]. Yet, understanding the principles re-25

sponsible for allostery remains a challenge. How random mutations dysregulate allosteric communication26

is a valuable information studied experimentally [4] and computationally [5]. Several analyses have high-27

lighted the non-additivity of mutational effects or epistasis. This “interaction” between mutations can28

span long-range positional combinations [6], results in either beneficial or detrimental effects to fitness [7],29

and shapes protein evolutionary paths [8]. Given the combinatorial complexity of its characterization,30

empirical patterns of epistasis are still rather elusive [9–12]. Concomitantly, progress in sequencing has31

led to an unprecedented increase of availability of data arranged into Multiple Sequence Alignments32

(MSAs) [13] containing many realizations of the same protein in related species. Different methods have33

been developed to extract information from sequence variability, e.g. Statistical Coupling Analysis [14,15]34

was applied to allostery detection in proteins. It was argued that the allosteric pathway was encoded in35

spatially extended and connected sectors, groups of strongly co-evolving amino-acids, supporting that36

long-range information on the allosteric pathway is contained in the MSA. Another approach, Direct37

Couplings Analysis (DCA) [16], aims at inferring evolutionary couplings between amino-acids. Direct38

couplings predict successfully residue contacts [16] so to inform the discovery of new folds [17], allow one39

to describe evolutionary fitness landscapes [18, 19] and correlate with epistasis [20, 21]. In the context40

of allostery, there is no statistical evidence for the existence of long-range direct couplings that would41

reveal allosteric channels [22], in apparent contradiction with the existence of extended sectors reported42

in [15] and the observation of long-range epistasis [6].43

In this work we propose a solution for this discrepancy, by benchmarking DCA in models of protein44
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allostery where a material evolves in silico to achieve an “allosteric” task [23–29]. We consider recent45

models incorporating elasticity [24–27, 29], in which long-range co-evolution [26], elongated sectors [26]46

and long-range epistasis [29] are present and can be interpreted in terms of the propagation of an elastic47

signal [29]. We focus on materials evolved to optimize cooperative binding over large distances [27], and48

find four types of epistasis (Synergistic, Sign, Antagonistic, Saturation) that exist over a wide spatial49

range. We perform DCA and find that it predicts well mutation costs but is a rather poor generative50

model. Strikingly, it can predict short-range epistasis but fails to capture long-range one, in agreement51

with empirical findings [22]. We illustrate why it may be so via a simple model, which suggests that52

neural networks are better suited than DCA to capture long-range effects.53

Model for the evolution of allostery54

We follow the scheme of [26, 27] where a protein is described by an elastic network of size L made of55

harmonic springs of unit stiffness (here we consider L = 12). Binding events are modeled as imposed56

displacements either at the “allosteric” or at the “active” site (each consisting of several nodes), as shown57

in color in Fig. 1A. Such imposed displacements elicit an elastic response in the entire protein and cost58

some elastic energy, which defines our binding energy (see Sec. 1 in S1 Text). Following [27], the fitness59

F measures the cooperativity of binding between allosteric and active site and is defined as the energy60

difference F ≡ EAc − (EAc,Al − EAl) where EAc, EAl and EAc,Al are respectively the elastic energy61

of binding at the active site only (Ac), at the allosteric site only (Al) and at both sites simultaneously62

(Ac,Al). The fitness can be rewritten approximately as (see Sec. 1 in S1 Text)63

F ≈ FAc ·RAl→Ac (1)

where FAc is the force field imparted by substrate binding on the nodes of the active site, and RAl→Ac64

is the displacement field induced at the active site by ligand binding. Note that each field in Eq. 1 is of65

dimension n0d, where n0 = 4 is the number of nodes in the active site and d = 2 the spatial dimension.66

Such networks are evolved by changing the position of springs according to a Metropolis-Monte Carlo67

routine to maximize F . At each step, the fitness difference with respect to the previous configuration68

∆F is computed and the new configuration is accepted with a probability p = min(1, expβ∆F). β is an69

evolution inverse temperature controlling the selection pressure for high fitness F , we choose β = 104.70

We sample every 1000 time steps after an initial equilibration time of 105 steps. At long times one71

obtains a cooperative system of typical F ∼ 0.2, whose architecture depends on the spatial dimension72

and boundary conditions [27]. Here we consider a network in d = 2 dimensions with periodic boundaries,73

equivalent to a cylindrical geometry, where the response to binding evolves towards a shear mode. With74

our scheme we can generate thousands of networks with a similar design. A sequence σ of 0 and 1, where75

σi = 1 stands for the presence of a spring at link i and σi = 0 for its absence, can be associated to any76

network, leading to a Multiple Sequence Alignment (MSA) of networks performing the same function77
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Figure 1: Study of co-evolution in artificial allosteric networks. A: Example of an elastic network

made of harmonic springs (red) evolved in silico to maximize the cooperativity between the allosteric

site (purple) and the active site (blue). The response to binding at the allosteric site is indicated by

black arrows, and is found to follow a shear motion. B: Each network corresponds to a sequence of 0

and 1 coding for the spring absence or presence. Our scheme allows us to generate a large number M of

such sequences, each corresponding to a slightly different shear architecture.

(see Fig. 1B).78

Results79

Nature and classification of epistasis80

The cost of a single mutation (i.e. changing the occupancy) at some link i is defined as ∆Fi = F − Fi
where F is the original fitness and Fi the one of the network after the mutation. We denote by ∆Fij =

F − Fij the cost of a double mutation at i and j. Epistasis between loci i and j is then defined

as ∆∆Fij ≡ ∆Fij − ∆Fi − ∆Fj . Following Eq. 1 and observing that a mutation mostly affects the

propagation of the signal RAl→Ac and not how binding locally generates force (see Sec. 1 in S1 Text),

epistasis follows approximately

∆∆Fij ≈ −FAc ·
(
δRAl→Acij − δRAl→Aci − δRAl→Acj

)
where δRAl→Aci = RAl→Aci −RAl→Ac, and RAl→Aci is the allosteric response at the active site of the81

protein mutated at link i. δRAl→Acj and δRAl→Acij follow analogous definitions. We denote by θ the82

angle between δRAl→Aci and δRAl→Acj . Assuming that the cost of a double mutation is dominated by83

the strongest point mutation, i.e. ∆Fij ≈ max(∆Fi,∆Fj) leads to84

∆∆Fij ≈ −min(∆Fi,∆Fj). (2)
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This assumption does capture a significant part of epistasis, especially when it is strong, as shown85

in Fig. 2A. This observation suggests to classify pairs of loci in terms of their epistasis and the minimal86

associated mutation cost min(∆Fi,∆Fj) as performed in Fig. 2A.87

Saturation: We define (somewhat arbitrarily) mutations with ∆F > 0.1 as lethal. Pairs of such lethal88

mutations (which represent ∼ 0.1% of all pairs, a sparsity in line with experimental findings [21]) have89

the strongest epistasis in absolute value, and follow closely Eq. 2, as visible in Fig. 2A. Physically, these90

mutations essentially shut down signal propagation by themselves with RAl→Aci ≈ RAl→Acj ≈ 0, in such91

a way that the double mutation has the effect of a single one with RAl→Acij ≈ 0. This view is confirmed92

in Fig. 2B by the observation that cos(θ) ≈ 1, as follows from δRAl→Aci ≈ δRAl→Acj ≈ −RAl→Ac.93

Saturation is then a form of very high “diminishing-returns” epistasis, for which evidence from data and94

support from theoretical models are accumulating [30,31].95

Antagonistic. Further up along the diagonal of Eq. 2 in Fig. 2A, this saturation effect becomes milder.96

It is more akin to “antagonistic” epistasis [7, 32], whereby, after a first mutation, making a second one97

results only in a weak additional change.98

Sign. In the intermediate range of negative-sign epistasis, more compensatory epistatic interactions99

can take place, where the fitness cost of a deleterious mutation is diminished by the second mutation100

(i.e. ∆Fij < max(∆Fi,∆Fj)). Thus some mutations can become beneficial (i.e. increase the fitness) in101

presence of another mutation, and this resembles the “sign” epistasis empirically detected [7,33]. Geomet-102

rically, it corresponds to situations where the two mutations deform the signal in opposite directions, so103

the second one can partially re-establish fitness. In support of this, Fig. 2B shows that for sign epistasis104

cos(θ) tends to be negative.105

Synergistic. Positive-sign values indicate “synergistic” epistasis. It occurs if two mutations perturb106

the elastic signal in the same direction, causing more damage than expected if they were purely additive.107

As clear from Fig. 2B, cos(θ) tends to be positive in this case.108

Direct Coupling Analysis109

We evolve numerically M configurations maximizing cooperativity F , each yielding a realization of a110

(variable) shear design. We sample a configuration for every initial condition to avoid introducing a111

bias in the sampling due to their high similarity. We find that the average Hamming distance among112

the obtained sequences is ∼ 20% of their length. Our set of sequences is analogous to a protein MSA113

– importantly, in this analogy the role of an amino-acid is played by a link, which can be stiff (σi = 1)114

or not (σi = 0, no springs). In practice we take M = 135000, much larger than the sequence length115

Nc = (3L2 − 2L) = 408.116

Next, for a statistical analysis of these sequences, we use DCA, which is based on the idea of fitting117

the observed single-site 〈σi〉 = 1/M
∑
m σ

m
i and pairwise 〈σiσj〉 = 1/M

∑
m σ

m
i σ

m
j frequencies of links118

by the probability distribution P (σ) with maximal entropy (as this ensures the least biased fit of data119

under such empirical constraints). In our setup this approach leads to120
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Figure 2: Classification and mechanical characterization of epistasis in our model of allosteric

cooperativity. A: Phase diagram of epistasis in our allosteric material. All quantities are averages over

50 configurations obtained in a single run. The shaded area is taken with arbitrary width and a -1 slope

as a guide to the eye. We show the lines ∆Fij = 0, which divides synergistic from antagonistic/sign

epistasis, ∆Fij = max(∆Fi,∆Fj), separating sign and antagonistic epistasis, and min(∆Fi,∆Fj) = 0.1,

the threshold set to distinguish lethal mutations. Points in grey correspond to epistasis < 5× 10−4 and

are excluded from our analysis. B: Histograms of cos(θ) for synergistic, sign and saturation epistasis.
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P (σ) =
1

Z
exp (−E(σ)) (3)

E(σ) = −
∑
i<j

Jijσiσj −
∑
i

hiσi (4)

which is equivalent to an Ising model where σi = 0, 1 would denote the two states (down, up) of121

spins. In this setting, E is an estimation of βF , β being the inverse evolution temperature. In all the122

comparisons (e.g. Fig. 3) we omit β as we are interested in the proportionality between E and F . The123

“fields” hi and “couplings” Jij are inferred to match 〈σi〉 and 〈σiσj〉. The inference of these parameters124

can be performed with several algorithms, we focus on ACE (Adaptive Cluster Expansion) [34, 35], an125

approximate technique developed from statistical physics ideas, combined with maximum likelihood, an126

exact technique. This approach is extremely accurate and we compare it to a method more approximate,127

but much faster computationally, as mean field Direct Coupling Analysis (mfDCA) [16], see Methods for128

details on the implementation.129

In this way we can benchmark DCA in the context of allosteric materials and test if it: (i) reproduces130

accurately the cost of single mutations; (ii) is a good generative model, i.e. if it can generate new sequences131

with high fitness and (iii) can predict epistasis.132

Inferring mutation costs133

Fig. 3A shows the map of true mutation costs, indicating a large cost near the allosteric and active134

sites as well as in the central region where the allosteric response displays high shear (as documented135

in [27]). DCA enables one to infer this map by computing the estimated mutation cost ∆Ei = Ei − E136

for a mutation at a generic link i, Fig. 3B. The comparison is excellent, as evident also from the high137

correlation revealed by the scatter plot Fig. 3C. Importantly, including pairwise couplings is key for138

inferring mutation costs, as a model based on conservation alone performs poorly, see inset of Fig. 3C.139

Generative power of DCA140

Once the model of Eqs. 3, 4 is inferred, can it be used to generate new sequences with a high fitness, as141

previously shown for models of protein folding [36]? To answer this question, we generate new sequences142

by Monte Carlo sampling from the probability distribution Eq. 3. Fig. 4 shows the fitness of the obtained143

sequences vs their distance to “consensus” - the consensus being the most representative sequence of the144

MSA, i.e. where springs occupy the positions with largest mean occupancy. We find that (i) the variability145

of the MSA, quantified by the distance to consensus, is well reproduced (ii) the fitness is much more146

variable than for random sequences, with a few sequences that do perform as well as evolved ones (which147

never occurs for random sequences) but (iii) the mean obtained fitness is rather low, although larger, in148

a statistically significant way, than the one of random configurations (which is zero). As shown in Fig. 4,149

these results deteriorate further if a more approximate algorithm as mfDCA is used to infer parameters.150

We have checked that the generative performance is not improved by lowering the temperature of the151
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Figure 3: Prediction of mutation costs by DCA. Maps of true ∆F (A) and DCA-inferred ∆E (B)

single mutation costs, averaged over 1.5 × 103 configurations randomly chosen from the MSA. Their

patterns are very similar, revealing high costs near the allosteric and active sites and in the shear path

connecting them. C: Scatter plot showing the strong correlation between ∆F and ∆E for all links.

The estimation of mutation costs based on an independent-site model (i.e. on conservation) correlates

poorly with the true cost (inset), proving the need for incorporating correlations for proper prediction

of mutation costs.

Monte Carlo sampling. Overall, these results suggest that the generative power of DCA is limited in152

the context of allostery, in contrast with results for models of protein folding [36]. Thus an Ising model,153

a quadratic model accounting for conservation and correlations in the MSA (first and second order154

statistics), although it can capture some features of the shear design (e.g. the inhomogeneous distribution155

of coordination, as shown in Fig. S2), is a rather drastic approximation for the initial allosteric fitness.156

Indeed we have tested that higher orders as the third moment are not well reproduced (see Fig. S1). In157

what follows we shall emphasize in particular the failure of DCA to infer long-range epistasis.158

Inferring epistasis with DCA159

From Eq. 4 one readily has that the DCA prediction for epistasis follows ∆∆Eij = −Jij(2σi−1)(2σj−1),160

implying |∆∆Eij | = |Jij |. Hence, within DCA, the epistasis magnitude is simply the one of evolutionary161

couplings. In the inset of Fig. 5A we show the spatial location of the top 400 pairs of links with highest162

coupling magnitude, illustrating that long-range couplings are rare. Yet, as implied jointly by Fig. 2A163
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Figure 4: Generative performance of DCA. Fitness vs distance to consensus of configurations gen-

erated by the inferred model, following the representation of [36]. The sampling is done from P (σ) of

Eq. 4 (a Boltzmann-Gibbs probability distribution), whose parameters have been inferred via ACE +

maximum likelihood (red cloud) or mfDCA (green cloud). Original high fitness configurations (black

cloud) and random ones (blue) are added as a reference. Each cloud consists of 104 sequences and the

drawn ellipse gives one standard deviation around the mean in both horizontal and vertical directions.

Distances to consensus of ACE + maximum likelihood, mfDCA and random sequences are shifted by

respectively +0.7, −0.7 and −1.3 for better visibility.

and Fig. 3A, long range epistasis is present in our model, meaning that DCA fails to capture it. This164

fact is demonstrated quantitatively in Fig. 5A showing the mean epistasis |∆∆Fij | and mean DCA165

prediction |∆∆Eij | as a function of distances. The DCA-predicted trend reproduces the original one at166

small distances but strongly underestimates long-range epistasis. This is further evidenced in Fig. 5B167

showing that the average fraction of long-range pairs (range > 7) with the largest epistasis which falls168

in the list of the 400 pairs with largest couplings is much smaller than for short-distance pairs (< 7).169

However, even at short distance the prediction by |Jij | is not excellent, but it is remarkably improved if,170

as done in [12, 21], one considers epistasis averaged over several configurations (see Sec. 2 in S1 Text).171

Our finding is consistent with the lack of empirical evidence for long-range inferred couplings in allosteric172

proteins [22].173

A proposed explanation for the failure of DCA at long-distances174

We propose that the failure of DCA at long-range stems from its inability to describe a function that175

requires many subparts of the system to work in concert, when each subpart can be of different type.176

For example, in allosteric proteins on short length scales soft regions must exist where shear propagates177

[27,37], giving rise to local constraints. Yet, there is flexibility in the exact location of these soft regions.178

On a larger length scale, these regions must assemble to create an extended soft elastic mode [27,38,39],179
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Figure 5: Prediction of epistasis by DCA. A: Running average of the absolute value of epistasis

∆∆Fij and of DCA prediction ∆∆Eij for 1.5× 103 configurations as a function of the distance between

link i and j. The trends are nearly identical at short distances but at long distance DCA underestimates

epistasis. Inset: Top 400 inferred couplings. They are mostly short range with only a few long-range

couplings connecting the allosteric and the active site. Next we assess the prediction of epistasis in single

configurations by these top 400 couplings. We consider separately long-range (> 7) and short-range (<

7) pairs of links, and rank them respectively in terms of the epistasis magnitude |∆∆Fij |. B shows which

fraction of these pairs - averaged over 100 configurations randomly chosen - belongs to the 400 largest

couplings, as a function of the number of pairs with maximal epistasis considered. Clearly coupling

magnitude has less predictive power at large distances than at short ones. This feature stays robust also

if we increase, e.g. up to 1000, the number of top couplings for prediction (see Fig. S4A).
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Figure 6: Sketch of a simple model for protein function. A system is arranged into 2 subparts

which must work jointly to accomplish a given function (AND gate). Each subpart can be of 2 types

(OR gate), to work each type must satisfy some constraints (AND gate between single units).

which generates global constraints: for the shear architectures it implies the presence of a soft path180

between the allosteric and active site, whose position however can fluctuate. We argue that when181

applied to systems whose function is organized in such a hierarchical way, DCA underestimates long-182

range constraints. To illustrate this point, we introduce a Boolean model, shown in Fig. 6. A generic183

“function” is achieved by two subparts that must work in concert (AND gate) and that can be of two184

different types (OR gate) but each must be functional (AND gate). This model comprises 8 units, taking185

the value 0 or 1, decomposed into 4 groups: 2 groups are the possible types of subpart 1 (left in Fig. 6) and186

the other 2 the possible types of subpart 2 (right). A configuration is “functional” if 2 units of the same187

group are simultaneously in state 1 for each subpart. There are 49 functional configurations, whose fitness188

is fixed to F , all other configurations have fitness 0. We assume that F is large in such a way that the189

sequences in the MSA are only the 49 functional ones, with a uniform distribution. It is straightforward190

to calculate epistasis in this model, as well as single-site and pairwise frequencies from which couplings191

Jij and fields hi can be inferred. In particular we can compare ∆∆Fij and ∆∆Eij for units i and j either192

in the same group, so locally constrained by function (at “short distance”, e.g. i = 1 and j = 2), or in193

the two different subparts, thus globally constrained (at “long distance” e.g. i = 1 and j = 5). We obtain194

(see Sec. 2.1 in S1 Text) that |∆∆F12|/|∆∆F15| ≈ 2.3: global and local constraints lead to relatively195

similar short range and long-range epistasis. Yet we find that epistasis between subparts is noticeably196

underestimated in contrast to epistasis within subparts. To show this, we look at the DCA prediction197

for the ratio of epistasis between two pairs of sites divided by the true ratio of epistasis. For pairs of198

sites belonging to the same subpart, DCA predicts equally well epistasis. For example, considering the199

pair of sites (1,2) and the pair (1,3), one finds |∆∆E13|/|∆∆E12| × |∆∆F12|/|∆∆F13| ≈ 0.86 which is200

close to unity. However if sites belong to different subparts, DCA strongly underestimates epistasis with201

|∆∆E15|/|∆∆E12| × |∆∆F12|/|∆∆F15| ≈ 0.33.202
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Discussion203

We have benchmarked DCA in a model of protein allostery where a mechanical task must be achieved204

over long distances. Such models display a rich pattern of epistasis, which can be both short and long-205

range and vary in sign. DCA predicts well mutation costs but is not a good generative model. This206

failure echoes with the drastic underestimation of long-range epistasis by the pairwise couplings inferred207

by DCA from evolutionary correlations. This finding rationalizes why there is no statistical evidence208

for long-range couplings in allosteric proteins analyzed by DCA [22], where long-range epistasis and209

functional effects are however found [6, 12,15].210

Yet, as we show in S1 Text (see Sec. 2), we expect that DCA can capture some aspects of the long-211

range epistasis pattern in allosteric proteins. Indeed, high-cost mutations exhibit stronger epistasis than212

low-cost ones (as also seen in RNA sequences [33, 40], in the enzyme TEM-1 β-lactamase [11] and in213

previous in silico evolution work [29]), and are well-predicted by DCA. Testing this DCA prediction for214

epistasis patterns empirically could be made possible by the increasing availability of deep mutational215

scans [12,41].216

Finally, we have provided the more general argument, illustrated by a simple model, that a co-217

evolution based maximum-entropy approach as DCA is not the appropriate inference framework when218

function requires several, variable parts to work in concert. Can one find better generative models than219

DCA for such complex functions? Several ways have been proposed to go beyond pairwise models by220

including nonlinearities, which implicitly take into account correlations at all orders, as nonlinear poten-221

tials in Restricted Boltzmann Machines [42], maximum-entropy probability measures with a nonlinear222

function of the energy [43] or maximum-likelihood inference procedures based on nonlinear functions [44].223

As a first test, we have trained a 3-layers feedforward neural network with nonlinear (sigmoid) activation224

functions to learn the values of fitness in the simple model of Fig. 6. On the validation set, we could reach225

average mean squared errors on the estimated fitness ∼ 10−6− 10−7, hence mutation costs and epistasis226

are correctly captured by this method (see Sec. 2.1.1 in S1 Text). This observation raises the possibility227

that neural networks may lead to better generative models in proteins, a hypothesis that could also be228

benchmarked in silico.229

230

Methods231

Direct Coupling Analysis: inference procedure232

In a maximum-entropy approach, extracting information from MSAs can be cast as an inverse problem,233

i.e. inferring the set of parameters which enable the model (an Ising model in our setup) to reproduce234

certain observed statistical properties [45,46]. The exact solution of this problem is found by Maximum235

Likelihood algorithms, which search for the set of couplings Jij and fields hi maximizing the likelihood236
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that the model specified by such parameters produced data with the given statistics (single-site and237

pairwise frequencies in our case). This exact maximization might often be infeasible, therefore to tackle238

the inverse problem approximate techniques have been developed: for instance, we resort to the Adaptive239

Cluster Expansion (ACE), an expansion of the entropy (which indeed corresponds to the likelihood)240

into contributions from clusters of spins [34, 35, 47]. We use the package made available by Barton241

https://github.com/johnbarton/ACE. The implementation consists of first a run of ACE followed by242

a proper maximum likelihood refinement (QLS routine), which takes as starting set of fields and couplings243

the ACE-inferred ones. Different parameters for the ACE and QLS routines can be set by the user, e.g.244

γ2, the L2−norm regularization strength for couplings which penalizes spurious large absolute values245

induced by undersampling and for which a natural value is γ2 = 1/M (M being the size of the sample).246

To help convergence, we have chosen for ACE a higher value γ2 = 10−2 and θ = 10−5 (this is the threshold247

at which the algorithm will run then exit, see [35]). In the further refinement by QLS, we have set mcb,248

the number of Monte Carlo steps used to estimate the inference error, to 200000 and γ2 = 1/M . Having249

full control of the numerical evolution, we have tried to avoid undersampling issues by generating a large250

number of configurations M = 135000, which leads to γ2 ≈ 0.7 × 10−5. For the inference we remove251

from sequences the 6 links at the active and allosteric sites as they are always associated to the symbol252

1 (always occupied by a spring), so the number of parameters to infer is N ′c + N ′c(N
′
c − 1)/2 ∼ 81000253

with N ′c = Nc−6 = 402. We have verified that low values of the L2-regularization allow us to obtain the254

maximal generative performance compatible with the model (in comparison to higher regularization).255

By default the L2 regularization of fields is 0.01 × γ2. In Fig. S1A, it is shown that the result of the256

inference is a model perfectly able to reproduce the first and second order statistics (as it should by257

construction) but that fails at reproducing higher order statistics.258

For a comparison, we have considered also mean field Direct Coupling Analysis (mfDCA) [16], derived259

from a mean-field factorized ansatz for the Boltzmann-Gibbs distribution Eq. 3. Couplings in mfDCA260

are given by Jij = −(C−1)ij , where Cij = 〈σiσj〉− 〈σi〉〈σj〉 is the covariance of the MSA (we recall that261

in each sequence σi = 1 stands for the presence of a spring at link i and σi = 0 for its absence). Typically262

C is not invertible due to undersampling, making it necessary to add a pseudocount λ (see [48]). As263

shown in [49], a pseudocount also helps correct for the systematic biases introduced by the mean field264

approximation: for this reason, we have used a pseudocount λ and chosen its value as λ = 0.5, which265

allows the best comparison to the ACE and maximum likelihood results, see Fig. S1B. It is noteworthy266

that in this way a computationally cheap technique as mfDCA yields a pattern of top Jij strikingly267

similar to the one of a very accurate inference achieved by the combination of ACE and maximum268

likelihood. Therefore mfDCA, while extremely poor as a generative model, exhibits a good performance269

at reconstructing the distribution of relevant couplings, as shown in Fig. S1C.270
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Mutation costs and generative performance in the inferred Ising model271

Costs of double mutations, i.e. joint mutations affecting links i and j, can be computed in the original272

model via fitness changes ∆Fij = F − Fij , where Fij is the fitness after springs in i and j have been273

mutated. A double mutation can correspond either to (i) adding two springs at links i and j (i.e.274

σi = σj = 1) or removing them (i.e. σi = σj = 0) or to (ii) moving a spring from link i to link j or275

viceversa (i.e. σi = 0, σj = 1 or σi = 1, σj = 0). Let us call the former “non-swap” mutations and the276

latter “swap” mutations. Swap mutations conserve the total amount of springs (360), thus the overall277

average coordination 〈z〉 = 5, and are the ones performed in the in silico evolution. As optimal allosteric278

configurations maximize fitness with respect to this type of mutations, we stick to them also when we279

compare mutation costs in terms of fitness and inferred energy (see Fig. 3C): we define “effective” single280

mutation costs ∆Fi and ∆Ei by taking, for each link, the swap with a link in the external region (more281

rigid, as visible in e.g. Fig. S2), where mutations are completely neutral, thus whose cost would be282

roughly zero.283

For the generative step, we implement a Monte Carlo sampling which relocates springs from an284

occupied to an unoccupied link, i.e. which follows swap-type dynamics as for the original numerical285

evolution. This allows us to select, from the inferred model, sequences that are structurally as close286

as possible to the initial data, i.e. with the same average coordination 〈z〉 = 5, to make a consistent287

comparison with them. We have verified that even relaxing this constraint in the sampling leads to288

sequences endowed with higher internal variability yet lying in the same range on fitness (hence the289

inferred model incorporates rather well the information on the fixed amount of springs). The parameters290

of the Ising model are inferred in such a way as to match single-site occupancy, which reflects the spatial291

pattern of coordination in the allosteric networks. In Fig. S2 we show that generated sequences, despite292

having lower fitness, reproduce successfully this property as they should.293

Comparison with conservation294

Single-site frequency in protein alignments, informative about local conservation, is a standard measure295

of mutation costs at a certain position [50] and can be fit by an independent-site Ising model. Energy (Eq.296

4) in this case contains only field terms and, once these are inferred from link occupancies 〈σi〉, one can297

compute energy changes ∆Ei upon point mutations. The energy cost of a mutation in an independent-298

site model is then ∆Ei = (2σi− 1)hi, where hi = log(〈σi〉(1− σ̄)/σ̄(1−〈σi〉)) describes how the observed299

occupancy of a link i, 〈σi〉, is biased away from the average occupancy σ̄ = 360/408 = 0.88. In average300

∆Ei gives also a measure of conservation of link i as it is 0 when 〈σi〉 = σ̄ and it increases the more301

link i tends to be either occupied or vacant. The improvement achieved by the pairwise model over this302

conservation-based measure of mutation costs is extremely significant (see inset of Fig. 3C). On the one303

hand, conservation is a purely local measure - it takes into account how a particular position is crucial to304

the propagation of the allosteric response. Including pairwise couplings proves to be crucial to capture305

the context-dependence of mutation costs thus for their quantitative prediction. On the other hand, the306
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degree itself of structural conservation is rather low due to the heterogeneity of the shear-design MSA:307

the conformation, precise location and size of the shear path, hence the role of each link, can vary from308

architecture to architecture, leading to low structural conservation (with peaks only around the active309

and allosteric site). Conservation is found much higher within one set of dynamically related solutions310

(as for Fig. 2A), corresponding to one realization of the shear design among the many included in the311

MSA.312
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Figure S1: Performance of the inference procedure. A: Statistics of the model inferred by combining

ACE and Maximum Likelihood. 1-link frequency and 2-links connected correlations are very accurately

reproduced, as they should by construction (the relative errors, defined as in [1], are respectively εm =

2.45 × 10−1 and εC = 1.30 × 10−1). In contrast the third order connected correlations, which are not

constrained in the inference, are not well captured (Pearson coefficient ρ = 0.37). This is a hint that

the Ising model - a pairwise probabilistic model over σi - is an approximation which becomes poor

for estimating higher order moments. B: Scatter plot comparing Jij inferred via mfDCA to the direct

couplings of ACE + Max. Lik.: the pseudocount in mfDCA has been set to λ = 0.5 in such a way as

to obtain the highest correlation between the two. C: Spatial distribution of top 400 mfDCA-inferred

couplings on the network. The reconstruction of the topology of relevant couplings is rather robust with

respect to the choice of more approximate inference methods as mfDCA. As in Fig. 5A (inset) of the

main text, they are concentrated at short range, i.e. they connect links lying close either to the active

site or the allosteric site and in the central high-shear path. Long range mfDCA couplings, connecting

links around respectively allosteric and active site, are weaker and appear among the top 600-1000 ones,

implying an even worse performance at predicting long range epistasis than ACE + Max. Lik.
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A B

Figure S2: Properties of generated allosteric sequences. Coordination map of original sequences

(A) and generated ones (B). They both exhibit a softer (i.e. with coordination z < 5) central path joining

active and allosteric sites (indicated respectively by blue and purple crosses) along which the shear-like

sliding takes place. This path is embedded in a more connected, “rigid” region where the coordination

z > 5. Solutions sampled from the inferred energy landscape have a design but are not maximally fit,

showing that more “structural” components, as the distribution of links, are captured but additional

information would be needed to reproduce a complex mechanical function as the cooperative fitness.
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1 Mechanical interpretation of mutation costs and epistasis428

Let us denote by ε the set of nodes where ligand binding takes place, e.g. for ligand binding at the429

allosteric site ε = (Al) with size dim(ε) = n0. Such event imposes a displacement Rε on the nodes430

ε which imparts locally a force F ε and induces a response Rε→r on all the other nodes r. Clearly431

dim(ε) + dim(r) = Ld where Ld is the total number of nodes for a network of size L in d dimensions;432

for the example of binding to the allosteric site r = (Ac, b), where b stands for the “bulk” of nodes not433

belonging neither to the allosteric nor to the active site. (In this paper we consider networks as in Fig.434

1A of the main text, with d = 2, L = 12 and n0 = 4 for both active and allosteric site). The relation435

between force and overall response field is written in terms of the dynamical matrix M436  F ε

0

 = M

 Rε

Rε→r

 (5)

hence M is endowed with a block structure as follows437

M =

 Mε,ε Mε,r

(Mε,r)T Mr,r


Forces as well as responses can be calculated solely from the imposed displacement by introducing a438

matrix Q439

Q =

1ε −Mε,r

0 −Mr,r


such that440  F ε

Rr

 = Q−1M

 Rε→r

0

 (6)

Binding at ε costs an elastic energy Eε441

Eε =
1

2
F ε ·Rε (7)

and the cooperative fitness is specified by a combination of such elastic energies442

F = EAc − (EAc,Al − EAl) (8)

where EAc, EAc,Al and EAl are given by Eq. 7 with ε = (Ac), ε = (Ac,Al) and ε = (Al) respectively.443

Maximal cooperativity corresponds to making binding of a substrate at the active site energetically444

favored when already a ligand is bound to the allosteric site, as this reduces its binding energy from445

EAc to (EAc,Al − EAl). One can express the energy of joint binding at the allosteric and active site446

EAc,Al = 1
2F
Ac,Al ·RAc,Al as447

1

2
FAc,Al ·RAc,Al =

1

2
FAl ·RAl +

1

2
FAc|Al · (R

Ac −RAl→Ac) (9)

i.e. after binding at the allosteric site with an energy cost 1
2 F
Al ·RAl, the elastic energy of binding at448

the active site is determined by (i) the force there when a ligand is already bound at the allosteric site449

(FAc|Al with subindex |Al); (ii) the displacement imposed at the active site RAc to which we subtract the450
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response already caused by ligand binding at the allosteric site RAl→Ac. Eq. 9 allows us to rewrite Eq.451

8 as452

F =
1

2
FAc|Al ·R

Al→Ac +
1

2
δFAl→Ac ·RAc (10)

where one has FAc − FAc|Al = δFAl→Ac. If we express δFAl→Ac and RAl→Ac in terms of the imposed453

displacements by using Eq. 6 and if we assume weak elastic coupling between allosteric and active site,454

we find that each term in Eq. 10 scales in the same way as455

1

2
FAc|Al ·R

Al→Ac ≈ 1

2
δFAl→Ac ·RAc ≈ 1

2
(RAc)T · (MAc,b)(Mb,b)−1(Mb,Al) ·RAl (11)

Hence, by using that 1
2 δF

Al→Ac ·RAc ≈ 1
2 F
Ac
|Al ·R

Al→Ac, we obtain from Eq. 10456

F ≈ FAc ·RAl→Ac (12)

since FAc|Al can be approximated by FAc in the weak coupling limit.457

If we denote by FAci and RAl→Aci forces and displacements after a mutation at link i, the cost of458

one mutation can be expressed approximatively (see Fig. S3B) as ∆Fi ≈ ∆(FAc · RAl→Ac)i, where459

∆(FAc ·RAl→Ac)i = FAc ·RAl→Ac − FAci ·RAl→Aci . This can be further rewritten as460

∆(FAc ·RAl→Ac)i ≈ −
(
FAc · δRAl→Aci + δFAci ·RAl→Ac + δFAci · δRAl→Aci

)
(13)

having defined changes in force as δFAci = FAci − FAc in analogy to changes in displacement δRAl→Aci461

introduced in the main text. We find numerically that the cost of single mutations, when it is not too462

small, is dominated by the changes in displacement at the active site463

∆Fi ≈ −FAc · δRAl→Aci (14)

as shown in Fig. S3C. As a consequence, epistasis between mutations at i and j with significant magnitude464

can be written ∆∆Fij ≈ −FAc ·
(
δRAl→Acij − δRAl→Aci − δRAl→Acj

)
, as presented in the main text.465

Displacement vectors and their changes upon high-cost mutations at the active site are schematically466

depicted in Fig. S3A.467
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Figure S3: Mechanics of mutations. A: The geometry of mutation costs is illustrated in the zoom on

the active site region (note that for simplicity of visualization we consider only one of the n0 = 4 nodes).

Thick, dark red lines highlight links whose disruption would be lethal for the allosteric fitness. These few

links, crucial to the long-distance propagation of the allosteric response, are located around active and

allosteric site and exhibit maximal epistasis along with maximal single mutation costs (i.e. they populate

the saturation region of Fig. 2A in the main text). After a lethal mutation consisting in removing a

spring at link i, the displacement at the active site RAl→Aci is significantly reduced with respect to the

original optimal displacement RAl→Ac and their difference is given by δRAl→Aci (dashed arrow). When a

second lethal mutation at j occurs, we denote by θ the angle between δRAl→Aci and δRAl→Acj ; for lethal

mutations cos(θ) ≈ 1 (see Fig. 2B in the main text), i.e. they all tend to have a homogeneous direction

of action which is precisely the one opposite to the displacement at the active site. B: Numerical test

of the approximation ∆Fi ≈ ∆(FAc ·RAl→Ac)i and of ∆(FAc ·RAl→Ac)i ≈ −FAc · δRAl→Aci (C). The

latter is valid only for medium-high mutation costs.
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2 Prediction of epistasis468

The scaling of epistasis (Eq. 2 in the main text) suggests a measure simply based on the inferred single469

mutation costs, i.e. |∆∆Fij | ∝ min(∆Ei,∆Ej). We have verified that this improves extremely the470

prediction of long-range epistasis in our model for allostery, both for single configurations and for the471

average epistatic pattern, as shown in respectively in Fig. S4B and C. The measure of epistasis via top472

|Jij | requires the inferred model to be performant at capturing local information via local parameters;473

on the other hand, the estimation of single mutation costs incorporates all the local parameters inferred474

from the statistics. These results support the view that more functional information (related to non-local475

modes) is embedded in weaker couplings which would be excluded by applying the contact-prediction476

criterion of looking at the largest ones (usually as many as the system size): for example recently [2]477

has found that the prediction of functional cooperativity between distant sites could be improved by478

considering several “non-contacting” DCA couplings.479

2.1 Simple model illustrating the failure of DCA480

To explain the discrepancy between short-range and long-range DCA-predictions of epistasis, we resort481

to the simple model of Fig. 6 (main text). We assign to all the 49 functional configurations the same482

fitness F , all the other 28 − 49 configurations would not belong to the sample of optimal configurations483

and are taken with zero fitness, thus ∆F = 0 if a mutation (single or double) results in a configuration484

still belonging to the optimal sample and ∆F = F otherwise. We can estimate average mutation costs by485

counting how frequently mutations would lead to a configuration outside of the optimal sample, yielding486

∆∆F12 = ∆F12 −∆F1 −∆F2 = 21/49F − 21/49F − 21/49F = −21/49F (15)
487

∆∆F15 = 33/49F − 21/49F − 21/49F = −9/49F (16)
488

|∆∆F12|
|∆∆F15|

= 21/9 ≈ 2.3 (17)

Next, by a simple likelihood maximization we infer the set of Jij and hi compatible with 〈σi〉 and 〈σiσj〉,489

single-site and pairwise frequencies of the optimal sample. We estimate J12 = 1.18 and J15 = 0.40, thus490

the prediction by DCA491

|∆∆E12|
|∆∆E15|

=
|J12(2〈σ1〉+ 2〈σ2〉 − 4〈σ1σ2〉 − 1)|
|J15(2〈σ1〉+ 2〈σ5〉 − 4〈σ1σ5〉 − 1)|

=
|J12(−21/49)|
|J15(−9/49)|

≈ 6.9 (18)

i.e. the DCA prediction is significantly biased towards short-range epistasis. Due to symmetry of our492

model, epistasis and the DCA-prediction for any combination of units in the two subparts is the same493

as for units 1 and 5; similarly, the result for 2 units within the same group is given by the values for494

units 1 and 2. For the remaining combinations of units, i.e. the ones belonging the same subpart but to495

different groups (e.g. i = 1 and j = 3) we obtain that epistasis is weaker compared to units within the496

same group497

|∆∆F12|
|∆∆F13|

=
| − 21/49F|
| − 7/49F|

= 3 (19)
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Figure S4: Prediction of epistasis by the DCA-inferred model. A: Same plot as in Fig. 5B (main

text) where we show the fraction of top rank epistasis |∆∆Fij | predicted by top 1000 |Jij |, averaged

over 100 configurations. In comparison to Fig. 5B, here we consider a higher number of the largest in

magnitude couplings to predict epistasis: the mean predicted fraction increases both for short range

and long range epistasis, yet a clear difference between their values remains. B: Same plot as Fig. 5B

(main text) where we added curves for the prediction by min(∆Ei,∆Ej) - the minimum between average

single mutation costs at i and j - as implied by scaling 2 in the main text. As in Fig. 5B, we rank

separately long-range (> 7) and short-range (< 7) pairs of links i and j in terms of |∆∆Fij | and we plot

the fraction of these pairs - averaged over 100 configurations randomly chosen - falling either into the

top 400 |Jij | (empty symbols) or into the top 400 values of min(∆Ei,∆Ej) (filled symbols). This second

measure improves only slightly the estimation of strong short-range epistasis but it does so dramatically

for long-range one. C: Same plot as B where we show the fraction of the average epistasis 〈∆∆Fij〉

(estimated from 1.5×103 randomly chosen configurations of the MSA) that one would predict either via

|Jij | or min(∆Ei,∆Ej). The prediction at short distance is rather accurate, with the predicted fraction

reaching 1 for the maximally epistatic pairs; at long distance, signal on long-range epistasis captured by

|Jij | is almost absent while the prediction by min(∆Ei,∆Ej) stands out for its precision.
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Since each subpart can be of different type (OR gate), units from different groups (i.e. types) are less498

tightly constrained by function. The DCA-prediction does not underestimate epistasis as for units of499

different subparts (i.e. at long distance) with500

|∆∆E12|
|∆∆E13|

=
|J12(−21/49)|
|J13(−7/49)|

≈ 3.5 (20)

where J13 = −1.01. From Eq. 17, Eq. 18, Eq. 19 and Eq. 20 it is straightforward to calculate501

|∆∆E13|/|∆∆E12| × |∆∆F12|/|∆∆F13| ≈ 0.86 and |∆∆E15|/|∆∆E12| × |∆∆F12|/|∆∆F15| ≈ 0.33.502

2.1.1 Feedforward neural network503

To understand which machine learning tools could improve the prediction of epistasis in the simple504

model, we have built a feedforward neural network performing least squares regression of sequence data505

based on their fitness (see Fig. S5). For data in the training set, we provide the network with both506

the input sequence and the target answer, i.e. a label 1 (standing for fitness F) or 0. We vary the size507

of the training set from 50% to 80% of the 28 = 256 total sequences and we keep 20% of the sample508

for validation of the accuracy of prediction. We learn the weights, i.e. the connections between layers,509

which minimize the mean squared error between the output of the network and the target answers by510

stochastic gradient descent from a random orthogonal initialization; only relatively few trainings (about511

1 in 10) find a high quality solution. We obtain that the mean squared error between true and estimated512

fitness, averaged over 100 of such high-quality trainings, ranges between ∼ 2 × 10−6 for a training set513

with 50% of the sample to ∼ 2 × 10−7 with 80%. Therefore, when the network is presented with an514

optimal sequence mutated at some position, the network can predict the value of its fitness with extreme515

accuracy in such a way as to predict ∆F ∼ 0 when it still belongs to the optimal sample or ∆F ∼ 1 if516

it does not. This ensures that also epistasis would be accurately predicted at any range.517

References518

1. Cocco S, Monasson R. Adaptive cluster expansion for the inverse Ising problem: convergence,519

algorithm and tests. J Stat Phys. 2012;147:252–314.520

2. Salinas VH, Ranganathan R. Coevolution-based inference of amino acid interactions underlying521

protein function. eLife. 2018;7:e34300.522

9

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2019. ; https://doi.org/10.1101/519116doi: bioRxiv preprint 

https://doi.org/10.1101/519116
http://creativecommons.org/licenses/by-nc-nd/4.0/


1

1

0

0

1

0

1

1

F

Hidden layersInput Output

Figure S5: Graphical representation of the feedforward neural network for regression in the

simple model. The size of the input layer is 8, as the size of the system. We add two hidden layers of

4 and 2 units and the final one-unit output is 1 if the input sequence has fitness F and 0 otherwise. The

activation function from one layer to the successive one is a sigmoid and the weights are dense (all units

in one layer are connected to all units of the successive one).
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