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Abstract 
 
The microRNA Let-7 controls the expression of proteins that belong to two distinct 

gene regulatory networks, namely a cyclin-dependent kinases (Cdks) network driving 

the cell cycle and a cell transformation network which can undergo an epigenetic 

switch between a non-transformed and a malignant transformed cell state.  

Using mathematical modeling and transcriptomic data analysis, we here investigate 

how Let-7 controls the cdk-dependent cell cycle network, and how it couples the 

latter with the transformation network. We also determine whether the two networks 

can be combined into a larger entity that impacts on cancer progression. 

Our analysis shows that the switch from a quiescent to a cycling state depends on 

the relative levels of Let-7 and several cell cycle activators. Numerical simulations 

further indicate that the Let-7-coupled cell cycle and transformation networks control 

each other, and our model identifies key players for this mutual control. 

Transcriptomic data analysis from the The Cancer Genome Atlas (TCGA) suggest 

that the two networks are activated in cancer, in particular in gastrointestinal cancers, 

and that the activation levels vary significantly among patients affected with a same 

cancer type. Our mathematical model, when applied to a heterogeneous cell 

population, suggests that heterogeneity among tumors results from stochastic 

switches between a non-transformed cell state with low proliferative capability and a 

transformed cell state with high proliferative property. The model further predicts that 

Let-7 may reduce tumor heterogeneity by decreasing the occurrence of stochastic 

switches towards a transformed, proliferative cell state. 

In conclusion, we identified the key components responsible for the qualitative 

dynamics of two GRNs interconnected by Let-7. The two GRNs are heterogeneously 

involved in several cancers, thereby stressing the need to consider patient’s specific 

GRN characteristics to optimize therapeutic strategies. 
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Introduction 
 

Let-7 microRNAs control two distinct gene regulatory networks (GRNs) that 

regulate cell cycling and malignant transformation of breast cancer cells (Johnson et 

al., 2007;Iliopoulos et al., 2009). A cyclin-dependent kinases (Cdk) network controls 

the correct progression of the cell cycle along the G1, S, G2 and M phases (Morgan, 

2007). Growth factors (GF) and E2F stimulate, while Let-7 down-regulates the 

expression of several components of this cdk-dependent cell cycle network (Bueno 

and Malumbres, 2011). Mathematical models focusing on post-translational 

regulations of cyclin/Cdk complexes were proposed to account for the dynamics of 

the Cdk network in mammals (Novak and Tyson, 2004;Gerard and Goldbeter, 2009). 

However, to our knowledge, no model has been proposed to study the impact of 

miRNAs on this network. Let-7 is also a key component of a GRN which promotes 

cell transformation in response to an inflammatory stimulus (Iliopoulos et al., 2009). 

This GRN is characterized by a positive feedback loop (PFL), where a transient 

inflammatory stimulus is sufficient to induce the cells to undergo a PFL-dependent 

epigenetic switch from a non-transformed state toward a permanently malignant 

transformed state. We previously proposed a model describing the dynamics of this 

transformation GRN (Gerard et al., 2014). Our model suggested that a transient 

inflammatory signal activates an irreversible bistable switch in the expression of the 

GRN components, eventually leading to a stable epigenetic switch allowing cells to 

display increased motility and invasiveness. In this GRN, Let-7 prevents cell 

transformation by inhibiting the translation of Interleukin-6 (IL6) and Ras, two drivers 

of the inflammatory feedback loop.  

Let-7 being a component common to the cell cycle and transformation 

networks we now raise the following questions: how does Let-7 control the cdk-

dependent cell cycle network; does Let-7 play a coupling role between the cell cycle 

GRN and the transformation GRN, and can the two GRNs be combined into a larger 

network that impacts on cancer progression? We address these issues using 

experiment-based mathematical modeling of the GRNs and by analyzing 

transcriptomic data from The Cancer Genome Atlas (TCGA). Our approach identifies 

the dynamics of the two GRNs and indicates that their activation is cancer-specific 

and heterogeneous from patient to patient, stressing the need to consider patient’s 

specific characteristics. 
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Results 
 
Structure of the cell cycling and transformation networks. The structure of the 

Cdk network gives rise to a transient and sequential activation of the various 

cyclin/Cdk complexes, allowing for a correct progression through the different cell 

cycle phases (Fig. 1A and (Morgan, 2007;Gerard and Goldbeter, 2009)). The activity 

of cyclin D/Cdk4-6 ensures the transition G0/G1 and the progression in G1. Cyclin 

E/Cdk2 promotes the G1/S transition, while cyclin A/Cdk2 elicits progression in S and 

G2. Finally, cyclin B/Cdk1 brings about G2/M transition and the entry of cell into 

mitosis (Fig. 1A). In the model, Let-7 represses each cyclin/Cdk complex.  

Let-7 is also at the core of a positive feedback loop (PFL) in a malignant 

transformation network (Iliopoulos et al., 2009). Indeed, a transient inflammatory 

signal mediated by the oncoprotein Src stably activates NF-kB, which promotes 

Lin28, IL6 and STAT3 activation (Iliopoulos et al., 2010;Fofaria and Srivastava, 

2015). 

 Thus, we propose that Let-7 couples gene regulatory networks linking cell 

proliferation to malignant transformation. 

 
Relative levels of Let-7 and growth factors control cell cycling. To analyze the 

impact of Let-7 on the Cdk network dynamics, we built a qualitative mathematical 

model of cell cycle regulation by Let-7 (see model’s structure in Figs. 1A and in 

Supplementary Fig. 1 for a detailed description highlighting all regulatory interactions 

included in the model). The model is an extension of an earlier model of the Cdk 

network that accounted for the dynamics of the mammalian cell cycle (Gerard and 

Goldbeter, 2011). It now explicitly considers the mRNA forms of each cyclin, enabling 

us to incorporate Let-7-mediated post-transcriptional regulations of cyclin synthesis. 

Let-7 represses the synthesis of multiple activators of the cell cycle, such as cyclins 

D and A and Cdk2/4/6 (Bueno and Malumbres, 2011). For sake of simplicity we 

consider that Let-7 directly represses the translation of cyclins D, E, A and B, by 

forming an inactive complex with their respective mRNA. In addition, GF promote the 

synthesis of cyclin D, eliciting the G0/G1 transition and the entry of the cell into the 

cell cycle, while E2F activates synthesis of cyclins E and A. 
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The model of the cell cycle network is composed of a set of kinetic equations 

describing the temporal evolution of the levels of each component of the network. It 

includes the mRNAs of cyclin D, E, A, and B; the active form of E2F; the various 

cyclin/Cdk complexes: cyclin D/Cdk4-6, cyclin E/Cdk2, cyclin A/Cdk2 and cyclin 

B/Cdk1; and the active form of the Anaphase-Promoting Complex, APC, which 

triggers degradation of cyclins A and B at the end of mitosis (Supplementary Fig. 1). 

Variables are defined in Supplementary Table 1, the kinetic equations are in 

Supplementary Table 2, and the parameters are defined in Supplementary Table 3. 

As a consequence of its regulatory structure the network self-organizes with 

sustained oscillations in the activity of the various cyclin/Cdk complexes, which 

correspond to successive rounds of cell cycling (Fig. 1B-E). In the absence of both 

Let-7 and GF, cells proliferate and sustained oscillations of the various cyclin/Cdk 

complexes develop (Fig. 1B). This situation bears similarity with transformed or 

cancer cells, which are often characterized by downregulation of Let-7 and signal-

independent growth (Sotiropoulou et al., 2009;Hanahan and Weinberg, 2011). 

Starting from that condition, an increase in GF maintains cell proliferation (Fig. 1C), 

while an increase in Let-7 suppresses cell proliferation (Johnson et al., 2007). The 

latter case is characterized by a stable steady state, with low levels of each 

cyclin/Cdk (Fig. 1D). Finally, starting from that steady state, an increase in GF 

permits to recover cell proliferation (Fig. 1E).  

The respective impact of Let-7 and GFs can be visualized in a two-parameter 

plane where the dynamical behavior of the cell cycle network is represented as a 

function of the synthesis rate of Let-7, VSLET7, and the level of growth factors, GF 

(Fig. 2A). For large values of VSLET7 (high levels of Let-7), the Cdk network tends to a 

stable steady state corresponding to cell cycle arrest regardless of GF levels. This 

corroborates experimental results showing that Let-7 represses cell proliferation 

(Johnson et al., 2007;Zhu et al., 2015). In contrast, for small values of VSLET7 (low 

levels of Let-7), the cell cycle network is characterized by sustained oscillations. The 

temporal evolution of cyclin E/Cdk2 and cyclin B/Cdk1 corresponding to conditions A 

to F in Fig. 2A are represented in Supplementary Fig. 2A-F, respectively. The 

sustained oscillations in cyclin E/Cdk2 with oscillations in cyclin B/Cdk1 of very small 

amplitude might correspond to endoreplication (Edgar et al., 2014) where multiple 

rounds of DNA replication occur without entry into mitosis (see temporal evolution in 

Supplementary Fig. 2D, which corresponds to condition D in Fig. 2A). Previous 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 13, 2019. ; https://doi.org/10.1101/519165doi: bioRxiv preprint 

https://doi.org/10.1101/519165


	 6	

theoretical studies already showed that the regulatory structure of the cell cycle 

network in mammals is capable of generating endocycles (Gerard and Goldbeter, 

2009). 

The dynamics of the cell cycle network are further illustrated for different levels 

of Let-7 in a two-parameter plane defined by the synthesis rate of the cyclin/Cdk 

complexes, VSMCYC, and the level of GF, (Fig. 2B-D). By increasing Let-7, the domain 

of sustained oscillations, corresponding to cell proliferation, is reduced and limited to 

higher levels of cyclin/Cdk complexes (compare Fig. 2B, C, D where VSLET7 is equal 

to 0, 0.25 and 3, respectively). From a stable steady state, corresponding to 

quiescence (condition 1 in Fig. 2C), an increase in GF or an increase in the 

cyclin/Cdk levels may trigger the switch to sustained oscillations (see temporal 

evolution of cyclin B/Cdk1 in Fig. 2E and 2F).  

We concluded that progression or arrest of the cell cycle is controlled by the 

relative levels of Let-7 and GF, or of Let-7 and the cyclin/Cdk complexes. Thus, when 

designing efficient anti-cancer strategies, the model stresses the importance to 

consider the relative, rather than the absolute, expression levels of network 

components displaying opposing effects on cell cycling. 

 

Let-7 couples the cell cycling and transformation networks. Let-7 belongs both 

to the cdk-dependent cell cycle GRN and the malignant transformation network (Fig. 

1A). Therefore, we here determine the qualitative role of Let-7 as a coupling factor 

between the two GRNs, by analyzing the mutual impact of the GRNs on their 

respective dynamics. 

Starting from a non-transformed, quiescent, cell state, defined by high Let-7 

and low cyclin B/Cdk1 levels, a transient Src signal induced by inflammation triggers 

a stable down-regulation of Let-7, eliciting the switch of the cell cycle network from a 

stable steady state to sustained oscillations (Fig. 3A). Thus, transient inflammatory 

signals can promote persistent cell proliferation. On the opposite, as observed in the 

experiments (Iliopoulos et al., 2009), starting from a transformed and proliferative cell 

state, transient inhibition of Lin28, NF-kB or transient overexpression of PTEN  stably 

impedes cell cycle progression (Fig. 3B-D).  

We concluded that transient modifications in the expression of the 

components of the inflammation-dependent bistable transformation network can 
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impact the long-term behavior of the cell cycling network when Let-7 couples the two 

GRNs.  
To determine if the cell cycle network can modulate the dynamics of the 

transformation network, we simulated overexpression of all cyclins by increasing their 

synthesis rates, VSMCYC. Cyclin overexpression promotes uncontrolled cell 

proliferation of cancer cells (Gillett et al., 1994;Pok et al., 2013). Starting from a non-

transformed cell state (high Let-7 levels), the model shows a stable down-regulation 

of Let-7 when VSMCYC increases (Fig. 4A where VSMCYC increases at t > 100h). The 

corresponding temporal evolution of Let-7 and cyclin B/Cdk1 is represented for 

different synthesis rates of cyclins (at t > 100h, VSMCYC changes from 1.5 to 2.5 in Fig. 

4B and from 1.5 to 12 in Fig. 4C). For weak overexpression of cyclins, the non-

transformed quiescent cell state is maintained, while for stronger cyclin 

overexpression both GRNs are activated, i.e. downregulation of Let-7 and sustained 

oscillations of the cell cycle network (Fig. 4B-C).  
Temporal evolution of Let-7 and cyclin B/Cdk1 indicates that the switch to cell 

proliferation triggered by cyclin overexpression is irreversible because down-

regulation of cyclins to their initial levels will not restore cell cycle arrest 

(Supplementary Fig. 3A, condition 1, 1200h < t < 1500h). This is the consequence of 

the irreversible bistable switch at the core of the transformation GRN (Gerard et al., 

2014). The model predicts that a stronger decrease in cyclin synthesis can eventually 

stop cell proliferation, characterized by low, stable steady state levels of cyclin 

B/Cdk1 (Supplementary Fig. 3A, condition 3, t > 1500h). The corresponding temporal 

evolution of the expression levels of Lin28 and STAT3, two critical activators of the 

transformation GRN, is shown in Supplementary Fig. 3B. The model indicates that 

these cells (condition 3 for t > 1500h) might be invasive cells, defined by high levels 

of STAT3 and Lin28 and low Let-7 levels, which are in a quiescent state (low levels 

of cyclin/Cdk).  

Moreover, the model predicts that a transient down-regulation of Lin28 can 

impede both cell proliferation and the transformation network (Supplementary Fig. 

3C, condition 3, t > 1500h), where low, stable, levels of cyclin B/Cdk1 are present 

with high Let-7 levels. The corresponding temporal evolution of Lin28 and STAT3 

expression levels is represented in Supplementary Fig. 3D. Here also, the modeling 

correlated well with the experimental observations showing downregulation of both 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 13, 2019. ; https://doi.org/10.1101/519165doi: bioRxiv preprint 

https://doi.org/10.1101/519165


	 8	

cell proliferation and cell transformation after transient inhibition of Lin28 (Iliopoulos 

et al., 2009).  

 
Cancer type-specific activation of the proliferation and transformation 
networks. The coupling of the two networks raised the question of their potential 

combined involvement in cancer. To address this issue, we first defined a Cell 

Proliferation Index (CPI) and a Non-Transformed State Index (NTSI), where: 

 

𝐶𝑃𝐼 = max 𝑀𝑑 +max 𝑀𝑒 +max 𝑀𝑎 +max(𝑀𝑏) 

and 

NTSI = PTEN + Let7
IL6+ NFKB+ STAT3+miR21+ Lin28+ Ras

 

 

CPI is the sum of the maximal RNA levels of all cyclin/Cdk complexes, which is, as a 

first approximation, an indication of cell proliferation; NTSI is the ratio between the 

RNA expression levels of the inhibitors, i.e. Let-7 and PTEN, divided by the 

expression levels of the activators of the epigenetic transformation switch, i.e. IL6, 

NF-kB, STAT3, miR21, Lin28 and Ras. Such ratio characterizes the degree of cell 

transformation where a high value defines a non-transformed cell while a low value 

corresponds to transformed cells. 

Since the components of the cell cycling and transformation networks are 

expressed in several tissues we verified if the networks are activated, i.e. if their 

components are consistently misexpressed in different types of cancer. We first 

calculated CPI and NSTI based on the RNA expression of the network components 

(Supplementary Table 5) from the non tumor (NT) and tumor samples (T) of TCGA 

cohorts of cholangiocarcinoma (CHOL: NT=9, T=36), stomach and esophageal 

carcinoma (STES: NT=46, T=600), hepatocellular carcinoma (LIHC: NT=50, T=369), 

stomach adenocarcinoma (STAD: NT=35, T=415), lung squamous cell carcinoma 

(LUSC: NT=51, T=501), bladder urothelial carcinoma (BLCA: NT=19, T=408), kidney 

renal clear cell carcinoma (KIRC: NT=72, T=534), breast carcinoma (BRCA: NT=112, 

T=1100), thyroid carcinoma (THCA: NT=57, T=510), kidney renal papillary cell 

carcinoma (KIRP: NT=32 , T=290), kidney chromophobe (KICH: NT=25, T=66), and 

prostate adenocarcinoma (PRAD: NT=52, T=498) (Fig. 5A, B). Significant and 

consistently high CPI and low NSTI values, as compared to non-tumor conditions, 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 13, 2019. ; https://doi.org/10.1101/519165doi: bioRxiv preprint 

https://doi.org/10.1101/519165


	 9	

were obtained in several cancer types, with largest variations in gastrointestinal 

cancers, i.e cholangiocarcinoma, hepatocellular and stomach and esophageal 

carcinoma. Interestingly, the proliferation and transformation networks do not seem 

to be activated in kidney and prostate adenocarcinoma. 

We concluded that concomitant activation of the cell proliferation and 

transformation networks is cancer type-specific and predominantly occurs in 

gastrointestinal cancers. 

 
Patient-to-patient heterogeneity in the activation of the proliferation and 
transformation networks. Principal component analysis (PCA) based on the 

expression of all network components was performed in three cohorts from TCGA: 

(1) the cholangiocarcinoma cohort, which displays the highest CPI levels; (2) the 

hepatocellular carcinoma cohort, which shows high CPI and low NSTI values, and (3) 

the prostate adenocarcinoma cohort characterized by low CPI and high NSTI. This 

analysis revealed that non-tumor (blue dots) and tumor samples (red dots) cluster 

separately in cholangiocarcinoma (Fig. 6A), suggesting that the combined expression 

of the components of both networks can be used as a proxy to determine the 

tumorigenic state of a sample in this cohort.  

A larger level of heterogeneity was detected within the hepatocellular 

carcinoma and prostate adenocarcinoma cohorts (Fig. 6B-C). Moreover, some 

tumors cluster together with normal samples indicating that the networks are not 

activated in all samples. Also, despite that the mean CPI and NSTI values of prostate 

adenocarcinoma do not significantly differ from those in corresponding non-tumor 

samples (Fig. 5A, B), some individual tumors are characterized by high activation of 

the networks (Fig. 6C). 

We concluded that the network activation varies from patient to patient and 

depends on tumor-type. 

 
Dynamics of cell proliferation and cell transformation of a heterogeneous cell 
population. To determine the source of heterogeneity observed in patient samples, 

we incorporated a stochastic source of heterogeneity in a cell population model by 

applying, for each cell, uniform random variations around the basal value of each 

kinetic parameter. We plotted the simulated levels of CPI as a function of NTSI in a 
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heterogeneous cell population of quiescent, non-transformed cells (Fig. 7A, C, E; 

orange dots correspond to CPI and NTSI in the absence of random variations on 

parameter’s values), and in a population of transformed, proliferative cells (Fig. 7B, 

D, F; green dots correspond to CPI and NTSI in the absence of random variations). 

10%, 25% and 50% of uniform random variations on each parameter were 

considered.  

Simulations indicate that the non-transformed, quiescent, cell state is less 

robust to random fluctuations than the transformed, proliferative, state (compare 

Figs. 7C with 7D, and 7E with 7F). Indeed, starting in a non-transformed, quiescent, 

cell state, a large proportion of cells switch to a transformed, proliferative, state in the 

presence of random fluctuations in gene expression (Fig. 7C and 7E). However, from 

a transformed, proliferative, cell state, only a small proportion of cells switch to a 

quiescent and non-transformed state (Fig. 7F). 

Thus, random fluctuations in gene expression could trigger abrupt switches in 

the dynamics of the cell cycling and transformation networks. “Non-tumor” state 

(quiescent, non-transformed cells) is more sensitive to random fluctuations in gene 

expression than “tumor” state (transformed, proliferative state). 

We next assessed if the levels of key network components, i.e. Let-7, PTEN, 

or Ras, may affect the robustness of these cell states. In a heterogeneous population 

of non-transformed, quiescent, cells with 25% of random parameter variations 

(Supplementary Figs. 4A-F), an increase in Let-7 strengthens the robustness of the 

non-transformed, quiescent, cell state towards random fluctuations in gene 

expression and prevents random switches to a transformed, proliferative, cell state 

(compare basal conditions in Supplementary Fig. 4A with Supplementary Figs. 4B, C, 

D where VSLET7 changes from 10 to 12, 20, and 50, respectively). Similarly, an 

increase in PTEN or a decrease in Ras also improved the robustness of the non-

transformed, quiescent, cell state (compare Supplementary Figs. 4A with 4E and 4F).  

 Along the same lines, tumor suppressors and oncogenes can also impact on 

the robustness of the transformed, proliferative, cell state (Supplementary Fig. 4G-L). 

Some cells revert to a non-transformed, quiescent, state following a large increase in 

Let-7 (compare Supplementary Fig. 4G with 4H, I, J). However, an increase in PTEN 

or a decrease in Ras (similar to the conditions in Supplementary Figs. 4E and 4F) are 

unable to revert cells to a non-transformed, quiescent, state (compare 

Supplementary Fig. 4G with Figs. 4K and 4L).  
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Thus, an increase in tumor suppressors or a decrease in oncogenes reduces 

the probability of stochastic switches to a transformed, proliferative, cell state. 

However, if cells are already in a proliferative, transformed state, similar changes in 

tumor suppressors or oncogenes do not permit to revert back to a more “healthy” cell 

phenotype, which highlights an irreversible process in cancer progression. 

Finally, since cholangiocarcinomas are characterized by strong network 

activation (Figs. 5 and 6A), we analyzed if the cell population model can qualitatively 

reproduce the networks' switch from normal to tumor condition. Plotting cyclin B1 

mRNA as a function of cyclin E1 or Let-7c RNA (Fig. 8A-D), and plotting Kras mRNA 

(representative as Ras) as a function of Let-7c (Fig. 8E, F) revealed expression 

profiles that are qualitatively very similar to those predicted by the mathematical 

model of a heterogeneous cell population (Fig. 8B, D, E). We concluded that the cell 

population model can be used to assess the qualitative dynamics of the switch of 

both networks in cholangiocarcinomas. 

 
Discussion 
Tumorigenesis rests on many biological features which include sustained proliferative 

signaling, evading growth suppressors, resisting cell death, promoting angiogenesis, 

ensuring replicative immortality and eliciting invasion and metastasis (Hanahan and 

Weinberg, 2011). Here, we built a mathematical model to analyze the dynamical 

properties of a Let-7-dependent mechanism coupling cell proliferation and an 

epigenetic switch driving malignant transformation.  

Our mathematical model illustrates qualitatively how Cdk-dependent and 

transformation networks may interact, and proposes a mechanism, acting through 

Let-7, which suggests that cyclin overexpression can promote cell proliferation, while 

inducing and accelerating malignant transformation. Indeed, overexpression of 

cyclins progressively sponges the free form of Let-7. The latter will no longer be 

available to repress the components of the transformation network, leading to the 

activation of the epigenetic switch. This effect is known as competing-endogenous, 

ceRNA, effect.  CeRNAs regulates other RNA transcripts by competing for shared 

miRNA and were involved in tumorigenesis (Salmena et al., 2011;Tay et al., 

2014;Chiu et al., 2017). Here Let-7 is the shared miRNA between both networks. Let-

7 was shown to be involved in different ceRNA mechanisms. Indeed, Let-7e can 
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modulate the inflammatory response in vascular endothelial cells through a ceRNA 

effect (Lin et al., 2017). Imprinted H19 lncRNA, which plays important roles in 

development, cancer and metabolism, modulates Let-7 availability by acting as a 

molecular sponge and causing precocious muscle differentiation (Kallen et al., 2013). 

Moreover, amplification of MYCN mRNA levels in neuroblastoma can sponge Let-7 

thereby rendering LIN28B dispensable for cancer progression (Powers et al., 2016). 

Note however that experimental and theoretical studies indicate that a ceRNA effect 

between multiple RNA transcripts and the shared miRNA is effective only in the 

presence of adequate expression levels of the transcripts and the miRNA (Gerard 

and Novak, 2013;Denzler et al., 2014;Tay et al., 2014). 

Our mathematical model further shows that random variations in gene 

expression from cell to cell can create large fluctuations in the global network 

dynamics leading to stochastic switches of some cells to a transformed and 

proliferative state. These stochastic switches in the GRN dynamics could be a source 

of heterogeneity in cancer cell populations (Tang, 2012;Patel et al., 2014). Stochastic 

switches in gene networks were identified in hematopoietic tumor stem cells (Dingli et 

al., 2007), in the appearance of mammary tumor in mice (Bouchard et al., 1989), and 

in the differentiation and maturation of T lymphocytes (Davis et al., 1993). These 

switches may also give rise to an equilibrium in population of cancer cells (Gupta et 

al., 2011). Transcriptomic analysis of TCGA data suggests that the coupling between 

the cell cycle and a malignant transformation networks, and the activation of these 

networks in tumors are cancer type-specific, with predominant activation in 

gastrointestinal cancers. Our PCA analysis reveals inter-patient heterogeneity in 

network activation in tumors, which stresses the need to consider patient-specific 

characteristics when optimizing therapeutic strategies by reversing network dynamics 

of activated GRNs (Biankin et al., 2015). 

In conclusion, by means of transcriptomic data analysis and modeling-based 

investigations, we identified a Let-7-dependent connection between two major GRNs 

involved in tumorigenesis, and whose activation is cancer- and patient-specific. We 

anticipate that a better characterization of the dynamics resulting from the 

combination of other GRNs specific for each patient will help providing a global GRN 

activation map for personalizing and optimizing cancer treatment. 
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Figure legends 
 
Figure 1. Let-7 and GF control cell cycle progression. (A) Scheme of both GRNs 

coupled by Let-7. (B-E) Temporal evolution of Let-7, cyclin E/Cdk2, cyclin A/Cdk2 

and cyclin B/Cdk1 are shown in the absence (VSLET7 = 0 in B, C) or in the presence of 

Let-7 (VSLET7 = 0.5 in D, E), and in the absence (GF = 0 in B, D) or in the presence of 

GF (GF = 10 in C, E). Parameter values are as in Supplementary Table 3. A detailed 

scheme of both GRNs that includes all regulations considered in the model is in 

Supplementary Fig. 1. 

 

Figure 2. A balance between Let-7 and cell cycle activators determines the 
quiescence and proliferative state. (A) The Cdk network dynamics, i.e. sustained 

oscillations versus stable steady states, is represented in a two-parameter plane 

defined by the synthesis rate of Let-7, VSLET7, and the levels of GF. The Cdk network 

dynamics are indicated in a two-parameter plot as a function of the synthesis rate of 

the different cyclins, VSMCYC, and the levels of GF (B) in the absence of Let-7, VSLET7 

= 0, (C) in the presence of intermediate, VSLET7 = 0.25, or (D) high Let-7 levels, VSLET7 

= 3. (E, F) Temporal evolution of cyclin B/Cdk1 in the presence of GF overexpression 

(panel E where GF changes from 0.2 to 8, at t = 100h, which corresponds to the 

switch from conditions 1 to 2 in panel C), or in the presence of cyclin overexpression 

(panel F where VSMCYC changes from 1 to 4, at t = 100h, which corresponds to the 

switch from 1 to 3 in panel C). Temporal evolution of cyclin E/Cdk2 and cyclin B/Cdk1 

corresponding to conditions A to F in panel A are shown in Supplementary Fig. 2. 

Other parameter values are as in Supplementary Table 3. 

 

Figure 3. Let-7 is a central component between the proliferation and a 
malignant transformation network. (A) Effect of the inflammatory circuit on the Cdk 

network dynamics. (A-D) Starting from a non-transformed, quiescent, cell state, 

defined by high Let-7 and low cyclin B/Cdk1 levels, a transient increase in Src from 

t=100h to t=105h (grey area) triggers a stable epigenetic switch and cell proliferation 

characterized by Let-7 down-regulation and sustained oscillations of cyclin B/Cdk1. 

From that transformed, cell proliferative state, the temporal evolution of Let-7 and 

cyclin B/Cdk1 are illustrated in the presence of transient (B) Lin28 inhibition (VSLIN28 

passes from 0.1 to 0 for 500h < t < 1000h), (C) NF-kB inhibition (kAA1NFKB = kAA2NFKB = 
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kAA3NFKB = 0 for 500h < t < 1000h), or (D) PTEN over-expression (VSMPTEN passes 

from 0.001 to 10 for 500h < t < 1000h). Other parameter values are as in 

Supplementary Table 3. 

 

Figure 4. Overexpression of cyclins is predicted to impact on the dynamics of 
the transformation network. Temporal evolution of (A) Let-7, or (B, C) Let-7 and 

cyclin B/Cdk1 illustrated for different synthesis rates of cyclins, VSMCYC. From a non-

transformed and quiescent cell state defined by high Let-7 levels and low levels of 

cyclin B/Cdk1, a sufficient increase in VSMCYC (for t > 100h) down-regulates Let-7, 

allowing a stable switch to a transformed and cell proliferative state. Parameter 

values are as in Supplementary Table 3. 

 

Figure 5. Concomitant activation of the proliferation and transformation 
networks is cancer type-specific. (A) Cell proliferation index, CPI, and (B) Non-

transformed state index, NSTI, calculated from the measured mRNA expression 

levels of the network components in the non-tumor, normal (N) samples, (green bars) 

and tumor condition (T, red bars) of 12 tumor cohorts from TCGA. In each case, 

mRNA levels are relative to the non-tumor condition. A list of all components used in 

the analysis can be found in Supplementary Table 5.  

 

Figure 6. Activation of the networks in tumors is heterogeneous among 
patients. (A) PCA analysis based on the expression of all network components in the 

non-tumor (blue dots) and tumor condition (red dots) of (A) cholangiocarcinoma, (B) 

hepatocellular carcinoma, and (C) prostate adenocarcinoma cohort from TCGA. 

 

Figure 7. Modeling malignant cell transformation and cell proliferation 
distributions in a heterogeneous cell population. CPI versus NSTI is shown in a 

heterogeneous cell population starting from a non-transformed, quiescent, cell state 

(A, C, E) or from a transformed, proliferative, cell state (B, D, F). In both states, 10% 

(A, B), 25% (C, D), or 50% (E, F) of uniform random variations from the basal value 

of each parameter are considered. Each circle corresponds to one cell in a 

population of 500 cells. Horizontal lines define an arbitrary threshold value for CPI, 

which is equal to 1, above which cells are considered into proliferation; vertical lines 

define an arbitrary threshold value for NSTI, equal to 10, above which cells are 
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considered in a non-transformed state. Orange (A, C, E) and green dots (B, D, F) 

correspond to the value of both indexes in the absence of random variation on 

parameters. Initial conditions are given in Supplementary Table 4. Basal parameter 

values are as in Supplementary Table 3. 

 

Figure 8. A cell population model assesses the qualitative dynamics of the 
network switches in cholangiocarcinoma. mRNA levels of (A, B) cyclin B1 versus 

cyclin E1, (C, D) cyclin B1 versus Let-7c, and (E, F) Kras versus Let-7c of 

cholangiocarcinoma cohort from TCGA (A, C, E), and (B, D, F) in a model for a 

heterogeneous cell population where 50% of uniform random variations are 

considered around the basal value of each parameter. (B, D, F) Simulations are 

performed with a population of 100 cells. Initial conditions are given in 

Supplementary Table 4. Src = 0.0000001 and other parameter values are as in 

Supplementary Table 3. (A, C, E) green dots: non-tumor samples (n = 9), red dots: 

tumor samples (n = 36). 
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Description of the mathematical model 
 

The model is described by a set of 15 kinetic equations for the Cdk network driving 

the mammalian cell cycle and 14 kinetics equations for the inflammatory circuit that 

controls the dynamics of malignant transformation. Each equation represents the 

temporal evolution of the expression level of one component of the network. The 

different variables of the model are defined in Table S1, the kinetics equations are 

found in Table S2, while the description of the parameters and their numerical values 

used in the simulations are in Table S3. 
 

In the model, we consider for simplicity a constant total concentration of NF-kB 

(NFKBTOT), E2F (E2FTOT), and APC (APCTOT). Activation and inactivation reactions of 

E2F in Eq. [5], APC in Eq. [15] and NF-kB in Eq. [16] behave as Goldbeter-Koshland 

switches (Goldbeter and Koshland, 1981). All other processes of the model rest on 

mass-action kinetics. Moreover, to couple the model for the Cdk network with the 

model for the inflammatory circuit leading to malignant transformation, equations [1] 

and [18] have been replaced by equation [18’]. 

 

Numerical simulations and PCA analysis 
 
Numerical simulations were performed with XPPAUTO 
(http://www.math.pitt.edu/~bard/xpp/xpp.html) and matlab. PCA analysis were done 
with FactoMineR (Le, 2008).   
 
 
 

Analysis of RNASeq data 
 

RNASeq and miRNASeq data of the different patient cohorts were from TCGA 

database (http://firebrowse.org/). For each cohort, we converted the 

“scaled_estimate” in the “illuminahiseq_rnaseqv2_unc_edu_Level_3_RSEM_genes” 

file into TPM by multiplying by 106. 
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Supplementary tables 
 
 
Table S1. Variables of the mathematical model 
 

Name Definition 
Model for the Cdk network, regulated by Let-7, driving the mammalian cell cycle  
Let7 MicroRNA family Let-7 
mMd Cyclin D messenger RNA 
Md Active form of cyclin D/Cdk-4-6 complex 

mMdlet7 Inactive complex between cyclin D messenger RNA (mMd) and Let7 
E2F Active form of the transcription factor E2F 
mMe Cyclin E messenger RNA 
Me Active form of cyclin E/Cdk2 complex 

mMelet7 Inactive complex between cyclin E messenger RNA (mMe) and Let7 
mMa Cyclin A messenger RNA 
Ma Active form of cyclin A/Cdk2 complex 

mMalet7 Inactive complex between cyclin A messenger RNA (mMa) and Let7 
mMb Cyclin B messenger RNA 
Mb Active form of cyclin B/Cdk1 complex 

mMblet7 Inactive complex between cyclin B messenger RNA (mba) and Let7 
APC Anaphase-promoting complex regulating cyclin degradation 

Model for the inflammatory circuit driving the epigenetic switch to cell transformation 
Let7 MicroRNA family Let-7 

NFKB Transcription factor NF-kB 
Lin28 RNA binding protein Lin28 
mIL6 IL6 messenger RNA 

mIL6Let7 Complex form between mIL6 and Let7 
IL6 Interleukin 6 protein, which promotes the epigenetic switch leading to cell 

transformation 
mRas Ras oncogene messenger RNA 

mRasLet7 Complex form between mRas and Let7 
Ras Protein form of Ras oncogene 

STAT3 Transcription factor STAT3, whose activity is crucial to promote cell 
transformation 

miR21 MicroRNA miR21, which represses the translation of the tumor suppressor 
PTEN 

mPTEN PTEN messenger RNA  
miRmpten Complex form between miR21 and mPTEN 

PTEN Protein form of the tumor suppressor PTEN (phosphatase and tensin 
homologue) 
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Table S2. Kinetic equations of the mathematical model 
	

Model for the Cdk network, regulated by Let-7, driving the mammalian cell cycle 

	dLet7
dt

=VSLET7 − k1 ⋅mMd ⋅Let7+ k2 ⋅mMdLet7− k3 ⋅mMe ⋅Let7+ k4 ⋅mMeLet7

−k5 ⋅mMa ⋅Let7+ k6 ⋅mMaLet7− k7 ⋅mMb ⋅Let7+ k8 ⋅mMbLet7− kDLET7 ⋅Let7 	
[1]	

𝑑𝑚𝑀𝑑
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= 𝑉34565 ∙ 𝑘3449 ∙ 𝐺𝐹 − 𝑘= ∙ 𝑚𝑀𝑑 ∙ 𝐿𝑒𝑡7 + 𝑘@ ∙ 𝑚𝑀𝑑𝐿𝑒𝑡7 − 𝑘9449 ∙ 𝑚𝑀𝑑	 [2]	

	
dMd
dt

= kSD ⋅mMd − kDMD ⋅Md

	

[3]	

	
dmMdLet7

dt
= k1 ⋅mMd ⋅Let7− k2 ⋅mMdLet7− kDMMDLET7 ⋅mMdLet7

	

[4]	

	
dE2F
dt

= k1E2F ⋅
E2FTOT −E2F( )
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[5]	

	
dmMe
dt

=VSMCYC ⋅ kSMME ⋅E2F − k3 ⋅mMe ⋅Let7+ k4 ⋅mMeLet7− kDMME ⋅mMe

	

[6]	

	
dMe
dt

= kSE ⋅mMe− kDME ⋅Ma ⋅
Me

KDE +Me
#

$
%

&

'
(− kDME2 ⋅Me

	

[7]	

	
dmMeLet7

dt
= k3 ⋅mMe ⋅Let7− k4 ⋅mMeLet7− kDMMELET7 ⋅mMeLet7

	

[8]	

	
dmMa
dt

=VSMCYC ⋅ kSMMA ⋅E2F − k5 ⋅mMa ⋅Let7+ k6 ⋅mMaLet7− kDMMA ⋅mMa

	

[9]	

	
dMa
dt

= kSA ⋅mMa− kDMA ⋅APC ⋅
Ma

KDA +Ma
#

$
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&

'
(− kDMA2 ⋅Ma

	

[10]	

	
dmMaLet7

dt
= k5 ⋅mMa ⋅Let7− k6 ⋅mMaLet7− kDMMALET7 ⋅mMaLet7

	

[11]	

	
dmMb
dt

=VSMCYC ⋅VSMMB − k7 ⋅mMb ⋅Let7+ k8 ⋅mMbLet7− kDMMB ⋅mMb

	

[12]	

	
𝑑𝑀𝑏
𝑑𝑡
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dmMbLet7

dt
= k7 ⋅mMb ⋅Let7− k8 ⋅mMbLet7− kDMMBLET7 ⋅mMbLet7

	
[14]	

	
dAPC
dt

= k1APC ⋅
APCTOT − APC( )
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[15]	

	
Model for the inflammatory circuit driving the epigenetic switch to cell transformation

	dNFKB
dt

= kAA1NFKB ⋅Src+ kAA2NFKB ⋅ IL6+ kAA3NFKB ⋅Ras( ) ⋅ KIPTEN

KIPTEN +PTEN
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dt
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dt
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dt
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dt

= kS1IL6 ⋅mIL6− kDIL6 ⋅ IL6

	

[21]	

	
dmRas
dt

=VSMRAS − k11 ⋅mRas ⋅Let7+ k12 ⋅mRasLet7− kDMRAS ⋅mRas

	

[22]	

	
dmRasLet7

dt
= k11 ⋅mRas ⋅Let7− k12 ⋅mRasLet7− kDRASLET ⋅mRasLet7

	

[23]	

	
dRas
dt

= kS1RAS ⋅mRas− kDRAS ⋅Ras

	

[24]	

	
dSTAT3

dt
= kSSTAT ⋅

IL6
KA2IL6 + IL6
"

#
$

%

&
'− kDSTAT ⋅STAT3

	

[25]	
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dmiR21
dt

= kSMIR21 ⋅
STAT3

KASTAT + STAT3
"

#
$

%

&
'− k13 ⋅miR21⋅mPTEN + k14 ⋅miRmPTEN − kDMIR21 ⋅miR21

	

[26]	

	
dmPTEN

dt
=VSMPTEN − k13 ⋅miR21⋅mPTEN + k14 ⋅miRmPTEN − kDMPTEN ⋅mPTEN

	

[27]	

	
dPTEN
dt

= kSPTEN ⋅mPTEN − kDPTEN ⋅PTEN

	

[28]	

	
dmiRmPTEN

dt
= k13 ⋅miR21⋅mPTEN − k14 ⋅miRmPTEN − kDMIRMP ⋅miRmPTEN

	

[29]	

Coupling the Cdk network and the epigenetic switch through Let-7 miRNA 	
dLet7
dt

=VSLET7 ⋅
KILET7

KILET7 + LIN28
"

#
$

%

&
'− k9 ⋅mIL6 ⋅Let7+ k10 ⋅mIL6Let7− k11 ⋅mRas ⋅Let7+ k12 ⋅mRasLet7

−k1 ⋅mMd ⋅Let7+ k2 ⋅mMdLet7− k3 ⋅mMe ⋅Let7+ k4 ⋅mMeLet7− k5 ⋅mMa ⋅Let7+ k6 ⋅mMaLet7
−k7 ⋅mMb ⋅Let7+ k8 ⋅mMbLet7− kDLET7 ⋅Let7

	
[18’]	

	
Where:	
	
NFKBTOT = NFKB+ NFKBI 	
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Table S3. Parameters of the model 

 
Symbol Definition  Numerical 

value 

Model for the Cdk network, regulated by Let-7, driving the mammalian cell cycle  
VSMCYC Multiplying factor for the rates of synthesis of all cyclins 1.5 

GF Growth factors 1 
kSMMD Transcription rate constant of cyclin D 0.03 
kDMMD Rate constant for the degradation of cyclin D messenger RNA 0.2 

kSD Translation rate constant of cyclin D 0.5 
kDMD Rate constant for the degradation of cyclin D protein 0.5 
k1E2F Rate constant for activation of E2F 2.3 
KAE2F Michaelis constant for E2F activation 0.01 
k2E2F Rate constant for inactivation of E2F 2.5 
KIE2F Michaelis constant for E2F inactivation 0.01 

E2FTOT Total level of E2F transcription factor 4 
kSMME Transcription rate constant of cyclin E 0.035 
kDMME Rate constant for the degradation of cyclin E messenger RNA 0.08 

kSE Translation rate constant of cyclin E 0.8 
kDME Rate constant for the degradation of cyclin E protein regulated by cyclin 

A/Cdk2 
0.2 

kDME2 Basal rate constant for the degradation of cyclin E protein 0.1 
KDE Michaelis constant for degradation of cyclin E/Cdk2 by cyclin A/Cdk2 0.08 

kSMMA Transcription rate constant of cyclin A 0.07 
kDMMA Rate constant for the degradation of cyclin A messenger RNA 0.08 

kSA Translation rate constant of cyclin A 0.4 
kDMA Rate constant for the degradation of cyclin A protein regulated by APC 0.35 
kDMA2 Basal rate constant for the degradation of cyclin A protein 0.05 
KDA Michaelis constant for degradation of cyclin A/Cdk2 by APC 0.01 

VSMMB Transcription rate of cyclin B 0.06 
kDMMB Rate constant for the degradation of cyclin B messenger RNA 0.08 

kSB Translation rate constant of cyclin B 0.35 
kDMB Rate constant for the degradation of cyclin B protein regulated by APC 0.2 
kDMB2 Basal rate constant for the degradation of cyclin B protein 0.7 
KDB Michaelis constant for degradation of cyclin B/Cdk1 by APC 0.01 

k1APC Rate constant for activation of APC through cyclin B/Cdk1 1 
KAAPC Michaelis constant for APC activation 2 
V2APC Inactivation rate of APC 0.3 
KIAPC Michaelis constant for APC inactivation 10 

APCTOT Total level of the Anaphase-Promoting Complex 2 
k1 Bimolecular rate constant for binding of Let7 to mMd 1 
k2 Rate constant for dissociation of complex (mMdlet7) between Let7 and 

mMd 
0.01 

k3 Bimolecular rate constant for binding of Let7 to mMe 1 
k4 Rate constant for dissociation of complex (mMelet7) between Let7 and 0.01 
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mMe 
k5 Bimolecular rate constant for binding of Let7 to mMa 1 
k6 Rate constant for dissociation of complex (mMalet7) between Let7 and 

mMa 
0.01 

k7 Bimolecular rate constant for binding of Let7 to mMb 1 
k8 Rate constant for dissociation of complex (mMblet7) between Let7 and 

mMb 
0.01 

kDMMDLET7 Rate constant for degradation of mMdlet7 complex 1 
kDMMELET7 Rate constant for degradation of mMelet7 complex 1 
kDMMALET7 Rate constant for degradation of mMalet7 complex 1 
kDMMBLET7 Rate constant for degradation of mMblet7 complex 1 

Model for the inflammatory circuit driving the epigenetic switch to cell transformation 
Src Src kinase oncoprotein (signal triggering an inflammatory response 

leading to an activation of the epigenetic switch) 
0 

VSLET7 Maximum rate of synthesis of Let7 microRNA 10 
KILET7 Michaelis constant for the repression of Let7 synthesis by Lin28 0.1 
kDLET7 Rate constant for degradation of Let7 microRNA 0.05 

kAA1NFKB Rate constant for the activation of NF-kB by Src 10 
kAA2NFKB Rate constant for the activation of NF-kB by IL6 0.09 
kAA3NFKB Rate constant for the activation of NF-kB by Ras 1 
KANFKB Michaelis constant for the activation of NF-kB 0.01 
KINFKB Michaelis constant for the inhibition of NF-kB 0.02 
VDNFKB Maximum rate for NF-kB inactivation 0.01 

NFKBTOT Total concentration of NF-kB 1 
KA2IL6 Michaelis constant for the activation of STAT3 synthesis by IL6 40 
KIPTEN Michaelis constant for the inhibition of NF-kB activation by PTEN 5 
VSLIN28 Maximum rate of synthesis of Lin28 0.1 
kDLIN28 Rate constant for the degradation of Lin28 0.015 
KA1NFKB Michaelis constant for the activation of Lin28 synthesis by NF-kB 0.01 

k9 Bimolecular rate constant for binding of Let7 to mIL6 10 
k10 Rate constant for dissociation of complex (mIL6let7) between Let7 and 

mIL6 
0.01 

VS1MIL6 Independent rate of synthesis of IL6 mRNA, mIL6 0.12 
VS2MIL6 Maximum rate of synthesis of IL6 mRNA depending on NF-kB 0.01 
kDMIL6 Rate constant for the degradation of IL6 mRNA 0.01 
kDILLET Rate constant for the degradation of the complex between Let7 and mIL6 0.5 
KA2NFKB Michaelis constant for the activation of mIL6 synthesis by NF-kB 5 

kSIL6 Rate constant for the synthesis of IL6 protein 1.5 
kDIL6 Rate constant for the degradation of IL6 protein 0.4 

VSMRAS Rate of synthesis of Ras mRNA, mRas 0.006 
k11 Bimolecular rate constant for binding of Let7 to mRas 10 
k12 Rate constant for dissociation of complex (mRaslet7) between Let7 and 

mRas 
0.01 

kDMRAS Rate constant for the degradation of mRas 0.01 
kDRASLET Rate constant for the degradation of the complex between Let7 and mRas 0.5 

kSRAS Rate constant for the synthesis of Ras protein 0.25 
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kDRAS Rate constant for the degradation of Ras protein 0.03 
VSSTAT Maximum rate of synthesis of STAT3 0.15 
kDSTAT Rate constant for the degradation of STAT3 0.03 
VSMIR21 Maximum rate of synthesis of miR21 microRNA 4 
KASTAT Michaelis constant for the activation miR21 synthesis by STAT3 5 

k13 Bimolecular rate constant for binding of miR21 to mPTEN 10 
k14 Rate constant for dissociation of complex (miRmpten) between miR21 and 

mPTEN 
0.01 

kDMIR21 Rate constant for the degradation of miR21 0.2 
VSMPTEN Rate of synthesis of PTEN mRNA, mPTEN 0.001 
kDMPTEN Rate constant for the degradation of mPTEN 0.1 
kDMIRMP Rate constant for the degradation of the complex between mPTEN and 

miR21 
0.1 

kSPTEN Rate constant for the synthesis of PTEN protein 0.9 
kDPTEN Rate constant for the degradation of PTEN protein 0.05 

 
Note: We focus our study on qualitative rather than quantitative aspects in the expression of 

the different components of the network. Indeed, our goal is to analyze the dynamic 

implications of the regulatory structure of the epigenetic switch linking inflammation to cell 

transformation and of the Cdk network driving the cell cycle, i.e. the wiring diagram, or the 

topology, which is crucial for the network behavior (see (Wagner, 2005)). Moreover, many 

parameters have not been determined experimentally. The numerical values have been 

selected to yield a non-transformed state without the inflammatory signal, Src; or a 

transformed state within less than 100h with transient inflammatory signal, which 

corresponds to experimental observations (Iliopoulos et al., 2009). For the Cdk network, 

parameter values have been chosen to reach cell cycle periods ranging between 20h and 

50h, which correspond to the doubling time in most mammalian cells (Alexiades and Cepko, 

1996). The time units for the parameters in the model are expressed in hours, while the 

concentrations are expressed in µM. In addition, the mechanisms controlling miRNA 

degradation are complex and not fully understood (Zhang et al., 2012). As a consequence, 

we assume that each complex between a mRNA and its regulating miRNA is rapidly targeted 

for degradation. 
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Table S4. Initial conditions 

 
Variable C.I. # 1 

(leads to non- 
transformed cell) 

C.I. # 2 
(leads to 

transformed cell) 

C.I. # 3 
(cell population, 

Figs. 8B,D,F) 
NFKB 0.00045 0.5 0.01 
Lin28 0.34 0.5 0.01 
Let7 40 1 0 
mIL6 0.0003 0.5 0.01 
IL6 0.001 0.5 0.01 

mRas 0.00001 0.5 0.01 
Ras 0.0001 0.5 0.01 

STAT3 0.0001 0.5 0.01 
mPTEN 0.01 0 0.01 

mRasLet7 0 0 0 
mIL6Let7 0 0 0 

miR21 0.0003 0 0 
PTEN 0.17 0 0 

MiRmPTEN 0 0 0 
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Table S5. List of the components used in the human tumors analysis (Figs. 5-6) 

	
# of components Symbol Name 

1 CCNA1 Cyclin A1 
2 CCNB1 Cyclin B1 
3 CCND1 Cyclin A1 
4 CCNE1 Cyclin E1 
5 CDK1 Cyclin-dependent kinase 1 
6 CDK2 Cyclin-dependent kinase 2 
7 CDK4 Cyclin-dependent kinase 4 
8 CDK6 Cyclin-dependent kinase 6 
9 E2F1 E2F transcription factor 1 

10 E2F2 E2F transcription factor 2 
11 E2F3 E2F transcription factor 3 
12 E2F4 E2F transcription factor 4 
13 E2F5 E2F transcription factor 5 
14 E2F6 E2F transcription factor 6 
15 E2F7 E2F transcription factor 7 
16 E2F8 E2F transcription factor 8 
17 IL6R Interleukin 6 receptor 
18 IL6 Interleukin 6 
19 KRAS KRAS oncogene 
20 LIN28A Lin-28 homolog A 
21 LIN28B Lin-28 homolog B 
22 PTEN Phosphatase and tensin homolog 
23 STAT3 Signal transducer and activator of transcription 3 
24 hsa-let-7a-1 MicroRNA let-7a-1 
25 hsa-let-7a-2 MicroRNA let-7a-2 
26 hsa-let-7a-3 MicroRNA let-7a-3 
27 hsa-let-7b MicroRNA let-7b 
28 hsa-let-7c MicroRNA let-7c 
29 hsa-let-7d MicroRNA let-7d 
30 hsa-let-7e MicroRNA let-7e 
31 hsa-mir-21 MicroRNA 21 
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Supplementary figures 
 
 
 

 
 
 
 
Figure S1. Detailed scheme of the model. The model for the epigenetic switch linking inflammation 

to cell transformation originates from a previous study (Gerard et al., 2014), while the model for the 

post-transcriptional regulation of the Cdk network by Let-7 is based on a skeleton model for the Cdk 

network driving the mammalian cell cycle (Gerard and Goldbeter, 2011). Let-7, which is involved in 

multiple positive feedback loops, can repress the synthesis of each cyclin. 
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Figure S2. Cell proliferation versus cell cycle arrest mediated by Let-7 and GF levels. The 

temporal evolutions of cyclin E/Cdk2 (blue) and cyclin B/Cdk1 (red) in panels A to F correspond to 

conditions A to F of panel A from Fig. 2. In A, GF = 3 and VSLET7 = 0.25; in B, GF = 3 and VSLET7 = 2; in 

C, GF = 25 and VSLET7 = 0.25; in D, GF = 25 and VSLET7 = 1.6; in E, GF = 25 and VSLET7 = 5; and in F, 

GF = 70 and VSLET7 = 1.5. Other parameter values are as in Table S3. 
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Figure S3. Effect of the Cdk network on the dynamics of the transformation network. (A, C) 

Temporal evolution of Let-7 and cyclin B/Cdk1. From a non-transformed and quiescent cell state, 

VSMCYC changes from 1.5 to 7 (at t > 100h), and promotes the epigenetic switch and cell proliferation. 

For 1200 h < t < 1500 h, VSMCYC is set back to its initial value (= 1.5), cell proliferation and the 

transformed cell state are maintained, which is characterized by sustained oscillations in cyclin B/Cdk1 

and low levels in Let-7. In A, at t = 1500h, VSMCYC changes from 1.5 to 0.1, preventing cell proliferation 

without recovering a non-transformed cell state since cyclin B/Cdk1 tends to a low stable steady state 

level, while Let-7 levels remain low. In C, for 1500h < t < 2000h, the synthesis rate of Lin28, VSLIN28 is 

set to 0, allowing the recovery of a stable non-transformed state defined by high levels of Let-7 and 

impeding cell proliferation, characterized by a low, stable steady state, level of cyclin B/Cdk1. In C, for 

t > 2000h, basal conditions are used. (B, D) Temporal evolution of Lin28 and STAT3 corresponds to 

conditions of panels A and C, respectively. Other parameter values are as in Table S3, which 

correspond to basal conditions. 
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Figure S4. Effect of oncogenes and tumor suppressors on the robustness of the dynamics. 

Starting from a non-transformed and quiescent cell state (A-F), or from a transformed and proliferating 

cell state (G-L), the cell proliferation index versus non-transformed state index is shown in a 

heterogeneous cell population with 25% of uniformed random variation of all parameters of the model. 

In both cases, simulations are performed in the basal conditions (A and G); in the presence of various 

overexpression levels of Let-7: VSLET7 = 12 in B and H, 20 in C and I, and 50 in D and J; in the 

presence of PTEN overexpression, kSPTEN = 45 in E and K, or in the presence of Ras inhibition, VSMRAS 

= 0.001 instead of 0.006 in F and L. In each case, circles correspond to one cell in a population of 500 

cells. The orange (A-F) and green dots (G-L) correspond to the levels of CPI and NTSI in the absence 

of random variation on parameters. Basal condition corresponds to the parameter values in Table S3.  
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