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One Sentence Summary: We present an approach to semantically integrating LOINC-encoded 
laboratory data with the Human Phenotype Ontology and show that the integrated LOINC data 
can be used to identify biomarkers for asthma from electronic health record data. 
 
Abstract:  
Electronic Health Record (EHR) systems typically define laboratory test results using the 
Laboratory Observation Identifier Names and Codes (LOINC) and can transmit them using Fast 
Healthcare Interoperability Resource (FHIR) standards. LOINC has not yet been semantically 
integrated with computational resources for phenotype analysis. Here, we provide a method for 
mapping LOINC-encoded laboratory test results transmitted in FHIR standards to the Human 
Phenotype Ontology (HPO) terms. We annotated the medical implications of 2421 commonly 
used laboratory tests with HPO terms. Using these annotations, a software assesses laboratory 
test results and converts each into an HPO term. We validated our approach with EHR data from 
15,681 patients with respiratory complaints and identified known biomarkers for asthma. Finally, 
we provide a freely available SMART on FHIR application that can be used within EHR 
systems. Our approach allows reusing readily available laboratory tests in EHR for deep 
phenotyping and using the hierarchical structure of HPO for association studies with medical 
outcomes and genomics. 
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Introduction 
Electronic health records (EHRs) have been widely adopted in US hospitals since the Health 
Information Technology for Electronic and Clinical Health Act (HITECH) was passed in 2009, 
and offer an unprecedented opportunity to accelerate translational research because of 
advantages of scale and cost-efficiency as compared to traditional cohort-based studies1. In 
particular, EHRs contain rich phenotype information that can be utilized to stratify diseases and 
to develop hypotheses. For instance, phenome-wide association studies (PheWAS) can exploit 
EHR data to define case control cohorts for disease diagnoses or laboratory traits and then 
analyze associations with hundreds of thousands of genetic variants2–4. Despite the great 
potential of EHR data, patient phenotyping from EHRs is still challenging because the phenotype 
information is distributed in many EHR locations (laboratories, notes, problem lists, imaging 
data, etc.) and with EHRs having vastly different structures across sites. This lack of integration 
represents a substantial barrier to widespread use of EHR data in translational research. 
 
Laboratory tests provide a critical resource for phenotype extraction. Deep phenotyping, i.e., 
comprehensive and precise phenotyping of individual disease manifestations, is an essential 
component of precision medicine and could potentially extend the reach of PheWAS studies5,6. 
Laboratory tests have broad applicability for translational research, but EHR-based research 
using laboratory data has been challenging because of the lack of standardization among 
different EHR systems. For instance, some tests measure nitrite level in urine using an automated 
machine, whereas others use a test strip. Some report the value in mg/dL whereas others report a 
qualitative value of positive/negative. If any of these tests were abnormal, the medical 
interpretation would be that nitrituria is present, yet current informatics frameworks do not easily 
support such inferences. Therefore, substantial challenges exist for standardization and 
integration of laboratory data for deep phenotyping and EHR-based translational research. 
 
Recent advances in the standardization of EHR systems and phenotyping ontologies make it 
feasible to extract patient phenotypes from laboratory tests at a large scale. The Fast Healthcare 
Interoperability Resource (FHIR) was introduced in 2013 and provides a standardized interface 
to individual EHR systems for healthcare-related data7. FHIR separates healthcare-related data 
into granular components as “resources” such as observation, medication, patient identity and 
insurance claims, that have a standard definition and associated semantic bindings that can be 
computationally integrated even when they are created by different methods and organizations. 
Laboratory tests, encoded as observations in FHIR, are uniquely identified with Laboratory 
Observation Identifier Names and Codes (LOINC), which is a universal code system that defines 
various kinds of clinical laboratory tests and other measurements (~86,000 entries)8.  The 
outcome of a FHIR observation can be represented by a term in the Human Phenotype Ontology 
(HPO), which is a logically defined vocabulary for describing human abnormal phenotypes9. The 
HPO has become the de facto standard for computational phenotype analysis in genomics and 
rare disease9–11. The HPO currently contains 13,608 terms including a comprehensive 
representation of laboratory abnormalities such as Hyperglycemia, Thrombocytopenia, and 
Increased urine alpha-ketoglutarate concentration. Here, we present a computational method 
that semantically harmonizes FHIR, LOINC, and HPO. The software rolls up LOINC terms for 
tests whose outcomes are medically comparable into common categories and interprets the 
outcome as HPO terms, thereby automatically extracting detailed, deep phenotypic profiles of 
laboratory results for downstream studies. 
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Results 
Overview of strategy 
We present an approach to mapping the outcomes of laboratory tests as encoded in EHRs with 
LOINC terms for the tests and FHIR Observation resources representing the test results as HPO 
terms. A LOINC term by itself does not specify the outcome of a test. But if the outcome of a 
test (such as “high” or “low”) and the nature of the test are known, we can then infer the 
phenotypic abnormality. For example, LOINC 32710-6 “Nitrite [Presence] in Urine” together 
with the outcome “positive” implies the phenotypic abnormality Nitrituria (HP:0031812).  
LOINC-coded laboratory tests can be grouped broadly into three categories, those with a 
quantitative outcome (Qn), an ordered categorical outcome (ordinal or Ord) and an unordered 
categorical outcome (nominal, or Nom). A quantitative test for an analyte has a normal range, 
and there are three types of mappings depending on the result of the test:  L (lower than normal), 
N (normal), and H (higher than normal). Take, for instance, a test for the concentration of 
potassium in the blood (LOINC:6298-4, Fig. 1A). If the result is high, our procedure infers the 
corresponding HPO term for Hyperkalemia (HP:0002153). Analogously, a low result is mapped 
to Hypokalemia (HP:0002900). The HPO is an ontology of abnormal phenotypes, and thus there 
is no term that specifically represents a normal test result. However, computational analysis can 
record negated HPO terms, and the normal test result is represented as NOT Abnormality of 
potassium homeostasis (HP:0011042). 
 
Ordinal tests can have a series of ordered outcomes. The majority of the ordinal LOINC tests 
were mapped to two possible outcomes, POS (positive) or NEG (negative). For instance, the 
result of the test Nitrite in urine by test strip can be positive (present) or negative (absent) (Fig. 
1A). If present, then our approach infers the HPO term Nitrituria  (HP:0031812); if absent, our 
approach infers NOT Nitrituria  (HP:0031812). 
 
Nominal tests have a series of outcomes that lack a natural ordering. Yet, some nominal result 
values are considered abnormal. For instance, LOINC 5778-6, Color of urine. Currently, nine 
potential abnormal results of this test are mapped to the nine child terms of Abnormal urinary 
color (HP:0012086), including Red Urine (HP:0040318) and Dark urine (HP:0040319).  
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Fig. 1. Semantic integration of LOINC-coded laboratory tests in FHIR into HPO terms. A. Representative examples of LOINC to 
HPO mapping. Potassium in blood, a quantitative (Qn) LOINC test, has three potential outcomes, L (lower than normal), N 
(normal) and H (higher than normal) and is mapped to three corresponding HPO terms. Presence of nitrite in urine, an ordinal 
(Ord) test, has two possible outcomes, POS (positive) or NEG (negative) and is mapped to either Nitrituria (HP:0031812) or 
NOT Nitrituria (HP:0031812), respectively. Color of urine, a nominal (Nom) test, has a list of likely outcomes (represented as 
Systematized Nomenclature of Medicine-Clinical Terms (SNOMED-CT) codes) and each one is mapped to an HPO term. B. 
Schematic representation of the relevant contents of a FHIR observation for laboratory tests. Each FHIR Observation resource for 
a LOINC-encoded laboratory test includes an identifier (id) and the name of the patient, the LOINC code and name, the normal 
reference range and the observed value as well as an interpretation of the result (see Table 1 for a complete list).  
 
A LOINC to HPO mapping library 
We have mapped 2421 LOINC terms to HPO terms. 77.8% of the mapped LOINC tests are Qn, 
21.6% Ord and 0.6% Nom (Fig. 2A). Taken together, these LOINC terms mapped to a total of 
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516 distinct HPO terms. We analyzed the distribution of the number of distinct LOINC terms
that were mapped to an individual HPO term. In 56.4% of the cases, two or more LOINC terms
are mapped to the same HPO term (mean = 8.5) (Fig. 2B), reflecting the fact that multiple
laboratory tests (and associated LOINC terms) have outcomes that we consider to have an
equivalent clinical interpretation and can therefore be mapped to the same HPO term. 
 
 
                    A                                              B 

                      
Fig. 2 Quantification of the LOINC to HPO mapping library. A. Distribution of annotated LOINC terms B. Distribution of HPO
terms according to the number of LOINC terms mapped to an individual HPO term.  
 
 

Algorithm for converting LOINC-coded laboratory tests into HPO-coded phenotypes  
We designed an algorithm that inspects elements of a FHIR resource for laboratory tests and
converts the outcome into an HPO term. A standard FHIR resource for laboratory tests (a FHIR
Observation) contains patient information, test identification, test result, normal reference ranges
and interpretations (Fig. 1B). The algorithm compares the numerical result with the normal
reference ranges to assign an interpretation code such as “L” or “POS” (Table 1) , or make use of
the interpretation codes when they are present, to map the result to the corresponding HPO term
(fig. S1). Overall, the algorithm handles all three major types of LOINC-coded laboratory tests
(Qn, Ord, and Nom) when combined with the LOINC to HPO annotation data.   

Table 1. FHIR codes for test outcomes 

Primary 
Code 

Other FHIR codes mapped Meaning 

A AA, W abnormal 

L <, D, LL, LU, lower than normal 

N B, I normal 

H >, HH,HU, U, higher than normal 

NEG ND, NR, not present 
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POS AC, DET, RR, TOX, WR present 

U 
HM, IE, IND, MS, NS, null, OBX, QCF, 
R, S, SDD, SYN-R, SYN-S, VS 

unknown 

 
 
HPO on FHIR 
To demonstrate conversion of FHIR-encoded LOINC tests into HPO, we created a SMART on
FHIR app that uses the mapping library. SMART (Substitutable Medical Applications, Reusable
Technologies) on FHIR is an app platform for electronic health records that allows apps to run
on different FHIR-enabled EHR systems12. Our app, HPO on FHIR, transforms a bundle of
laboratory observations for a patient into a list of HPO codes (Fig. 3). We have also developed a
command-line application that can iterate through all laboratory tests in a FHIR-enabled server,
convert each into an HPO term and store them in a relational database for translational research. 
 

 
 
Fig. 3. Screenshot of the HPO on FHIR app. We connected the HPO on FHIR app to the SmartHealthIT R3 Sandbox (a test
server with synthetic data), queried all laboratory tests related to a simulated patient and converted all the laboratory tests into the
corresponding HPO terms. The column “# Observations” shows the counts of laboratory tests that were mapped to the same HPO
term, and for multiple tests mapped to the same HPO term, the dates of the first and last test are shown. In this example, LOINC
15074-8 was performed twice, and LOINC 2339-0 and 2345-7 were each performed once; the outcomes of all four tests were
abnormally high (blood glucose), and so all four outcomes were mapped to the HPO term Hyperglycemia (HP:0003074).  
 
LOINC to HPO demonstration with asthma  
To test our method for semantic integration of laboratory tests, we analyzed a de-identified EHR
dataset from the University of North Carolina (UNC) comprised of 15,681 patients that had a
history of asthma or asthma-like symptoms. The cohort is skewed toward female (58.9%) and
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older patients (median age: 61.5  years, Fig. 4A). The median tracking period of patients in this 
cohort is 3.1 years. The dataset contains ~54 million records of LOINC-coded clinical test 
results, medication prescriptions, diagnosis codes, procedure codes, patient information and other 
supporting records (Fig. 4B). Using our LOINC to HPO conversion algorithm, we successfully 
transformed 9.3 out of 11 million (83.1%) laboratory tests into HPO terms (Fig. 4C). For the 
entire cohort, on average, each HPO term was mapped from 1.8 distinct types of laboratory tests 
(Fig. 4D), indicating that the transformation successfully integrated distinctly coded laboratory 
tests that have the same clinical interpretation. The mapping procedure assigned an average of 
594 laboratory test-derived HPO terms per individual patient, many of which were from the 
same laboratory tests performed at different visits. The tests corresponded to a mean of 53.5 
unique HPO terms, of which 20.8 were abnormalities and the remainder were normal phenotypes 
(Fig. 4E). The hierarchical structure of the HPO allows inferences to be propagated up to parent 
terms and their ancestors13; using this method, we inferred an additional 46.1 HPO terms (total 
66.9) based on 20.8 abnormalities to each patient (Fig. S2).  
 
As a proof-of-principle, we tested the ability of our procedure to identify phenotypic 
abnormalities associated with a diagnosis of asthma or with frequent prednisone use. About one 
third of the patients in this cohort had an ICD-9/10 diagnosis of asthma, and the remaining 
patients had ICD-9/10 codes reflecting other, potentially asthma-like, respiratory complaints. 
14.2% of patients that had a diagnosis of asthma were administered or prescribed prednisone >3 
times within a tracking period between 2004-2016; 8.5% of the remaining patients had been 
administered prednisone more than three times. Prednisone is a corticosteroid drug used for 
severe asthma treatment with multiple other indications14. We reasoned that both the diagnosis of 
asthma and the history of treatment with prednisone would likely be correlated with different but 
overlapping sets of laboratory abnormalities. Using logistic regression, we assessed the 
contribution of frequent prednisone prescription and the presence of acute asthma diagnosis to 
each phenotypic abnormality. Prednisone usage was significantly associated with an increased 
odds ratio for exhibiting many abnormal phenotypes that are consistent with the known effects of 
prednisone (Table 2), such as Hypoalbuminemia (HP:0003073)15, Neutrophilia (HP:0011897)16, 
Monocytosis (HP:0012311)17, Leukocytosis (HP:0001974)17, Hypokalemia (HP:0002900)18, and 
Elevated serum creatine phosphokinase (HP:0003236)19. An acute asthma diagnosis was 
significantly associated with five phenotypes, Increased red blood cell count (HP:0020059), 
Increased VLDL cholesterol concentration (HP:0003362) and Eosinophilia (HP:0001880), and 
two ancestor terms of Eosinophilia, Abnormal eosinophil count (HP:0020064) and Abnormal 
eosinophil morphology (HP:0001879). Eosinophilia is a well established marker for acute 
allergic asthma20. Although there have been some conflicting results21, a number of studies have 
shown a positive correlation between increased total, high or low-high-density lipoprotein 
cholesterol, or triglycerides and asthma22–26.  An increased red blood cell count is not a 
recognized biomarker of asthma, but could conceivably reflect a number of factors including 
hypoxemia (11.1% with an acute asthma diagnosis also had a chronic obstructive pulmonary 
disease diagnosis), or hemoconcentration resulting from acute dehydration during an asthma 
attack, but the nature of this retrospective study does not allow us to consult the full medical 
records to investigate this. 
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Fig. 4 Analysis of UNC asthma dataset on asthma- and asthma-like patients. A. Age and sex distribution of patients. B. 
Categories of information extracted from the EHR data. Cyan, used for current research; white, not used for current research. 
MDCTN, medication; LOINC, LOINC-coded laboratory tests; VITAL, vital signs; ICD9, ICD 9-coded diagnosis; ICD10, ICD 
10-coded diagnosis; VISITS, patient visit records; DEPT, clinic location; PRNT_LOC, hospital location; CPT, CPT-coded 
procedures; SOC_HIST, social history; PATIENTS, patient identification records; PROVIDER, provider information.  C. 
Percentage of laboratory tests in our dataset that could be converted into HPO terms (the remaining unmapped tests did not have 
LOINC to HPO annotations). D. Number of LOINC terms mapped to a given HPO term in the UNC dataset. E. Distribution of 
patients by the number of unique HPO terms that are mapped to each patient.  
 
 
Table 2. Odds ratio of phenotypes for frequent prednisone prescription and acute asthma 
diagnosis (*: p < 0.05, **: p < 0.01; table is sorted by the odds ratio for acute asthma diagnosis. 
Only HPO terms of which the odds ratio > 1 for acute asthma diagnosis are shown. Refer to 
Table S3 for all terms) 

 Frequent prednisone prescription Acute asthma diagnosis 

HPO Odds 
ratio 

Confidence 
Interval 
(95%) 

P value Odds 
ratio 

Confidence 
Interval 
(95%) 

P value 
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Increased red blood cell 
count 

2.47 [2-3.06] 6.08x10-17 ** 1.5 [1.25-1.79] 9.20x10-6 ** 

Increased VLDL 
cholesterol concentration 

0.77 [0.38-1.53] 4.45x10-1  1.49 [1-2.23] 4.84x10-2 * 

Abnormal VLDL 
cholesterol concentration 

0.72 [0.36-1.44] 3.48x10-1  1.42 [0.96-2.1] 7.90x10-2  

Hyposthenuria 1.65 [1.03-2.62] 3.35x10-2 * 1.28 [0.89-1.84] 1.82x10-1  

Increased hematocrit 2.42 [1.89-3.11] 2.40x10-12 ** 1.23 [0.99-1.53] 5.35x10-2    

Abnormal eosinophil 
count 

3.74 [3.18-4.39] 1.03x10-59 ** 1.17 [1.01-1.36] 3.13x10-2 * 

Abnormal eosinophil 
morphology 

3.74 [3.18-4.39] 1.03x10-59 ** 1.17 [1.01-1.36] 3.13x10-2 * 

Eosinophilia 3.74 [3.18-4.39] 1.03x10-59 ** 1.17 [1.01-1.36] 3.13x10-2 * 

Decreased lipoprotein 
lipase activity 

3.8 [2.84-5.08] 9.52x10-20 ** 1.08 [0.82-1.44] 5.78x10-1  

Reduced blood urea 
nitrogen 

2.35 [2.01-2.75] 7.97x10-27 ** 1.08 [0.95-1.24] 2.39x10-1  

Abnormal mean 
corpuscular hemoglobin 

concentration 

2.81 [2.4-3.29] 2.30x10-38 ** 1.07 [0.93-1.23] 3.28x10-1  

Decreased mean 
corpuscular hemoglobin 

concentration 

2.81 [2.4-3.29] 2.30x10-38 ** 1.07 [0.93-1.23] 3.28x10-1  

Increased LDL 
cholesterol concentration 

0.81 [0.57-1.15] 2.25x10-1  1.07 [0.86-1.33] 5.39x10-1  

Hypercholesterolemia 2.99 [2.57-3.47] 7.99x10-48 ** 1.05 [0.93-1.19] 4.48x10-1  
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Abnormal LDL 
cholesterol concentration 

0.85 [0.61-1.18] 3.28x10-1  1.02 [0.82-1.26] 8.71x10-1  

 
 

Discussion 
In this report, we present an approach to the semantic integration of laboratory tests and results 
in EHR data. Our approach connects a widely used system for denoting laboratory tests, LOINC, 
with a current standard for transmitting health care information, FHIR, and a computational 
resource for deep phenotyping that was previously used mainly in the context of rare disease 
research and diagnostics. Normalizing laboratory tests with HPO terms is an effective solution 
for two fundamental issues in clinical research: data integration and deep phenotyping. 
Laboratory test results support a large proportion of medical decisions27. It is commonplace that 
different laboratory tests may lead to results that have very similar or identical clinical 
interpretations. These different tests are recorded in the EHR using distinct codes (for instance, 
currently, there are four different LOINC terms for different tests of urine nitrite). This level of 
granularity can create difficulties for the semantic integration of comparable test results. By 
converting the results of laboratory tests to HPO-encoded phenotypes, our method provides an 
effective way for integrating laboratory tests that have the same clinical interpretation but 
different LOINC codes. Extracted patient phenotypes can be directly utilized for PheWAS 
studies, which is important because phenotyping patients is a major bottleneck for conducting 
PheWAS studies28. The Electronic Medical Records and Genomics (eMerge) network develops 
EHR-derived phenotyping algorithms by combining diagnosis codes, procedure codes, 
medication, narratives and subsets of laboratory tests and iteratively refine them to identify 
control and disease cohorts for genome- and phenome-wide association studies1,3,28–30. Our 
method complements existing phenotyping algorithms because it extracts additional phenotypic 
information by systematically interrogating the vast amount of data in laboratory tests. 
  
The analysis of UNC EHR data demonstrated the potential of combining deep phenotypes from 
our tool with EHR data for biomarker discovery. Our current mapping library allowed us to 
convert the majority of the laboratory tests into HPO terms and assign an average of 53.5 unique 
phenotypes to each patient. The statistical analysis identified phenotypic abnormalities that are 
associated with frequent prescriptions of prednisone and/or acute asthma diagnosis. The cohort 
used for this analysis is biased toward senior and female patients and may not be reflective of 
asthma patient distributions, but the fact that our analysis identified numerous abnormalities that 
are associated with either prednisone use or asthma suggests that our approach can be useful for 
the investigation of EHR data for laboratory-based biomarkers of diseases and conditions.  We 
have demonstrated the utility of our approach on the UNC dataset using a simple logistic 
regression approach as a proof of principle; we envision that our mapping approach could be 
used together with a variety of statistical and algorithmic analysis strategies to address a variety 
of topics in EHR-based translational research, and we have therefore coded our foundational 
approach in a way that can easily be integrated into other statistical analysis pipelines. 
 
Several other use cases for our approach are conceivable. Rule-based algorithms could be 
applied to infer HPO terms from the primary phenotypic abnormalities. For instance, the 
combination of Decreased hemoglobin concentration (HP:0020062) and Decreased mean 
corpuscular volume (HP:0025066) implies Microcytic anemia (HP:0001935). The HPO is 
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widely used in rare disease diagnostics, but one bottleneck is that in many settings, HPO terms 
need to be entered manually into the analysis software. A recent study used text-mining to 
extract detailed patient phenotypes through natural language processing of clinical narratives in 
EHR, and used the resulting lists of HPO terms for genomic diagnostics11. Our tool could 
supplement such tools by providing a computational representation of laboratory findings. In 
principle, our tool could be used to support other tasks related to EHR data, including decision 
support and cohort recruitment. In the future, we anticipate that semantic integration of a wider 
range of EHR data will become the norm to support data-driven translational research and 
precision medicine. 
 
Methods  
Mapping LOINC terms to HPO terms 
We performed manual biocuration to construct a mapping library from each potential outcome of 
a LOINC test to the corresponding HPO term (Fig. 1A). The test outcome is represented using a 
subset of FHIR codes (Table 1, primary code), such as ‘lower than normal’, ‘normal’, or ‘higher 
than normal’. For quantitative tests that report a numeric measurement, we use FHIR 
interpretation code “L” and “H” to indicate lower or higher than normal, and “N” and “A” to 
indicate the result is normal or abnormal. For ordinal tests that have a binary outcome, i.e. 
present or absent of the test target, we use FHIR interpretation code “POS” to indicate present 
and “NEG” to indicate absent. Additionally, other interpretation codes defined by FHIR are first 
mapped to primary codes. For example, FHIR codes “LL” (critically low) and “<” (off scale 
low) are both mapped to “L” (Table 1) .   
 
The value for a map entry is an HPO term accompanied by a boolean value to indicate whether it 
should be negated. That is, while an abnormal test outcome is mapped to a particular HPO term, 
the normal outcome for that test is mapped to the negated form, since the HPO contains only 
terms for abnormal phenotypes. Fig. 1A shows three examples of mappings for Qn, Ord or Nom 
LOINC terms. 
  
LOINC to HPO mapping file 
The LOINC to HPO mapping file contains records of mapping from LOINC test outcomes to the 
corresponding HPO terms. The annotation data is serialized as a tab-separated value (TSV) file. 
Each line records the LOINC code, test outcome, the mapped HPO term, and whether the 
mapped term should be negated. The annotation file is deposited at Github and can be accessed 
at https://w3id.org/loinc2hpo/annotations. An excerpt is shown in Supplemental Table 1. 
 
HPO on FHIR 
We created  a SMART on FHIR application, HPO on FHIR, to query a FHIR-enabled EHR 
servers and return patient laboratory results with LOINC codes and their corresponding HPO 
terms. The web interface of the application aggregates identical HPO terms together for 
visualization and also allows users to display source laboratory tests including subject, LOINC 
code, FHIR resource id, effective time and the corresponding HPO term. The app was written in 
the Java language with the Spring framework. The app uses the LOINC to HPO conversion 
algorithm described in fig. S1. The app is deposited at Github and can be accessed at 
(https://github.com/OCTRI/poc-hpo-on-fhir). 
 
Command-Line application for gathering FHIR server statistics 
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We created a command-line application that finds all laboratory tests for a patient on a FHIR 
server and attempts to convert them to HPO. The conversion results, both successes and failures, 
are stored in a relational database to aid in translational research. We ran the application on 7 
common FHIR sandboxes and gathered statistics about the LOINCs encountered, the rate of 
success in conversion, and the underlying causes of failure. The application was written in the 
Java language with the Spring framework. Source code, results, and a backup of the database, 
can be accessed at (https://github.com/OCTRI/f2hstats). 
 
Analysis of UNC data on patients with asthma or an asthma-like condition 
For the purposes of demonstrating the potential utility of our library, we examined a deidentified 
EHR dataset extracted from the Carolina Data Warehouse for Health (CDWH) at the University 
of North Carolina (UNC). The data was accessed under a fully executed Data Use Agreement 
between The Jackson Laboratory and UNC. The CDWH is UNC Health Care System’s 
(UNCHCS) enterprise data warehouse, and contains EHR data for all UNCHCS patients from 
2004 through 2016. The sample used for this investigation contains 15681 patients with one or 
more encounters at UNCHCS with an asthma or asthma-like diagnosis (Table S2). The data was 
exported from the UNC EHR system as 8 separate comma-separated value (CSV) files 
containing clinical observations in a variety of data domains, including demographics, encounter 
details, diagnoses, procedures, medications, vital signs, and LOINC-coded lab results. Prior to 
transmission from UNC, the dataset was deidentified according to the Safe Harbor method of the 
Health Insurance Portability and Accountability Act (HIPAA), and all dates were shifted +/- 50 
days.  
 
Using the extracted laboratory data, we converted each LOINC-coded test into an HPO term. We 
note, however, that not every laboratory test result was captured in the available dataset. For each 
patient, we combined test records mapped to the same HPO terms and recorded the counts of 
observations for each HPO term. Then we inferred additional phenotypic abnormalities based on 
the hierarchical structure of HPO, i.e. if a patient was assigned with an HPO term, we infer that 
the patient automatically had phenotypic abnormalities encoded by parent and other ancestor 
terms (fig. S2). We reasoned that an isolated abnormal measurement might represent an artefact 
or might not be typical of the clinical course of the patient, and therefore used a threshold of 3 
observations over the entire observation period in order to classify a patient with the 
corresponding HPO-encoded phenotypic abnormality. We classified a patient not having an 
HPO-encoded phenotypic abnormality only when the patient had never been assigned for such 
an HPO term. Patient age was calculated from the last hospital visit date subtracting the birth 
date and is subject to an inaccuracy of +/- 50 days due to the deidentification procedure (see 
above). Patients that rarely visited hospitals were less likely to receive laboratory tests and thus 
had less phenotypes, so we excluded those that had medical encounters on less than 10 days. 
Patients received more than 3 prednisone prescriptions were considered frequent users.  
 
Statistics 
We applied logistic regression model to determine the weights of being frequent prednisone user 
(values 0 or 1) and having acute asthma diagnosis (values 0 or 1) in determining a patient having 
an HPO-encoded phenotype (values 0 or 1). We excluded HPO terms from analysis of which the 
majority (95%) of the cohort had universal values (all 0 or 1). The natural exponential of the 
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weights ± 1.98 standard deviations were converted to the odd ratio and 95% confidence intervals 
for each variable. 
 
Data cleaning, normalization, wrangling and table joining were conducted by a combination of 
“tidyverse”, “RSQLite” packages in R, SQLite and Java. Logistic regression was conducted with 
the “glm” package in R. All source code is deposited at Github and can be accessed through 
https://github.com/TheJacksonLaboratory/HUSHDataAnalysis. 
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