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Abstract

Motivation: Third-generation sequencing technologies can sequence long reads, which is advancing the
frontiers of genomics research. However, their high error rates prohibit accurate and efficient downstream
analysis. This difficulty has motivated the development of many long read error correction tools, which
tackle this problem through sampling redundancy and/or leveraging accurate short reads of the same
biological samples. Existing studies to asses these tools use simulated data sets, and are not sufficiently
comprehensive in the range of software covered or diversity of evaluation measures used.
Results: In this paper, we present a categorization and review of long read error correction methods, and
provide a comprehensive evaluation of the corresponding long read error correction tools. Leveraging
recent real sequencing data, we establish benchmark data sets and set up evaluation criteria for a
comparative assessment which includes quality of error correction as well as run-time and memory usage.
We study how trimming and long read sequencing depth affect error correction in terms of length distribution
and genome coverage post-correction, and the impact of error correction performance on an important
application of long reads, genome assembly. We provide guidelines for practitioners for choosing among
the available error correction tools and identify directions for future research.
Availability: The source code is available at https://github.com/haowenz/LRECE.
Contact: aluru@cc.gatech.edu
Key words: long read; error correction; benchmark; evaluation

1 Introduction
Third-generation sequencing technologies produce long reads with
average length of 10 Kbp or more that are orders of magnitudes longer
than the short reads available through second-generation sequencing
technologies (typically a few hundred bp). In fact, the longest read length
reported to date is > 1 million bp (Sedlazeck et al., 2018). Longer lengths
are attractive because they enable disambiguation of repetitive regions
in a genome or a set of genomes. The impact of this valuable long-
range information has already been demonstrated for de novo genome
assembly (Loman et al., 2015; Chin et al., 2016; Jain et al., 2018), novel
variant detection (Sedlazeck et al., 2017; Chaisson et al., 2015), RNA-seq
analysis (Gordon et al., 2015), and epigenetics (Rand et al., 2017; Simpson
et al., 2017).

The benefit of longer read lengths, however, comes with the major
challenge of handling high error rates. Currently, there are two widely
used third-generation sequencing platforms – Pacific Biosciences (PacBio)
and Oxford Nanopore Technologies (ONT). Both sequencing platforms
are similar in terms of their high error rates (ranging from 10-20%) with
most errors occurring due to insertions or deletions (indels); however the
error distribution varies (Carneiro et al., 2012; Jain et al., 2015, 2018).
Pacbio sequencing errors appear to be randomly distributed over the
sequence (Korlach and Biosciences, 2013). For ONT on the other hand,
the error profile has been reported to be biased. For example, A to T and T
to A substitutions are less frequent than other substitutions, and indels tend
to occur in homopolymer regions (Jain et al., 2015; Ashton et al., 2015).
These error characteristics pose a challenge for long read data analyses,
particularly for detecting correct read overlaps during genome assembly
and variants at single base pair resolution, thus motivating the development
of error correction methods.
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Error correction algorithms are designed to identify and fix or remove
sequencing errors, thereby benefiting resequencing or de novo sequencing
analysis. In addition, the algorithms should be computationally efficient
to handle increasing volumes of sequencing data, particularly in the case
of large, complex genomes. Numerous error correction methodologies
and software have been developed for short reads; we refer readers to
Yang et al. (2012) and Alic et al. (2016) for a thorough review. Given the
distinct characteristics of long reads, i.e., significantly higher error rates
and lengths, specialized algorithms are needed to correct them. Till date,
several error correction tools for long reads have been developed including
PacBioToCA (Koren et al., 2012), LSC (Au et al., 2012), ECTools (Lee
et al., 2014), LoRDEC (Salmela and Rivals, 2014), proovread (Hackl et al.,
2014), NaS (Madoui et al., 2015), Nanocorr (Goodwin et al., 2015), Jabba
(Miclotte et al., 2016), CoLoRMap (Haghshenas et al., 2016), LoRMA
(Salmela et al., 2016), HALC (Bao and Lan, 2017), FLAS (Bao et al.,
2017), FMLRC (Wang et al., 2018), HG-CoLoR (Morisse et al., 2018)
and Hercules (Firtina et al., 2018).

In addition, error correction modules have been developed as part of
long read de novo assembly pipelines, such as Canu (Koren et al., 2017)
and HGAP (Chin et al., 2013). In the assembly pipeline, correction helps
by increasing alignment identities of overlapping reads, which facilitates
overlap detection and improves assembly. Many long error correction
tools require and make use of highly accurate short reads to correct long
reads (accordingly referred to as hybrid methods). Others, referred to as
non-hybrid methods, perform self-correction of long reads using overlap
information among them.

A few review studies have showcased comparisons among
rapidly evolving error correction algorithms to assess state-of-the-art.
Laehnemann et al. (2015) provide an introduction to error rates/profiles
and a methodology overview of some correction tools for various short
and long read sequencing platforms, although no benchmark is included.
A review and benchmark for hybrid methods is also available (Mahmoud
et al., 2017). However, the study only used simulated reads and focused
more on speed rather than correction accuracy. Besides, it does not include
non-hybrid methods in the assessment. More recently, LRCstats (La
et al., 2017) was developed for evaluation of long read error correction
software; however, it is restricted to benchmarking with simulated reads.
Furthermore, it does not provide a comprehensive evaluation of many of
the current state-of-the-art correction software.

While benchmarking with simulated reads is useful, it fails to
convey performance in real-world scenarios. Besides the base-level errors
(i.e., indels and substitutions), real sequencing data sets also contain
larger structural errors, e.g., chimeras (Fichot and Norman, 2013).
However, state-of-the-art simulators such as SimLoRD (Stöcker et al.,
2016) only generate reads with base-level errors rather than structural
errors. Furthermore, Miclotte et al. (2016) consistently observed worse
performance when using real reads instead of simulated reads, suggesting
that simulation may fail to match the characteristics of actual error
distribution. Therefore, benchmarking with real datasets is important.

In this study, we establish benchmark datasets, present an evaluation
methodology suitable to long reads, and carry out comprehensive
evaluation of the quality and computational resource requirements of
state-of-the-art long read correction software. We also study the effect
of trimming and different sequencing depths on correction quality. To
understand impact of error correction on downstream analysis, we perform
assembly using corrected reads generated by various tools and assess
quality of the resulting assemblies.

2 Overview of long read error correction methods

2.1 Hybrid methods

Hybrid methods take advantage of high accuracy of short reads (error rates
often < 1%) for correcting errors in long reads. An obvious requirement
is that the same biological sample be sequenced using both short read
and long read technologies. Based on how these methods make use of
short reads, we further divide them into two categories: alignment-based
and assembly-based. The first category includes Hercules, CoLoRMap,
Nanocorr, Nas, proovread, LSC and PacBioToCA, whereas HG-CoLoR,
HALC, Jabba, LoRDEC, and ECTools are in the latter. The ideas
underlying the methods are summarized below.

2.1.1 Short-read-alignment-based methods
As a first step, these methods align short reads to long reads using a variety
of aligners, e.g. BLAST (Altschul et al., 1990), Novoalign (http://
www.novocraft.com/products/novoalign/). As long reads
are usually error-prone, some alignments can be missed or biased. Thus,
most of the tools in this category utilize various approaches to increase
accuracy of alignments. Drawing upon the alignments, these methods use
distinct approaches to generate corrected reads.

PacBioToCA: Consensus sequences for long reads are generated by
multiple sequence alignment of short reads using AMOS consensus
module (Pop et al., 2004).

LSC: Short reads and long reads are compressed using homopolymer
compression (HC) transformation prior to alignment. Then error correction
is performed at HC points, mismatches and indels by temporarily
decompressing the aligned short reads and then generating consensus
sequences. Finally, the corrected sequences are decompressed.

proovread: Similar to PacBioToCA and LSC, short reads are mapped to
long reads and then the resulting alignments are used to call consensus. But
its alignment parameters are carefully selected and adapted to the PacBio
sequencing error profile. To further improve correction, the phred quality
score and Shannon entropy value are calculated at each nucleotide for
quality control and chimera detection, respectively. To reduce run time,
an iterative correction strategy is employed. Three pre-correction steps are
performed using increasing subsamples of short reads. In each step, the
long read regions are masked to reduce alignment search space once they
are corrected and covered by a sufficient number of short read alignments.
In the final step, all short reads are mapped to the unmasked regions to
make corrections.

NaS: Like the other tools in this category, it first aligns short reads with
long reads. However, only the stringently aligned short reads are found
and kept as seed-reads. Then instead of calling consensus, similar short
reads are retrieved with these seed-reads. Micro-assemblies of these short
reads are performed to generate contigs, which are regarded as corrected
reads. In other words, the long reads are only used as template to select
seed-reads.

Nanocorr: It follows the same general approach as PacBioToCA and LSC,
by aligning short reads to long reads and then calling consensus. But before
the consensus step, a dynamic programming algorithm is utilized to select
an optimal set of short read alignments that span each long read.

CoLoRMap: CoLoRMap does not directly call consensus. Instead, for
each long read region, it runs a shortest path algorithm to construct a
sequence of overlapping short reads aligned to that region with minimum
edit distance. Subsequently, the region is corrected by the constructed
sequence. In addition, for each uncovered region (called gap) on long reads,
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any unmapped reads with corresponding mapped mates are retrieved and
assembled locally to fill the gap.

Hercules: It first aligns short reads to long reads. Then unlike other tools,
Hercules uses a machine learning-based algorithm. It creates a profile
Hidden Markov Model (pHMM) template for each long read and then
learns posterior transition and emission probabilities. Finally, the pHMM
is decoded to get the corrected reads.

2.1.2 Short-read-assembly-based methods
These methods first perform assembly with short reads, e.g., generate
contigs using an existent assembler, or only build the de Bruijn graph
(DBG) based on them. Then the long reads are aligned to the assemblies,
i.e., contigs/unitigs or a path in the DBG, and corrected. Algorithms for
different tools in this category are summarized below.

ECTools: First, unitigs are generated from short reads using any available
assembler and aligned to long reads. Afterwards, the alignments are filtered
to select a set of unitigs which provide the best cover for each long read.
Finally, differences in bases between each long read and its corresponding
unitigs are identified and corrected.

LoRDEC: Unlike ECTools which generates assemblies, LoRDEC only
builds a DBG of short reads. Subsequently, it traverses paths in the
DBG to correct erroneous regions within each long read. The regions
are replaced by the respective optimal paths which are regarded as the
corrected sequence.

Jabba: It adopts a similar strategy as in LoRDEC, and builds a DBG of
short reads followed by aligning long reads to the graph to correct them.
The improvement is that Jabba employs a seed-and-extend strategy using
maximal exact matches (MEMs) as seeds to accelerate the alignment.

HALC: Similar to ECTools, short reads are used to generate contigs as the
first step. Unlike other methods which try to avoid ambiguous alignments
(Koren et al., 2012; Yang et al., 2010), HALC aligns long reads to the
contigs with a relatively low identity requirement, thus allowing long reads
to align with their similar repeats which might not be their true genomic
origin. Then long reads and contigs are split according to the alignments
so that every aligned region on read has its corresponding aligned contig
region. A contig graph is constructed with the aligned contig regions
as vertices. A weighted edge is added between two vertices if there are
adjacent aligned long read regions supporting it. The more regions support
the edge, the lower is the weight assigned to it. Each long read is corrected
by the path with minimum total weight in the graph. Furthermore, the
corrected long read regions are refined by running LoRDEC, if they are
aligned to similar repeats.

FMLRC: This software uses a DBG-based correction strategy similar to
LoRDEC. However, the key difference in the algorithm is that it makes two
passes of correction using DBGs with different k-mer sizes. The first pass
does the majority of correction, while the second pass with a longer k-mer
size corrects repetitive regions in the long reads. Note that a straightforward
implementation of a DBG does not support dynamic adjustment of k-mer
size. As a result, FMLRC uses FM-index to implicitly represent DBGs of
arbitrary length k-mers.

HG-CoLoR: Similar to FMLRC, it avoids using a fixed k-mer size for the
de Bruijn graph. Accordingly, it relies on a variable-order de Bruijn graph
structure (Kowalski et al., 2015). It also uses a seed-and-extend approach
to align long reads to the graph. However, the seeds are found by aligning
short reads to long reads rather than directly selecting them from the long
reads.

2.2 Non-hybrid methods

These methods perform self-correction with long reads alone. They
all contain a step to generate consensus sequences using pairwise
alignment/overlap information. However, the respective methods vary in
how they find the overlaps and generate consensus sequences. The details
are as follows.

FLAS: It takes all-to-all long read overlaps computed using MECAT (Xiao
et al., 2017) as input, and clusters the reads that are aligned with each
other. In case of ambiguous instances, i.e., the clusters that share the
same reads, FLAS evaluates the overlaps by computing alignments using
sensitive alignment parameters either to augment the clusters or discard
the incorrect overlaps. The refined alignments are then used to correct the
reads. To achieve better accuracy, it also corrects errors in the uncorrected
regions of the long reads. Accordingly, it constructs a string graph using
the corrected regions of long reads, and aligns the uncorrected ones to the
graph for further correction.

LoRMA: By gradually increasing the k-mer size, LoRMA iteratively
constructs DBGs using k-mers from long reads exceeding a specified
frequency threshold, and runs LoRDEC to correct errors based on the
respective DBGs. After that, a set of reads similar to each read termed
friends are selected using the final DBG, which should be more accurate
due to several rounds of corrections. Then, each read is corrected by the
consensus sequence generated by its friends.

Canu error correction module: As a first step during the correction
process, Canu computes all-versus-all overlap information among the
reads using a modified version of MHAP (Berlin et al., 2015). It uses
a filtering mechanism during the correction to favor true overlaps over the
false ones that occur due to repetitive segments in genomes. The filtering
heuristic ensures that each read contributes to correction of no more than
D other reads, where D is the expected sequencing depth. Finally, a
consensus sequence is generated for each read using its best set of overlaps.

3 Materials and Methods
We selected data sets from recent publicly accessible genome sequencing
experiments. For benchmarking the different programs, our experiments
used genome sequences from multiple species and different sequencing
platforms with recent chemistry, e.g., R9/R7 for ONT or P6-C4/P5-C3 for
PacBio. We describe our evaluation criteria and use it for a comprehensive
assessment of the correction methods/software.

3.1 Benchmark data sets

Our benchmark includes resequencing data from three reference genomes
– Escherichia coli K-12 MG1655 (E. coli), Saccharomyces cerevisiae
S288C (yeast), and Drosophila melanogaster ISO1 (fruit fly). The biggest
hurdle when benchmarking with real data is the absence of ground truth
(i.e., perfectly corrected reads). However, the availability of reference
genomes of these strains enables us to evaluate the output of correction
software in a reliable manner using the reference. Essentially, differences
in a corrected read with respect to the reference imply uncorrected errors.
A summary of the selected read data sets is listed in Table 1. We leveraged
publicly available high coverage read data sets of the selected genomes
available from all three platforms – Illumina (for short reads), Pacbio, and
ONT. In addition, some of these samples were sequenced using multiple
protocols, yielding reads of varying quality. This enabled us to do a
thorough comparison among error correction software across various error
rates and error profiles.
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Table 1. Details of the benchmark data sets

Data
set

Sequencing
specification

Sequencing
NCBI
accession

Sequencing
deptha

Read
length
(bp)b

Number of
reads

Reference
genome

Genome
length
(bp)

Reference
NCBI
accession

D1-I Illumina Miseq -c 373x 2×151 2×5 729 470

E. coli
K-12 MG1655

4 641 652 NC_000913.3
D1-P Pacbio P6C4 -d 161x 13 982 87 217

D1-O1 MinION R7.3 1D PRJEB7385e 53x 8631 44 540

D1-O2 MinION R7.3 2D PRJEB7385e 29x 9356 22 270

D2-I Illumina Miseq ERR1938683 81x 2×150 2×3 318 467

S. cerevisiae
S288c

12 157 105 PRJNA128
D2-P Pacbio P6C4 PRJEB7245 120x 8656 239 408

D2-O1 MinION R9&R7.3 pass 2D -f 31x 11 693 42 325

D2-O2 MinION R9&R7.3 all 2D -f 61x 11 075 90 791

D3-I Illumina Nextseq SRX3676782 44x 2×151 2×20 619 401
D. melanogaster
ISO1

143 726 002 PRJNA164D3-P Pacbio P5C3 SRX499318 204x 15 132 6 864 972

D3-O MinION R9.5 1D SRX3676783 32x 11 934 663 784

aSequencing depth is estimated using the sequencing data and reference genome size.
bN50 is reported for PacBio or ONT reads, since their lengths vary.
cDownloaded from Illumina at ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R1.fastq.gz
and ftp://webdata:webdata@ussd-ftp.illumina.com/Data/SequencingRuns/MG1655/MiSeq_Ecoli_MG1655_110721_PF_R2.fastq.gz.
dDownloaded from https://github.com/PacificBiosciences/DevNet/wiki/E.-coli-Bacterial-Assembly.
eFor PRJEB7385, only ERX708228, ERX708229, ERX708230 and ERX708231 are included.
fPass and all 2D sequencing data are available from EBI Bio-Studies with accession number S-BSST17.

Dataset D1-O1 is a recent MinION sequencing of E. coli
genome (Loman et al., 2015). Its 2D reads were also extracted from the
raw reads using poretools (Loman and Quinlan, 2014), and was included
into the benchmark as D1-O2. Note that raw reads are more erroneous than
the 2D reads, which enabled the evaluation of the tools across different
error rates. Giordano et al. (2017) recently released a bundle of PacBio,
MinION, and Miseq sequencing data of the yeast genome. For the same
purpose, pass 2D reads and the combination of pass and fail 2D reads of
the MinION data were downloaded and regarded as two separate data sets
in our benchmark (D2-O1 and D2-O2).

To conduct performance evaluation under different sequencing depths,
yeast sequencing reads (D2-P and D2-O1) were subsampled randomly
using Seqtk (https://github.com/lh3/seqtk). Subsamples
with average depth of 10x and 20x were generated for MinION reads.
In addition, 10x, 20x, 30x, 60x and 90x PacBio read subsamples
were generated from D2-P. Details of these subsamples are available in
Supplementary Table 1.

3.2 Evaluation methodology

Our evaluation method takes uncorrected reads, corrected reads, and a
reference genome as input. Both the uncorrected and corrected reads
were filtered using a user defined length (default 500). Reads which
were too short to include in downstream analysis were dropped during
the filtration. Filtered reads were aligned to the reference genome using
Minimap2 (Li, 2018). Majority of reads align to a single position in the
reference. Fraction of base pairs with ambiguous or split read mappings is
found to be insignificant (Supplementary Table 2). This can be attributed
to two reasons. First, the reads were sequenced from the same reference
genome to which they are aligned. Second, as the reads are long (> 500

bp), majority of the base pairs map uniquely to the reference. As a result,
we retain only the primary alignment for a read with multiple mappings
or split alignments.

In an ideal scenario, an error correction software should take each
erroneous long read and produce the error-free version of it, preserving
each read and its full length. To assess how close to the ideal one can get,
measures such as error rate post-correction or percentage of errors removed

(termed gain; see Yang et al. (2012)) can be utilized. However, long
read error correction programs do not operate in this fashion. They may
completely discard some reads or choose to split an input read into multiple
reads when the high error rate cannot be reckoned with. In addition, short
read assembly based error correction programs use long read alignments
to de Bruijn graphs, and produce sequences corresponding to the aligned
de Bruijn graph paths as output reads instead. Though original reads may
not be fully preserved, all that matters for effective use of error correction
software is that its output consists of sufficient number of high quality long
reads that reflect adequate read lengths, sequencing depth, and coverage
of the genome. Accordingly, our evaluation methodology reflects such
assessment.

We measure the number of reads and total bases output by each error
correction software, along with the number of aligned reads and total
number of aligned bases extracted from alignment statistics, because
they together reveal the effectiveness of correction. Besides, statistics
which convey read length distribution such as maximum length and
N50 were calculated to assess effect of the correction process on read
lengths. Fraction of the genome covered by output reads is also reported
to assess if there are regions of the genome that lost coverage or suffered
significant deterioration in coverage depth post-correction. Any significant
drop on these metrics can be a potential sign of information loss during
the correction. Finally, alignment identity is calculated by the number of
matched bases divided by the alignment length, averaged over all reads.
Tools which achieve maximum alignment identity with minimum loss of
information are desirable.

As part of this study, we provide an evaluation tool to automatically
generate the evaluation statistics mentioned above. Besides, we provide a
wrapper script which can run state-of-the-art error correction software on a
grid engine given any input data from user. Using the scripts, two types of
evaluations can be conducted. Users can either evaluate the performance
on a list of tools with their own data to find a suitable tool for their studies,
or they can run any correction tool with the benchmark data and compare
it with other state-of-the-art tools.
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4 Experimental results and discussion

4.1 Experimental setup

All tests were run on the Swarm cluster located at Georgia Institute of
Technology. Each compute node in the cluster has dual Intel Xeon CPU
E5-2680 v4 (2.40GHz) processors equipped with a total of 28 cores and
256GB main memory. The cluster is set up using 64-bit Red Hat Linux
kernel version 2.6.32.

4.2 Evaluated software

We evaluated 15 long read error correction programs in this study:
Hercules, HG-CoLoR, FMLRC, HALC, CoLoRMap, Jabba, Nanocorr,
proovread, LoRDEC, ECTools, LSC, PacBioToCA, FLAS, LoRMA and
the error correction module in Canu. NaS was not included in the evaluation
because it requires Newbler assembler which is no longer available
from 454. The command line parameters were chosen based on user
documentations of each software (Supplementary note section “Versions
and configurations”). The tools were configured to run exclusively on
a single compute node and allowed to leverage all the 28 cores if
multi-threading is supported. A cutoff on wall time was set to three days.

4.3 Performance on benchmark data sets

We evaluated the quality and computational resource requirements of each
software on our benchmark data sets (Table 1). Results for the three
different datasets are shown in Tables 2, 3 and 4, respectively. Because
multiple factors are at play when considering accuracy, it is important to
consider their collective influence in assessing quality of error correction.
In what follows, we present a detailed and comparative discussion on
correction accuracy, runtime and memory-usage. In addition, to guide
error correction software users and future developers, we provide further
insights into the strengths and limitations of various approaches that
underpin the software. This includes evaluating their resilience to handle
various sequencing depths, studying the effect of discarding or trimming
input reads to gain higher accuracy, and impact on genome assembly.

4.3.1 Correction quality
We measure quality using the number of reads and total bases output
in comparison with the input, the resulting alignment identity, fraction
of the genome covered and read length distribution including maximum
size and N50 length. From Tables 2, 3 and 4, we gather that the best
performing hybrid methods (e.g., FMLRC) are capable of correcting
reads to achieve base-level accuracy in the high 90’s. For the E. coli
and yeast data sets, many of these programs achieve alignment identity
> 99%. A crucial aspect to consider here is whether the high accuracy is
achieved while preserving input read depth and N50. Few tools (e.g. Jabba,
proovread) seem to attain high alignment identity at the cost of producing
shorter reads and reduced depths because they choose to either discard
uncorrected reads or trim the uncorrected regions. This may have a negative
impact on downstream analyses. This trade-off is further discussed later
in Section 4.3.4.

Among the hybrid methods, a key observation is that short-read-
assembly-based methods tend to show better performance than short-read-
alignment-based methods. We provide the following explanation. Given
that long reads are error-prone, short read alignment to long reads is more
likely to be wrong (or ambiguous) than long read alignment to graph
structures built using short reads. Errors in long reads can cause false
positives in identifying the true positions where the respective short reads
should align, which causes false correction later. For example, during the
correction of D3-P, the alignment identity of corrected reads generated by
CoLoRMap in fact decreased when compared to the uncorrected reads.
The reason is that CoLoRMap uses BWA-mem (Li, 2013) to map short

reads, which is designed to report best mapping. However, due to the high
error rates, the best mapping is not necessarily the true mapping. Large
volume of erroneous long reads in D3-P can lead to many false alignments,
which affected the correction process. On the other hand, long read lengths
make it possible to have higher confidence when aligning them to paths in
the graph. Therefore, in most of the experiments, assembly-based methods
were able to produce reasonable correction.

Non-hybrid correction is more challenging as it relies solely on
overlaps between erroneous long reads, yet the tools in this category yield
competitive accuracy in many cases. However, non-hybrid methods may
significantly reduce read count and/or read lengths, and completely fail
when the original long reads are highly erroneous. For example, neither
Canu nor LoRMA was able to correct D1-O1 where average input identity
is only 63.46%. FLAS also discarded most of the reads.

4.3.2 Runtime and memory usage
Scalability of the correction tools is an important aspect to consider in
their evaluation. Slow speed or high memory usage makes it difficult
to apply them to correct large data sets. Our results show that hybrid
methods, in particular assembly-based methods, are much faster than the
rest. For instance, PacBioToCA and LSC failed to generate corrected reads
in three days for D1-P, while most of the assembly-based tools finished
the same job in less than one hour. Nanocorr, ECTools and LSC were
unable to finish the correction of D2-O2 in three days, which was finished
by FMLRC or LoRDEC in 30 minutes. Although proovread can complete
the corrections of D2-P, D2-O1 and D2-O2, the run-time was 49.3, 17.5
and 29.3 times longer, respectively, than run-time needed by FMLRC.
Moreover, assembly-based methods, e.g., LoRDEC and FMLRC, used less
memory in most of the experiments. Therefore, in terms of computational
performance, users should give priority to assembly-based methods over
short-read alignment-based methods.

Among the non-hybrid methods, LoRMA’s memory usage was
generally the highest among all the tools, and was slower than assembly-
based methods. However, Canu showed superior scalability. Owing to a
fast long read overlap detection algorithm using MinHash (Berlin et al.,
2015), Canu was able to compute long read overlaps and used them to
correct the reads in reasonable time, which is comparable to most of the
hybrid methods. The memory footprint of Canu was also lower than many
hybrid-methods. However, Canu did not finish the correction of D3-P in
three days probably because this data set is too large to compute pairwise
overlaps. FLAS showed performance comparable to Canu as FLAS also
leverages the fast overlap computation method in MECAT (Xiao et al.,
2017).

4.3.3 Effect of long read sequencing depth on error correction
Requiring high sequencing coverage for effective error correction can
impact both cost and time consumed during sequencing and analysis. The
relative cost per base pair using third-generation sequencing is still several
folds higher when compared to the latest Illumina sequencers (Sedlazeck
et al., 2018). Accordingly, we study how varying long read sequencing
depth affects correction quality, while keeping the short read data set fixed.
We conducted this experiment using data sets D2-P and D2-O1 with various
depth levels obtained using random sub-sampling. The output behavior of
the correction tools is shown in Supplementary Tables 3-7.

For corrected reads generated by hybrid methods, no significant change
on the metrics was observed except those generated by CoLoRMap.
The alignment identity of its corrected reads increased with decreased
sequencing depth. This observation is consistent with the experimental
results reported by its authors. Similarly, CoLoRMap did not perform well
on large data sets such as D3-P and D3-O as large data sets increase the
risk of false positive alignments (discussed previously in Section 4.3.1).
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Table 2. Experimental results for E. coli data sets

Data
set

Method # Reads
# Bases
(Mbp)

# Aligned
reads

# Aligned
bases
(Mbp)

Maximum
length
(bp)

N50
(bp)

Genome
fraction
(%)

Alignment
identity
(%)

CPU time
(hh:mm:ss)

Wall time
(hh:mm:ss)

Memory
usage
(GB)

D1-P Original 85 460 748.0 82 886 688.0 44 113 13 990 100.000 86.8763 - - -
FLAS 69 327 632.3 68 786 621.2 40 117 13 212 100.000 99.5959 09:47:50 00:56:45 4.9

LoRMA 330 811 623.3 330 715 623.0 22 499 2441 100.000 99.6814 45:24:49 02:10:36 67.2

Canu 9283 168.1 9193 166.7 39 693 20 391 100.000 99.6970 07:47:33 00:27:14 6.0

D1-P Hercules - - - - - - - - - >72:00:00 -
+ HG-CoLoR - - - - - - - - - - -
D1-I FMLRC 85 260 706.5 83 320 669.9 44 084 13 364 100.000 99.6983 03:05:06 00:30:07 9.8

HALC 85 256 711.1 84 030 661.7 44 117 13 399 100.000 99.4374 60:41:59 16:02:32 30.2

CoLoRMap 85 674 730.7 83 765 678.6 44 113 13 641 100.000 95.2930 31:35:16 02:53:33 34.9

Jabba 77 508 620.2 77 508 619.7 41 342 12 557 99.258 99.9624 02:05:09 00:12:01 37.0

Nanocorr 73 368 504.9 73 316 493.1 41 079 10 796 100.000 98.3257 1862:59:19 70:57:19 15.1

proovread 222 354 559.2 222 337 558.7 33 359 4087 100.000 99.9615 68:32:55 14:14:44 53.9

LoRDEC 85 324 716.9 83 507 665.9 44 311 13 491 100.000 98.4149 15:03:42 00:40:05 2.0

ECTools 55 687 577.4 55 687 575.7 39 772 13 583 100.000 99.8592 11:25:22 00:29:49 8.2

LSC - - - - - - - - - >72:00:00 -
PacBioToCA - - - - - - - - - >72:00:00 -

D1-O1 Original 38 919 245.7 21 663 105.1 43 624 8664 100.000 63.4565 - - -
FLAS 404 2.4 397 2.1 22 733 6364 21.155 64.9588 00:08:51 00:03:43 1.7

LoRMA - - - - - - - - - - -
Canu - - - - - - - - - - -

D1-O1 Hercules 38 919 245.7 21 696 105.2 43 624 8666 100.000 63.4856 19:21:43 00:45:27 16.1

+ HG-CoLoR 37 264 262.9 37 258 236.8 73 992 9424 100.000 99.5605 46:04:31 02:21:57 36.9

D1-I FMLRC 38 909 258.3 31 066 222.9 46 350 9163 100.000 98.9815 03:05:16 00:28:23 9.6

HALC 39 108 252.6 35 694 139.7 43 714 8874 100.000 85.3297 12:19:51 01:54:56 20.9

CoLoRMap 39 018 250.8 30 721 151.9 44 638 8836 100.000 77.4829 26:13:04 01:12:00 10.2

Jabba 17 139 121.9 17 139 121.8 38 395 8807 97.808 99.9780 02:12:28 00:11:52 37.0

Nanocorr 1605 1.5 1605 1.5 17 174 903 25.729 92.4350 767:46:55 27:37:41 10.5

proovread 78 172 74.0 78 172 74.0 15 210 950 99.978 99.9165 17:37:12 03:59:56 15.7

LoRDEC 38 948 251.0 31 604 147.9 44 553 8853 100.000 78.5298 06:17:23 00:19:12 1.8

ECTools 1488 10.7 1488 10.7 33 223 8038 83.794 99.7331 05:17:17 00:12:59 8.5

LSC 158 0.7 138 0.5 14 850 6583 10.801 67.0331 41:42:43 01:50:06 3.0

PacBioToCA 47 0.0 47 0.0 1250 585 0.596 99.6878 02:45:13 01:11:11 3.2

D1-O2 Original 19 534 132.6 19 387 123.6 47 133 9387 100.000 79.9361 - - -
FLAS 15 929 101.7 15 929 100.7 40 893 7714 99.828 90.5239 00:29:56 00:04:35 1.6

LoRMA 1671 1.4 1671 1.4 2095 936 2.515 97.9661 00:52:13 00:03:44 63.7

Canu 17 162 121.2 17 162 120.9 44 503 8919 99.862 93.3223 02:16:32 00:11:37 3.0

D1-O2 Hercules 19 522 133.8 19 386 124.8 47 447 9462 100.000 86.8682 130:03:16 05:22:31 8.9

+ HG-CoLoR 19 481 133.9 19 481 131.2 51 724 9462 100.000 99.5425 33:13:57 02:15:03 79.6

D1-I FMLRC 19 478 133.4 19 417 133.0 46 399 9432 100.000 99.9380 00:54:14 00:23:33 9.7

HALC 19 518 133.7 19 508 130.3 46 405 9441 100.000 99.7931 08:56:07 01:33:45 12.9

CoLoRMap 20 084 135.7 20 047 129.3 47 187 9504 100.000 97.0861 15:01:21 00:57:28 10.3

Jabba 19 455 124.2 19 455 124.1 42 474 9028 98.816 99.9562 02:11:03 00:11:37 37.0

Nanocorr 18 822 125.2 18 822 121.7 39 244 9107 100.000 96.9823 426:12:04 15:42:56 14.6

proovread 32 459 125.0 32 459 124.9 40 936 6052 99.978 99.9679 10:33:29 01:50:39 15.4

LoRDEC 19 514 134.0 19 473 125.4 47 077 9468 100.000 98.4746 03:05:48 00:13:07 1.8

ECTools 13 698 116.5 13 698 116.5 43 446 9427 100.000 99.8295 04:04:21 00:10:11 8.2

LSC 17 369 117.6 17 369 113.7 46 990 8873 100.000 88.3439 44:21:47 02:30:34 48.6

PacBioToCA - - - - - - - - - >72:00:00 -

Note: LoRMA and Canu failed to produce any corrected reads for D1-O1. HG-CoLoR reported an error when correcting D1-P. The corrected reads generated by PacBioToCA
was less than 0.05 million bases for D1-O1.

On the other hand, the performance of non-hybrid methods deteriorated
significantly when sequencing depth was decreased. As non-hybrid
methods leverage overlap information to correct errors, they require
sufficient long read coverage to make true correction. The genome fraction
covered by corrected reads produced by LoRMA decreased from 99.59%
to 82.97% when sequencing depth dropped from 90x to 60x, and further
decreased to 9.61%, 5.39% and 3.78% for 30x, 20x and 10x respectively,

implying loss of many long reads after correction. The alignment identities
were still greater than 99% using all subsamples because LoRMA trimmed
the uncorrected regions. For corrected reads generate by Canu, no
significant change on genome fraction was observed. But the alignment
identity dropped from above 99% to 97.03% and 95.63% for 20x and 10x
sequencing depths, respectively. FLAS showed similar performance but
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Table 3. Experimental results for yeast data sets

Data
set

Method # Reads
# Bases
(Mbp)

# Aligned
reads

# Aligned
bases
(Mbp)

Maximum
length
(bp)

N50
(bp)

Genome
fraction
(%)

Alignment
identity
(%)

CPU time
(hh:mm:ss)

Wall time
(hh:mm:ss)

Memory
usage
(GB)

D2-P Original 239 408 1462.7 235 620 1332.6 35 196 8656 99.976 87.2637 - - -
FLAS 173 187 1093.2 173 046 1078.8 30 046 8132 99.976 99.5777 11:46:31 01:15:40 7.9

LoRMA 650 467 1142.0 650 333 1141.4 18 127 2323 99.951 99.7583 172:24:38 07:03:03 72.9

Canu 38 228 453.2 38 172 446.7 28 748 12 021 99.975 99.5864 15:18:34 00:50:12 6.5

D2-P Hercules 239 389 1460.3 235 630 1330.4 35 196 8644 99.976 87.6711 87:53:55 03:18:41 247.8

+ HG-CoLoR - - - - - - - - - - -
D2-I FMLRC 238 706 1380.8 236 883 1311.0 33 658 8185 99.977 99.3889 07:52:17 00:28:55 5.5

HALC 238 787 1395.4 238 097 1287.6 34 785 8270 99.976 99.0796 52:12:11 09:45:10 29.0

CoLoRMap 239 309 1429.6 237 135 1321.3 34 850 8409 99.976 96.3912 18:44:48 03:07:34 37.3

Jabba 202 980 1087.2 202 879 1086.6 30 141 7847 95.627 99.9832 00:38:30 00:04:57 21.4

Nanocorr - - - - - - - - - >72:00:00 -
proovread 230 754 376.3 230 649 376.0 26 168 2331 43.503 99.9251 184:02:07 23:45:37 47.9

LoRDEC 238 847 1405.0 237 278 1297.1 34 896 8326 99.978 97.9568 01:10:03 00:57:17 1.9

ECTools 130 863 946.9 130 832 943.1 28 749 8412 99.810 99.7712 938:25:28 58:25:00 4.3

LSC - - - - - - - - - >72:00:00 -
PacBioToCA 298 309 975.8 298 304 975.0 28 422 5403 98.564 99.9530 117:02:13 10:40:55 26.2

D2-O1 Original 41 626 382.4 39 742 364.9 56 477 11 696 99.976 87.3194 - - -
FLAS 33 435 314.7 32 875 311.2 56 593 11 312 99.570 96.8164 01:51:06 00:14:32 2.8

LoRMA 222 611 263.9 221 363 261.6 21 444 1344 90.443 98.5186 47:06:17 02:06:38 65.5

Canu 34 990 337.1 34 474 331.9 56 946 11 820 99.520 97.4439 7:22:12 00:25:35 5.4

D2-O1 Hercules - - - - - - - - - >72:00:00 -
+ HG-CoLoR - - - - - - - - - - -
D2-I FMLRC 41 615 390.6 40 276 379.7 58 193 11 969 99.976 99.7439 00:48:38 00:14:34 5.5

HALC 41 628 391.1 40 705 375.4 58 196 11 980 99.975 99.2888 11:12:25 01:10:50 5.4

CoLoRMap 41 717 392.1 39 866 376.8 58 557 11 973 99.976 97.2642 08:58:49 01:03:37 18.9

Jabba 37 205 294.2 37 168 294.0 47 266 10 901 94.892 99.9800 00:40:00 00:05:15 21.4

Nanocorr 38 996 366.3 38 972 361.7 41 499 11 715 99.975 99.0147 1140:40:36 46:23:26 37.5

proovread 57 639 172.9 57 611 172.7 35 406 4993 43.482 99.8816 33:05:54 04:14:36 22.9

LoRDEC 41 626 390.9 39 850 373.7 58 306 11 967 99.758 98.6564 05:29:16 00:15:26 1.7

ECTools - - - - - - - - - >72:00:00 -
LSC - - - - - - - - - >72:00:00 -
PacBioToCA 68 254 299.3 68 222 299.1 41 948 7597 99.957 99.8905 48:30:07 04:09:13 16.9

D2-O2 Original 89 273 736.9 69 406 583.7 245 845 11 079 99.976 82.9910 - - -
FLAS 55 821 496.8 55 781 491.2 56 481 10 802 99.759 95.0698 04:09:38 00:31:04 4.6

LoRMA 373 984 459.6 350 297 435.9 18 555 1416 96.659 98.3725 161:46:36 06:34:53 67.8

Canu 53 727 473.4 48 366 451.9 56 767 11 314 99.716 96.8725 10:37:59 00:36:21 7.3

D2-O2 Hercules - - - - - - - - - >72:00:00 -
+ HG-CoLoR - - - - - - - - - - -
D2-I FMLRC 89 268 752.7 73 782 648.7 245 845 11 385 99.976 99.4606 03:31:40 00:18:46 5.4

HALC 89 293 755.0 78 351 619.8 245 822 11 394 99.976 98.7719 19:01:03 02:06:27 7.4

CoLoRMap 89 392 753.4 70 147 607.1 245 845 11 346 99.976 94.6220 11:12:47 01:34:47 24.5

Jabba 63 033 489.7 62 980 489.5 47 266 10 684 95.022 99.9789 00:27:45 00:05:24 21.4

Nanocorr - - - - - - - - - >72:00:00 -
proovread 110 399 219.2 110 328 219.0 35 406 3179 43.512 99.8810 56:07:12 09:04:48 27.7

LoRDEC 89 284 753.5 71 098 605.5 245 831 11 370 99.976 97.2638 10:42:30 00:25:35 2.0

ECTools - - - - - - - - - >72:00:00 -
LSC - - - - - - - - - >72:00:00 -
PacBioToCA 132 633 406.4 132 550 406.1 41 948 5891 99.969 99.8719 67:48:32 05:42:13 19.2

Note: HG-CoLoR could not finish these three tests and reported errors.

genome fraction for 10x sequencing depth was only 90.204%, which is
lower than the 99.919% achieved by Canu.

4.3.4 Effect of discarding reads during correction
Many correction tools opt for discarding input reads or regions within
reads that they fail to correct. As a result, the reported alignment
identity is high (>99%), but much fewer number of bases survive after
correction. This effect is more pronounced in corrected reads generated

by Jabba, proovread, ECTools, PacBioToCA and LoRMA. They either
trim uncorrected regions at sequence ends, or even in the middle, to
avoid errors in the final output which eventually yields high alignment
identity. However, aggressive trimming also makes the correction lossy
and may influence downstream analysis because long range information
is lost if the reads are shortened or broken into smaller pieces. Therefore,
users should be conservative in trimming and turn it off when necessary.
One good practice is to keep the uncorrected regions and let downstream
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Table 4. Experimental results for fruit fly data sets

Data
set

Method # Reads
# Bases
(Mbp)

# Aligned
reads

# Aligned
bases
(Mbp)

Maximum
length
(bp)

N50
(bp)

Genome
fraction
(%)

Alignment
identity
(%)

CPU time
(hh:mm:ss)

Wall time
(hh:mm:ss)

Memory
usage
(GB)

D3-P Original 5 366 088 28 797.8 1 839 681 16 543.5 74 735 15 374 99.191 85.2734 - - -
FLAS 1 435 682 14 585.2 1 428 018 13 574.1 43 556 13 550 98.915 98.8363 271:44:27 36:30:42 53.1

LoRMA - - - - - - - - - - -
Canu - - - - - - - - - >72:00:00 -

D3-P Hercules - - - - - - - - - - -
+ HG-CoLoR - - - - - - - - - - -
D3-I FMLRC 5 246 485 27 354.6 2 477 890 16 543.5 74 735 14 554 99.191 96.5284 327:37:22 13:49:04 31.2

HALC 4 451 474 21 997.5 3 434 779 12 793.3 74 735 14 349 99.178 96.8863 770:35:46 55:58:24 73

CoLoRMap 5 366 107 28 891.6 1 841 822 14 976.8 74 735 15 442 99.189 83.2580 495:11:17 64:52:25 189.4

Jabba 35 549 239.8 35 505 239.1 37 729 10 461 65.616 99.9615 656:05:15 24:33:41 175.8

Nanocorr - - - - - - - - - >72:00:00 -
proovread - - - - - - - - - >72:00:00 -
LoRDEC 5 363 998 28 354.1 2 056 812 15 636.9 74 719 15 078 99.200 92.2954 1011:52:27 36:19:18 5.9

ECTools - - - - - - - - - >72:00:00 -
LSC - - - - - - - - - >72:00:00 -
PacBioToCA - - - - - - - - - >72:00:00 -

D3-O Original 642 255 4609.5 554 083 3857.9 446 050 11 956 98.719 83.5921 - - -
FLAS 423 097 3507.6 422 206 3402.6 64 365 11 517 97.588 95.3301 23:04:50 03:12:50 10.8

LoRMA 703 097 615.5 682 288 592.3 32 644 865 30.338 98.1230 666:37:35 25:52:14 92.8

Canu 430 082 3415.6 421 475 3220.2 254 967 12 090 97.592 96.3739 88:51:10 04:36:20 20.2

D3-O Hercules 642 287 4612.8 554 630 3859.4 449 799 11 966 98.713 83.9340 398:10:17 17:32:36 247.7

+ HG-CoLoR - - - - - - - - - - -
D3-I FMLRC 641 945 4647.2 578 290 3978.2 444 605 12 088 98.592 97.6010 47:45:17 03:06:05 31.2

HALC 643 002 4668.5 611 191 3955.7 451 284 12 115 98.616 97.6634 126:30:01 05:43:37 42.4

CoLoRMap 649 041 4692.1 565 881 3963.8 442 948 12 050 98.715 94.3361 160:00:22 16:07:18 57.3

Jabba 494 546 2878.2 494 430 2876.3 72 501 9305 83.166 99.9745 175:19:34 06:56:29 136.8

Nanocorr - - - - - - - - - >72:00:00 -
proovread - - - - - - - - - >72:00:00 -
LoRDEC 642 882 4655.9 567 878 3921.1 447 726 12 079 98.691 94.0382 152:05:32 05:38:05 5.7

ECTools - - - - - - - - - >72:00:00 -
LSC - - - - - - - - - >72:00:00 -
PacBioToCA - - - - - - - - - >72:00:00 -

Note: LoRMA and HG-CoLoR could not finish these two tests and reported segmentation fault. Hercules could not finish the correction of D3-P and reported segmentation
fault.

analysis tools perform the trimming, e.g. overlap-based trimming after
read correction in Canu.

A direct implication of discarding or trimming reads is the change of
read length distribution. Figure 1 and 2 show the original and corrected
read length distributions. Among all the tools, Hercules, FMLRC, HALC,
CoLoRMAP and LoRDEC can maintain a similar read length distribution
after correction whereas Nanocorr, Jabba, ECTools and prooveread lost
many long reads after correction due to their trimming step. Nanocorr
drops a long read when there is no short read aligning to it. This procedure
can remove many error-prone long reads, which leads to a higher alignment
identity after correction. However, the fraction of discarded reads in
many cases is found to be significant. For example, a mere 1.5 million
bp cumulative length of sequences survived out of 245.7 million bp
data set, after correction of D1-O1. ECTools also generated only 10.7
million corrected bases using this data set. Canu changed the read length
distribution significantly after correction although due to a different reason
(Figure 1). Canu estimates the read length after correction and tries to keep
the longest 40x reads for subsequent assembly. FLAS kept most of the reads
with short length while losing many reads with long length.

Few hybrid-methods managed to generate enough corrected reads with
relatively higher alignment identity. Notably, FMLRC and HG-CoLoR
substantially outperformed other tools using D1-O1 by producing high

alignment identity of 98.98% and 99.56% respectively and maintaining
long read lengths (Table 2, Figure 2). Notably, HG-CoLoR generated one
extremely long read of length 73,992 bp which is substantially longer than
the longest read (43,624 bp) in D1-O1, perhaps due to the use of assembly
DBG during the correction process.

4.3.5 Effect of error correction on genome assembly
We examine the effect of error correction on genome assembly, and
evaluate if quality of error correction correlates well with the quality of
genome assembly performed using corrected reads. To do so, we conducted
an experiment to compute genome assembly using corrected PacBio and
ONT 2D reads of E. coli, i.e., corrected reads for D1-P and D1-O2.
Assembly was computed using Canu and its quality was assessed using
QUAST (Gurevich et al., 2013); results are shown in Table 5.

Considering the assemblies generated using corrected PacBio
reads (D1-P), NGA50 score of >3 million bases was obtained when
using reads generated by FLAS, Canu, FMLRC, Nanocorr, LoRDEC
or ECTools. Surprisingly, the highest NGA50 was obtained when using
corrected reads generated by LoRDEC, but the alignment identity of its
corrected reads was lower than most of the tools. Similarly, the highest
NGA50 was achieved using corrected reads generated by Canu for D1-O2,
but the alignment identity of the corrected reads was 93.32%. Therefore,
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Table 5. Results of genome assembly computed using corrected reads of D1-P and D1-O2

Method # contigs NGA50 (bp)
Largest
contigs (bp)

Total
length (bp)

Genome
fraction (%)

# misassemblies # mismatches
# indels
(<=5bp)

# indels
(>5bp)

Indel
length (bp)

Using corrected reads of D1-P
FLAS 2 3 996 362 4 681 650 4 689 583 99.998 4 4 162 0 167

LoRMA 14 696 878 2 501 146 4 663 900 99.938 4 75 4181 6 4295

Canu 1 3 976 437 4 670 120 4 670 120 99.998 4 7 92 0 95

FMLRC 9 3 821 409 4 657 352 4 831 908 99.998 8 1 4 0 5

HALC 25 2 947 777 4 682 714 5 388 722 99.983 8 541 35 8 257

CoLoRMap 86 1 217 587 1 448 649 5 700 143 99.998 4 42 3 7 478

Jabba 58 138 874 398 327 4 623 296 97.273 1 172 32 3 167

Nanocorr 18 3 095 077 4 646 253 4 931 697 99.998 5 65 34 2 157

proovread 17 695 218 2 446 937 4 693 737 99.855 5 69 17 0 20

LoRDEC 2 3 996 441 4 681 757 4 703 690 99.998 4 66 18 2 55

ECTools 19 3 548 731 4 657 296 5 154 324 99.974 4 592 80 2 188

Using corrected reads of D1-O2
FLAS 14 409 405 960 036 4 447 245 84.860 6 1948 93 990 2531 177 057

LoRMA 4 n/a 3895 7817 0.170 0 15 100 0 133

Canu 1 3 881 246 4 532 581 4 532 581 99.995 4 2834 66 126 284 97 847

Hercules 29 243 628 581 562 4 610 960 98.786 4 2905 6217 269 13 135

HG-CoLoR 13 646 911 1 124 557 4 685 955 99.009 4 167 19 11 310

FMLRC 2 2 510 453 4 636 115 4 661 890 99.859 4 49 23 1 51

HALC 15 663 256 2 201 303 4 797 115 99.503 4 554 75 5 196

CoLoRMap 3 1 135 017 3 739 474 4 642 333 99.726 4 203 115 0 186

Jabba 57 105 474 311 624 4 460 218 95.838 0 117 22 5 179

Nanocorr 2 3 146 849 3 187 382 4 628 016 99.681 4 85 53 1 96

proovread 2 1 453 125 3 325 887 4 642 017 99.987 2 56 18 0 26

LoRDEC 31 495 790 761 345 4 854 139 98.870 4 1302 359 15 680

ECTools 9 895 512 1 311 398 4 646 949 98.558 4 859 366 5 679

LSC 20 422 885 843 894 4 621 853 99.293 4 4219 4591 170 9314

Note: the tools failed to generate corrected reads for any of the two data sets are excluded.
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Fig. 1. Corrected read length distribution for D1-P.

higher alignment identity does not necessarily translate to a better NGA50,
i.e., a more continuous assembly.

We also examined the frequency of mismatches and indels in the
assemblies. For both data sets D1-P and D1-O2, corrected reads generated
by HALC and ECTools produced assemblies with > 500 mismatches,
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Fig. 2. Corrected read length distribution for D1-O1.

significantly higher than the other tools. However, alignment identity of
their corrected reads was either competitive with, or superior to, what is
produced by other tools. Notably, both HALC and ECTools use assembled
contigs from short reads to do error correction. Mis-assemblies of short
reads, especially in repetitive and low-complexity regions, may cause false
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corrections, which leads to errors during assembly (Wang et al., 2018).
Corrected reads produced by FMLRC achieved the least number of errors
in assembly. Meanwhile, its alignment identity was also the highest among
the methods which avoid trimming. Therefore, higher alignment identity
of corrected reads can lead to, but not guarantee, fewer errors in genome
assemblies.

Non-hybrid methods such as LoRMA, Canu produced more indels
than mismatches in their assemblies while most of the hybrid methods
showed the opposite behavior. To further investigate, we visualized the
alignments of corrected reads generated by Canu and FMLRC for D1-O2
in Supplementary Figures 1,2, and 3. More indels were observed in the
alignments of corrected reads generated by Canu than FMLRC. Moreover,
for D1-O2, indels mostly occurred in homoploymers which is consistent
with ONT sequencing error profile. These observations suggest that self-
correction methods are not good at handling indels when compared to
hybrid methods.

5 Conclusions and Future Directions
In this work, we established benchmark data sets and evaluation methods
for comprehensive assessment of long read error correction software.
Our results suggest that hybrid methods aided by short accurate reads
can achieve better correction quality, especially when handling low
coverage-depth long reads, compared with non-hybrid methods. Within
the hybrid methods, assembly-based methods are superior to alignment-
based methods in terms of scalability to large data sets. Besides, better
performance on correction such as preserving higher proportion of input
bases and better alignment identity may lead to, but cannot guarantee,
better results on downstream applications such as genome assembly. The
tools with superior correction performance should be further tested in the
context of applications of interest, to determine which are best suited for
the application of interest.

Users can also select tools according to our experimental results for
their specific expectations. When speed is a concern, assembly-based
hybrid methods are preferred as long as short reads are available. Besides,
hybrid methods are less sensitive to low sequencing depth than non-hybrid
methods. Thus, users are recommended to choose hybrid methods when
sequencing depth is relatively low. In cases where indel errors may cause a
serious negative impact on downstream analyses, hybrid methods should
be preferred over non-hybrid ones.

FMLRC outperformed other hybrid methods in almost all the
experiments. For non-hybrid methods, Canu and FLAS showed better
performance over LoRMA. Hence, these three are recommended as default
when users want to avoid laborious tests on all the error correction tools.

For future work, better self-correction algorithms are expected to
avoid hybrid sequencing, thus reducing experimental labor on short read
sequencing preparation. In addition, most of the correction algorithms run
for days to correct errors in the sequencing of even moderately large and
complex genomes like the fruit fly, and become a bottleneck in sequencing
data analysis. Therefore, more efficient or parallel correction algorithms
should be developed to ease the computational burden. Furthermore, none
of the hybrid tools makes use of paired-end information in their correction,
except CoLoRMap. But the use of paired-end reads in CoLoRMap did
not improve correction performance significantly according to previous
studies. Paired-end reads have already been used to resolve repeats and
remove entanglements in de Bruijn graphs (Bankevich et al., 2012). Since
many error correction tools build de Bruijn graphs to correct long reads,
the paired-end information may also be able to improve error correction.

Most of the published error correction tools focus on correction of
long DNA reads sequenced from a single genome, which also served as
the motivation for our review. Long read sequencing is increasingly gaining

traction for transcriptomics and metagenomics applications. It is not clear
whether the existing tools can be leveraged or extended to work effectively
in such scenarios, and is an active area of research (de Lima et al., 2018).
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Key Points
• Despite the high error rate of long reads, the state-of-the-art correction

tools achieve high correction accuracy and throughput.
• The best hybrid methods show better performance than non-hybrid

methods in terms of correction quality and computing resource usage.
• Few correction tools discard reads, which practitioners are supposed

to be careful with.
• Evaluation of long read error correction should be conducted while

checking its effect on downstream analysis, since better correction
quality does not always imply better accuracy of downstream analysis.
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