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Abstract

A plethora of biological functions are performed through various types of protein-peptide
binding. Prime examples include the protein kinase phosphorylation on peptide substrates and
the binding of major histocompatibility complex to neoantigens in the immune system. Under-
standing the specificity of protein-peptide interactions is critical for unraveling the architectures
of functional pathways and the mechanisms of cellular processes in human cells. Despite mass-
spectrometric techniques were developed for the identification of protein-peptide interactions,
our understanding of the preferences of proteins on their binding peptides is still rudimentary.
As a complementary direction, a line of computational prediction methods has been recently pro-
posed to predict protein-peptide bindings which efficiently provide rich functional annotations
on a large scale. To achieve a high prediction accuracy, these computational methods require a
sufficient amount of data to build the prediction model. However, the number of experimentally
verified protein-peptide bindings is often limited in real cases. For example, a majority of protein
kinases have very few experimentally verified phosphorylation sites (e.g., less than 30 sites) in
existing databases. These methods are thus limited to building accurate prediction models for
only well-characterized proteins with a large volume of known binding peptides and cannot be
extended to predict new binding peptides for less-studied proteins. In this paper, we introduce a
generic framework to address this issue of data scarcity in protein binding prediction. We demon-
strate the applicability of our framework in predicting kinase-specific phosphorylation sites. Our
method uses an effective training strategy to build a prediction model with robust transferabil-
ity. The model is able to predict the phosphorylation sites of a less-studied kinase, even if there
is only a small number of phosphorylation sites known for this kinase. To achieve this, we train
the model via a meta-learning phase followed by a few-shot learning phase. We demonstrate
our framework has better transferability than state-of-the-art methods and is effective in utiliz-
ing limited data to accurately predict phosphorylation sites for less-characterized kinases. The
implementation of our framework is available at https://github.com/luoyunan/MetaKinase.

This paper was selected for oral presentation at RECOMB 2019 and an abstract is published in the conference
proceedings.
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1 Introduction

Proteins interact with signaling molecules called ligands to induce a change in biological activities.
The bonds at the binding site are noncovalent and transient to easily regulate the activation of
certain biological functions. Characteristics of binding specificity measure the types of ligands, such
as peptides or DNA/RNA, that a protein will bind to. As a prime example, protein phosphorylation
is the major molecular mechanism involved in a variety of fundamental cellular processes such as
proliferation, differentiation, and apoptosis [1]. Phosphorylation requires the physical interaction
between a protein kinase and a short peptide, in which the protein kinase adds a phosphoryl group
to the phosphorylated residue in a peptide. The human genome encodes more than 500 unique
kinases which can be organized in a hierarchy of groups, families, and subfamilies [2], and many of
them have evolved to have highly divergent specificities [3]. Despite the recent advances in high-
throughput mass-spec techniques, it is still costly and challenging to experimentally characterize
the specificity of kinase families due to the high specificity diversity, making it a pressing need to
develop computational methods that are capable of capturing kinase specificities. Such challenges
exist in many protein-ligand binding problems, such as for other signaling proteins and MHC
proteins.

Previous computational models have mainly followed the “one-family-one-model” paradigm to
address the challenge of characterizing divergent specificities of different kinase families. That is,
for a given kinase family, a separate machine learning model was built to capture the unique pattern
embedded in the substrate sequences of this family. Many successful applications belong to this
family-specific category, such as NetPhosK (Neural Networks) [4] , KinasePhos (Hidden Markov
Models) [5], PhosPhoPICK (Bayesian Networks) [6], PhosphoPredict (Random Forests) [7], Musit-
eDeep (Convolutional Neural Network) [8], and many others [9–13]. An important prerequisite
of these family-specific methods is the availability of a sufficient amount of high-quality data for
model training. However, this is often not the case: a majority of kinase families have less than 30
experimentally verified phosphorylation sites. As a result, previous studies have to choose to build
family-specific models for well-characterized kinase families (typically <10 families) with abundant
training data [7,8,14]. For those less-studied kinase families, using the family-specific approach fails
to provide satisfactory performance due to the lack of sufficient training data. The data sparsity
thus raises a challenge for the prediction of protein-peptide interactions, as data-driven approaches
highly rely on a large quantity of data to achieve accurate predictions.

To alleviate the data scarcity problem in predicting phosphorylation sites of less-characterized
kinases, recent works have proposed to use a “pan-family” approach to build the prediction model [15,
16]. The idea of this type of approaches is that there exist universal patterns of binding affinity
shared by all kinase families and they could be potentially transferred to benefit the prediction of
less-studied kinase families by integrating all the other kinase families. Specifically, besides peptide
sequences, the pan-family approach also needs to consider kinase sequences as an additional input
to build the universal model for all kinase families. By leveraging the data from all families, the
pan-family model is able to produce accurate predictions for kinases with limited measured data.
The pan-family approach has also been applied in modeling other types of protein-peptide inter-
actions, such as the prediction of binding affinity of major histocompatibility complex (MHC) to
neoantigens [17]. While having been demonstrated to have the superior transferability and be able
to improve the prediction performance of less-characterized families [15], pan-family approaches still
suffer a major limitation: the single model is generally hard to express the specificities of all pro-
tein families given limited model complexity. Therefore, it is reasonable to expect that pan-family
approaches may achieve a worse prediction accuracy than a family-specific model for a particular
family with a relatively large number of training data. How to capture both transferability across
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families and family specificity simultaneously has becomes a new challenge in the prediction of
protein-peptide interactions. To our best knowledge, no previous work has taken the initiative to
tackle this challenge.

As discussed above, the “one-family-one-model” design is able to accurately characterize speci-
ficities of individual families with a large volume of training data but cannot be generalized to
less-studied families. Pan-family approaches can integrate available data of all families but may
lose fine-grained family-specific patterns by merging different families together. To address the
problems of both models, in this work, we propose a new two phases meta-learning framework,
named MetaKinase, for the prediction of kinase phosphorylation sites. In phase one, using multi-
ple training kinase families, we train a model which can generate more adaptable representations
which are broadly suitable for every kinase family (called meta-learning). In phase two, using a few
(e.g., < 10) known phosphorylation sites from a new target kinase family, we fine-tune the model
on this target family to capture its specificity. With the general patterns captured in phase one,
the adaption to the target family in phase two is very sample-efficient: we can tweak the model
by only using a few data points to make it family-specific and accurately predict the specificity
of the target family (called few-shot learning). With its transferability and fast adaptability, our
framework can thus be applied to mitigate the data scarcity issue in characterizing specificities of
less-studied kinases. Even with only a few known phosphorylation sites, the model is still able to
accurately characterize the specificity of the target kinase family.

Apart from previous works, including both family-specific and pan-family approaches, that
primarily focused on the designing of model architecture itself, our work illustrates how to address
the data scarcity challenge in protein-peptide interaction prediction in a new direction, i.e., the way
of training the model. In addition, our framework is model-agnostic: in principle, the framework
can take any model as its the base predictor, as long as the model can be optimized using gradient
descent (e.g., neural network). This includes a wide range of models, including existing predictors
of kinase-specific phosphorylation sites such as DeepSignal [15] and MusiteDeep [8]. In this work,
we develop a simple convolutional neural network (CNN) as the base predictor. We demonstrate
that MetaKinase is capable of accurately predict the phosphorylation sites of a new kinase using
only a few data samples of this kinase. Experiment results show that our framework is effective
and significantly outperforms existing approaches for phosphorylation site prediction when training
data is limited. We also show that our framework is sample-efficient and can quickly capture the
specificity of the test kinase.

2 Data

2.1 Phosphorylation sites

We constructed a dataset of 15-mer peptides to assess the performance of our framework in com-
parison with other methods. Peptides in the dataset all contain the phosphorylation sites (either
Serine (S), Threonine (T) or Tyrosine (Y)) centered in the middle position of the 15 amino acids.
Although longer peptides may improve the prediction performance as reported in [8], length 15 was
widely adopted in previous works [11,15,18] so here we just follow this setting without further op-
timization. These peptides were pulled from public databases UniProt [19] and Phospho.ELM [20],
following the procedure described in [14]. We downloaded reviewed proteins that contain at least
one human phosphorylation sites from UniProt and removed phosphorylation sites without anno-
tated up-stream kinase information. In addition to the UniProt database, phosphorylation sites
from the Phospho.ELM database were also collected. We removed the redundant entries in both of
the two databases and eventually obtained 2, 479 S sites, 657 T sites and 1, 202 Y sites that covered
46 kinases of 25 kinase families.
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2.2 Kinase sequences

The amino acid sequences of human kinase domains were retrieved from KinBase [21]. These
domain sequences were searched using HHblits [22] and re-aligned using HHalign [23] with their
default parameter setting. The multiple sequence alignment was then manually refined by removing
alignment gaps at both ends. We grouped individual kinases into 25 kinase families based on the
hierarchical kinome classification system [21].

2.3 Training and test set

To create the training and test set, for each kinase we randomly divided our downloaded proteins
containing phosphorylation sites into five subsets, where four subsets were used as positive training
samples and the remaining subset was used as positive testing samples. Negative samples were
obtained by extracting S/T/Y sites from the same protein sequence in the training set and the
test set respectively and removing those sites annotated as phosphorylation sites. Here, we also
matched the type phosphorylation residues of a kinase in both the positive samples and negative
samples. For example, if a kinase only phosphorylates Y sites, we only extracted background Y
sites as negative samples for this kinase, excluding S sites and T sites.

3 Data-driven Motivation
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Figure 1: (a) A majority protein kinases have a small amount of known phosphorylation sites. (b)-(c) Family-specific
approaches have limited transferability across kinase families.

To motivate the design of our framework, we first performed exploratory analysis that leads to
two important observations on the data availability of current databases of kinase phosphorylation
sites and the transferability of existing methods.

First, we observed that majority protein kinases have a small number of known phosphorylation
sites (Figure 1a). We extracted all phosphorylation sites from the Phospho.ELM database that had
up-stream kinase annotations [20] (Section 2) and counted the number of known phosphorylation
sites of each protein kinase. From the 309 kinases that had at least one phosphorylation site, we
found that > 78% of protein kinases had < 30 phosphorylation sites and > 50% had < 10 phospho-
rylation sites. In contrast, previous family-specific methods for phosphorylation sites prediction
often required hundreds of phosphorylation sites to build reliable prediction models to prohibit
over-fitting. These methods are thus limited by the current data availability and cannot be used
for kinase families with few experimentally verified data. As a result, how to utilize the small
amount of data of a less-characterized kinase has become a new challenge, and a model that can
integrate available data of other kinases but also capture the specificity of target kinase will be
helpful in mitigating the data scarcity issue.

Second, we observed that family-specific approaches had limited transferability. We bench-
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marked MusiteDeep, one of the state-of-the-art family-specific, deep learning-based methods of
phosphorylation site prediction on the dataset described in Section 2. For each kinase family, we
had a non-overlapped training set and test set. We enumerated all possible combinations of the
training kinase family and the test kinase family and evaluated the prediction performance using
AUROC and AUPRC scores. We found that prediction performance on a test kinase family was
maximized if the model was trained using data from the same family. The averaged AUROC when
trained on the same kinase family, was significantly higher than the best performance achieved by
training on another kinase family (0.93 vs. 0.85; P-value 1.8×10−5). We observed similar significant
gaps in terms of AUPRC (0.73 vs. 0.33; P-value 1.5×10−8). These results suggested that currently
it was difficult to directly apply a model that had been trained on a well-characterized family to
predict phosphorylation sites for a less-characterized family. It is important to develop models that
have better transferability to improve the prediction for less-characterized kinase families.

4 Methods

To enable the prediction of kinase-peptide interactions with only a few samples on the target family,
we used a meta-learning – few-shot learning framework to efficiently integrate the information of
target family and other kinase families (Fig. 2). We developed a convolutional neural network
and trained this network using the meta-learning – few-shot learning strategy, an effective way to
better transfer knowledge/features across different kinase families. The trained model was able to
quickly adapt to a target kinase family, which possibly was less-characterized, using only a few
known interacting peptides of this family. In this section, we will first define the problem setting
of meta-learning and few-shot learning and then describe the details of our framework.

4.1 Overall framework

We are given a set of kinase families T = {T1, . . . , TN} and their corresponding interacting peptides
as training data, and T ∗ is the target kinase family that we want our model to characterize its
specificity as test data. We also assume we observe a few known interacting peptides of T ∗ that
can be used as training data. This setting well resembles the scenario of reality: there are several
well-characterized kinase families (corresponding to set T ) with a sufficient amount of annotated
phosphorylation sites verified, which can be used as high-quality training data for data-driven
approaches. There are also some completely new or less well-studied kinase families with only a
few known phosphorylation sites (e.g., < 10 sites; see Section 3). Our prediction task is to predict
new phosphorylation sites for the rest of peptides without measurements based on all the training
data from T ∪ T ∗.

4.2 Meta-learning phase

The key intuition of meta-learning is that there are some representations of data that are more
transferable than others. For example, given a set of images, one machine learning model can
learn a causal relationship between particular pixels and the labels while another machine learning
model can learn the transition-invariant or rotation-invariant properties of the images. The latter is
obviously more adaptable to other computer vision applications. Similarly, to encourage a general
representation, we employ a meta-learning algorithm [24] to explicitly train a model towards this
objective. Technically, the effect of meta-learning is to find model parameters that are sensitive,
such that small changes in these parameters can lead to large improvements in characterizing the
specificity of a new kinase family.

Formally, let fθ be the base predictor parameterized by θ. For each kinase Ti ∈ T , two sets of
data points (phosphorylation sites) are sampled from the training data, one set DtrainTi

containing

k samples (e.g., k ≤ 10) for training and the other set DvalTi
containing k samples for validation.
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Figure 2: Overview of framework. (a) Previous “one-family-one-model” approach: an individual model is built for a
protein family. (b) Previous “pan-family” approach: a single model is built for all protein families. (c) Our approach: the
model is first trained on all training families to learn a general representation that is broadly suitable for all families and then
fine-tuned using a few data samples of a test family to learn a representation that is specific to the test family.

Let L(fθ,DtrainTi
) be the training loss (e.g., mean-squared error or cross-entropy error) that the

predictor makes on the training samples of kinase Ti. We also have validation loss that defined
similarly. In each iteration of the meta-training stage, let us suppose the current model parameter
is θ. We then sample a batch of kinase families {Ti} from T , and for each sampled kinase family Ti,
we have one or more updates on model parameters which are computed using standard stochastic
gradient descent (SGD),

θ′i = θ − α∇θL(fθ,DtrainTi ), (1)

where α is the learning rate. After we have an updated parameter θ′i for each test family Ti, we
update the original model parameter θ by optimizing the performance of θ′i on the validation set
DvalTi

of each kinase family Ti. That is, we minimize the following meta-loss function

min
θ

∑
Ti∼T

L(fθ′i ,D
val
Ti ) = min

θ

∑
Ti∼T

L(θ − α∇θL(fθ,DtrainTi ),DvalTi ) (2)

This meta-objective can also be optimized by SGD, in which we have the updating rule

θ′ = θ − β∇θ
∑
Ti∼T

L(θ − α∇θL(fθ,DtrainTi ),DvalTi ), (3)

where β is the meta-learning rate. After being trained through the above meta-training phase, the
model can be applied to predict phosphorylation sites of a new kinase family T ∗. At the meta-
testing phase, we assume the target family T ∗ is less-characterized and has only k (e.g., k ≤ 10)
known phosphorylation sites in DtrainT ∗ . To produce predictions of new phosphorylation site for
family T ∗, we first use the inner-update rule in Eq. (1) to train the model on the k-shot samples
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in DtrainT ∗ , adapting its parameters to the target family and capturing both information shared by
multiple families and patterns specific to this family. The model then can be applied to produce
predictions for samples in DtestT ∗ .

The meta-learning algorithm we described above requires two passes of back-propagation to
compute the Jacobian matrix for optimization, which could be computationally inefficient. In
practice, first-order meta-learning is also used for efficiency purpose. We have tested both the
vanilla and the first-order version [25] of meta-learning in our in-house experiments and observed
similar prediction performances for both methods. We thus chose to use the first-order meta-
learning algorithm in all presented results in this work as it took a shorter time to train the model.

The kinase-peptide interactions are labeled with a binary variable, indicating whether that
kinase phosphorylates the peptide (1) or not (0). We thus use the cross-entropy loss, a natural
choice for binary classification, as the loss function in Eq. (2). The dataset of kinase-peptide
interactions we collected is highly imbalanced, as for a kinase we often have two orders of magnitude
more negative samples than positive samples (Sectioin 2). Therefore, during each iteration of the
meta-learning phase, we subsampled negative samples such that the ratio is 1 : 1 between positive
and negative samples. This negative sampling technique was widely used in previous works to
address the data imbalance issue [8, 14]. Therefore, the loss of the predictions that a model fθ
makes on the data DT for a kinase family T is defined as

L(fθ,DT ) =
∑

(ki,pj)∈DT

− log fθ(ki, pj)− Epn∼N(T ) [log(1− fθ(ki, pn))] , (4)

where ki is a kinase in kinase family T and pj is one of its interacting peptide (i.e., kinase ki
phosphorylates peptide pj); pn is a negative peptide of kinse ki, which is sampled from N(T ), the
set of all non-interacting peptides of kinase ki; fθ(·) is the model predicted probability that kinase
ki phosphorylates peptide pj .

To optimize the model, we trained it for 500 meta-iterations. At each iteration, we sampled 40
tasks, with each task being the prediction of k random positive samples and k random negative
samples of a randomly sampled kinase family. Following a previous work [24], we used the Adam
optimizer [26] with default learning rate 0.001 to minimize the objective function (Eq. (3)). We set
the number of inner-updates to 16 (Eq. (1)). The framework was implemented in PyTorch, and
the model was trained on an NVIDIA GTX 1080 GPU.

4.3 Few-shot learning phase

In the second phase, we randomly select k positive samples and k negative samples (k varies
from one to ten) from the target kinase family as training data to fine-tune the model. The rest
positive and negative samples form the testing data. Negative samples are randomly drawn from all
S/T/Y sites, excluding annotated phosphorylation sites, from kinase sequences of the target family
(Section 2). The model is fine-tuned using the updating rule defined in Eq. (1). This random
process is repeated 50 times and the predicting performance is averaged over all the repeats. To
gain enough statistical power, we only evaluate the predicting performance on 25 kinase families.

Our framework is able to task a gradient-based model in an arbitrary form as the base predictor,
including linear model, Support Vector Machine and various types of Neural Networks. In this
work, we choose to use a dual-channel deep neural network as the based predictor (Fig. S1). The
input of the predictor is the kinase domain sequence and the peptide sequence centered on the
phosphorylation site. We use BLOSUM62 matrix [27] to encode the input sequences. The kinase
sequence (∼250 amino acids) and the peptide sequence (15 amino acids) are then processed by one
of the channels in the neural network, respectively. Each channel is a separate convolutional layer
with different lengths of convolution filters, for the purpose of extracting multi-resolution sequence
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patterns. For the channel of kinase sequence, we used 32 filters of size 3, 5 and 7 amino acids to
extract underlying sequence features. A global max pooling operation is performed to select the
maximum activation value in each of 32× 3 = 96 filters and the 96 maximum activation values are
concatenated together as the representation of kinase domain sequence. Similarly, the channel of
peptide sequence has 32 filters of size 3 and 5 amino acids and the 32×2 = 64 maximum activation
values are concatenated together as the representation of the peptide sequence. On top of the
two channels is a fully-connected layer that concatenates the representations of kinase and peptide
sequences to produces the final prediction.

5 Results

5.1 Experiment settings

Following the few-shot learning setting to evaluate our prediction performance, we performed a
leave-one-out experiment on the N = 25 kinase families in the collected dataset. In each evaluation,
one kinase family was withheld as the test family and the other N−1 families were used as training
families. Under the few-shot learning setting, k (e.g., k ≤ 10) known phosphorylation sites of the
test family were also available to the model for training and the remaining samples were used to
assess the model performance. This mimics the real scenario that a less-characterized family has
very few verified phosphorylation sites available and we want to predict new phosphorylation sites
of this family. In the meta-training phase, we used the data of the N − 1 kinase families to train
our model to have a parameter configuration that was broadly suitable for every family. In the
meta-testing phase, we then fine-tuned the model using the k samples of the test family to adapt
the model parameters to be specific to the test family. To facilitate the model training in the
meta-training and fine-tuning stages, we combined the positive samples with the same number of
randomly sampled negative samples (i.e. background peptides centered on non-phosphorylation
S/T/Y sites).

5.2 Baseline methods

We compared our framework against the following prediction approaches:

• Pan-family model: The pan-family approach builds one model for all kinase families. To
ensure a fair comparison, we used the same base predictor in our framework for the pan-family
approach. The only difference between our framework and the pan-family approach is the
training strategy: our framework first trains the model on the N−1 training families through
a meta-learning phase and then fine-tunes the model using k-shot samples of the target family
in the few-shot learning stage, while the pan-family approach trains the model using the N−1
training families as well as the k samples from target family together, following the traditional
supervised training procedure.

• K-nearest neighbor (KNN): The KNN model first collects all the peptides of N − 1
training families together with the k-shot samples of the target family. The test peptide is
then compared to the K most similar training peptides and the prediction follows the majority
voting. The peptides were represented using one-hot encoding and the Euclidean distance
was used as the similarity metric. In this work, K = 5 is used for the majority voting since
it achieved the best performance on validation data.

• MusiteDeep: MusiteDeep [8] is a recent method for kinase-specific phosphorylation sites
prediction. The model uses a convolutional neural network with attention mechanism to
extract features from the input peptide sequences without extensive human efforts for feature
engineering. In comparison, we also ensured the MusiteDeep was trained on the same set of
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training data as our framework (i.e. data of training families and k-shot samples of the target
family).

We did not compare our framework with other existing phosphorylation sites prediction methods
for two reasons: i) The purpose of our experiments is to compare the prediction performance
when only few-shot samples of the test family are given. Under this setting, we need to re-train
the existing methods without giving them a large amount of data from the test family for model
training. Most existing methods, including NetPhorest, GPS, NetPhos and PhosphoPredict, are
available as a web server or released as pre-trained models, which probably have been trained with
sufficient training samples. Therefore, it is difficult to evaluate the prediction performance of these
methods in a fair setting. ii) For existing methods we are comparing to, MusiteDeep is open-sourced
with codes allowing us to train customized models. In addition, recent works [14, 16] showed that
MusiteDeep is one of the state-of-the-art methods, and we think it is a representative method of
existing prediction approaches for phosphorylation sites prediction.

5.3 Few-shot learning performance

The first experiment is to evaluate our framework’s ability to use the few-shot samples to improve
its prediction performance. After training the base predictor with the training families in the
meta-learning phase, we directly evaluate the phosphorylation sites prediction performance for the
base prediction on the target kinase family. We then further fine-tuned the base predictor, in the
few-shot learning stage, using 10-shot samples from the target kinase family. We compared the
prediction performances of the predictor prior to and after the few-shot learning phase (Figure 3).
We found that with the broadly applicable model representation learned through the meta-learning
phase, the predictor can rapidly adapt to a new family and capture its specificity. We observed
the prediction performance of our framework was quickly improved after training on the 10-shot
samples of the target family. This result suggests the potential of our framework in capturing
the specificity of a novel kinase family, even if there are very few phosphorylation sites known for
this family. We also note that the improvements do not solely come from the 10-shot sample but
also the general representation learned by our framework in the meta-learning phase. We show in
Supplementary Fig. S2 that only training the model with the k-shot samples was not enough to
capture the specificity of a target family, emphasizing the importance of the meta-learning phase
to achieve transferability.

Abl PLK JakA CDK Src IKK STE20 InsR DYRK MAPKAPK EGFR CK2 CAMK2 PKC Csk DMPK PKA CAMKL Syk PKB VRK DAPK SGK CAMK1 GRK
Kinase Family

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

AU
RO

C

Post few-shot learning
Pre few-shot learning

Figure 3: Improvements of prediction performance using few-shot learning. Pre few-shot learning: prediction
performance of the model that was meta-trained on all training families but prior to the few-shot learning using the few-shot
samples of the test family. Post few-shot learning: prediction performance of the model that was meta-trained on all training
families and fine-tuned using the 10-shot samples of the test family in the few-shot learning phase.

5.4 Comparisons with baseline methods

Next, we compared our framework with the baseline methods. We varied the value of k-shot from
0 to 10 (0-shot means the model was trained on training family only), and for each value of k,
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we randomly sampled k samples from the target family and used the remaining samples as test
data. The process was repeated for 50 times for each value of k. We used the AUROC and AUPRC
scores as the evaluation metrics and showed the results in Fig. 4. We first observed that MetaKinase
outperformed other methods for each value of k in terms of both AUROC and AUPRC scores. In
addition, while other methods had relatively similar prediction performance as the number of k-shot
increased, we observed that the improvement was clear for MetaKinase when more k-shot samples
were provided. Our framework also achieved fast adaption to a target family. For example, the
predictor had a 0.316 AUPRC score when using 2-shot samples in the few-shot learning phase,
which was closed to AUPRC score achieved with 10-shot (0.338). These results demonstrated the
transferability and fast-learning ability of MetaKinase.

To further analyze the transferability of MetaKinase, we evaluated its prediction performance
with 0-shot sample. This directly assesses the prediction power of the learned representation from
the meta-learning phase. Here, we compared our framework with the nearest-family approach,
where the model was trained on the most similar family of the target family. For each test target
family, we computed all pairwise BLOSUM62 sequence similarities of any two kinases across the
two families and took the family with the maximum average similarity as the nearest family of the
target family. We used the same architecture as in MetaKinase for the nearest family approach.
Comparison results for all families are shown in Fig. 4c. Even without training on k-shot samples,
the predictor trained with data of training family already had a good prediction performance on
the target family, suggesting that the model representation learned via the meta-learning phase
is broadly applicable to each family and can achieve relatively good prediction performance. In
addition, MetaKinase achieved higher AUROC scores than the nearest family approach and we
conclude that integrating information from more families, instead of using the nearest one, is
helpful to find a model representation with better transferability.

We also evaluated the effectiveness of MetaKinase in making use of the k-shot samples. To this
end, we computed the absolute AUROC improvements achieved by MetaKinase and the pan-family
approach for using 1-shot sample over using 0-shot (Fig. 4d). We found that our framework was
sensitive to the first-shot samples seen in the few-shot learning stage and the prediction performance
was clearly improved. The improvements achieved by our framework was significantly higher than
that of pan-family approach (one-sided P-value 4.6 × 10−74), which suggested our framework is
sample-efficient in the few-shot learning stage.

5.5 Fast specificity learning by MetaKinase

As an exploratory analysis, we visualize the specificity captured by MetaKinase when using different
numbers of few-shot samples. Here we used the specificity characterization of the InsR kinase
family as an example. We first meta-trained the model using data of all families excluding InsR,
and then fine-tuned the model in the few-shot learning stage, using 0-shot, 1-shot, 5-shot, and
10-shot, respectively. After the model was fine-tuned using a specific number of few-shot samples,
we applied it to predict on the test dataset and extract the top 5% highest scoring peptides to
visualize the logo representation. We showed in Fig. S3 the specificities captured by MetaKinase
after trained on 0-, 1-, 5- and 10-shot samples, as well as the specificity derived from experimentally
verified peptides. We observed that the specificity captured by MetaKinase gradually approximate
the true specificity as the number of few-shot k increases. At 0-shot, the predictor was only trained
on data samples of other families and the specificity captured (Fig. S3a) was clearly different from
the true specificity (Fig. S3e), presumably because what the model tried to capture is a general
specificity for all training families but less specific to the target family. After the model had been
trained with few-shot samples of the target family, we found that the model was able to capture
the specificity for the target family. For example, position 3 at 1-shot, positions 1 and 3 at 5-shot,
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a b

c d

Figure 4: (a)-(b) Evaluation of few-shot learning. MetaKinase was trained with data of multiple kinase families in the
meta-learning phase and fine-tuned in the few-shot learning phase using k samples of the test family for k = 1, 2, . . . , 10. For
supervised-learning methods Pan-family, KNN, and MusiteDeep, the models were trained using data of training families and the
k-shot data of the test family. The AUROC and AUPRC scores were used as the evaluation metric. Prediction performances
were averaged over all 25 kinase families and 50 random samples of k shot data. See Section 5.1 for details of experiment
settings. (c) Generalizability comparison between our method (0-shot) and the model trained on the nearest family of the
target family (in terms of BLOSUM62 sequence similarity). (d) Effectiveness comparison between our method and pan-family
method in using the first shot of the target family.

and positions -7, -2 and 3 at 10-shot. These visualizations illustrate that our framework is able to
rapidly capture the specificity of a target family using only a small number of data samples.

6 Discussion

In this paper, we introduced a generic framework for protein-peptide binding prediction and im-
plemented MetaKinase for kinase specificity prediction as a proof-of-concept. We demonstrate its
applicability in predicting the phosphorylation sites of protein kinases. We utilized meta-learning
and few-shot learning strategy to mitigate the data scarcity issue in characterizing the specificity
of less-studied kinases. The framework can take an arbitrary gradient-based model as the base
predictor. MetaKinase is capable of learning a general representation for each kinase family and
quickly capture the specificity of a target family using a few data samples, without overfitting.
We demonstrated that MetaKinase outperformed existing approaches in predicting kinase-specific
phosphorylation sites when training samples are limited. The framework is sample-efficient and
can quickly capture the specificity of a target family using a few data samples. There are several
directions for future study. For example, our framework, in principle, can be applied to predict
other types of protein-peptide binding, including the phosphorylation sites of SH2 domain [28], the
binding of MHC to neoantigens [29].
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Figure S1: Model architecture of base predictor. We utilize a dual-channel deep neural network as the based predictor.
The input of the left channel is the kinase domain sequence (∼ 250 amino acids) while the peptide sequence (15 amino acids)
is fed into the right channel. We use BLOSUM62 matrix [27] to encode the input sequences. Each channel consists of three
convolution neural networks (CNNs) with different kernel sizes. 32 filters of size 3, 5 and 7 make up the left channel. Meanwhile,
16 filters of length 1, 3 and 5 compose the right part. Then, a global pooling operation is performed to select the maximum
activation value in each of 32 × 3 = 96 filters in the left and 32 × 2 = 64 in the right. After concatenating the outputs from
both channels, a fully-connected layer produces the final prediction.
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Figure S2: Comparison between MetaKinase and the model trained with k-shot samples. MetaKinase was trained
on the N − 1 training families through a meta-learning phase and then fine-tuned using 10-shot samples of the target family
in the few-shot learning stage. The model trained with 10-shot samples was trained with only the 10-shot samples using in a
supervised-training manner.

weblogo.berkeley.edu

0

1

b
it

s

N

-7

R

Q

D

T

P

N

E

A

G

S
I

-6

Y

Q

V

S

N

I

E

D

L

A

R

K

P

-5

V

N

E

T

S

P

M

A

L

-4

P

R

N

I

A

G

T
D
S
L

-3

D

A

S

L

-2

W

T

R

N

A

V
L
S
D
E
G

-1 0 1

V

S

R

M

A

Q

I

L

G

E

D

2

V

H

D

R

I

C

S

N
P
A
L

3

R

N

G

S

D

Y

P

V

M
L
E

4

T

N

I

F

D

V

P

A

L

S

R
K

5 6 7

D

V

R

Q

S

I

G

A

P

L

K

F

C

(a) 0-shot

weblogo.berkeley.edu

0

1

b
it

s

N

-7 -6

Y

Q

P

F

D

V

S

L

K

E
R
G

-5

P

K

I

S

E

V

L

G

T

-4 -3

R

I

-2

V

K

A

R

P

I

L

Q
N
G
E

-1

V

T

R

P

F

Q

N

I

D

S
L
G
E

0 1 2

N

M

I

R

H

D

A

P
L
E

3

V

Q

I

G

C

S

F

E

P

D

T

L

M

4
Q

K

A

S

5

V

R

T

L

K

D

P

6 7

R

E

S

I

F

P

K

G

A

C

(b) 1-shot

weblogo.berkeley.edu

0

1

b
it

s

N

-7

Q

P

V

R

N

Y

S

K

H

E

T
L
G

-6

T

S

G

N

L

K

E

A

R

P

-5

L

K

S

P

G

T

V

E

-4

V

Q

F

A

P

N

G

D

S

L

-3

Y

V

T

G

S

N

I

H

P

L

-2

T

P

H

V

N

A

E

D

S

R
L
G

-1

V

T

N

D

Y

L

G

E

0 1

S

F

V

Q

Y

T

L

G

E

A

I
M

2

N

A

L

R

D

3

V

S

K

A

F

P
L
E
D

I
M

4

F

R
L

I

Q
S
P
E
D

5

D

S

Q

L

P

6

T

R

Q

N

K

E

G

F

S

7

Q

F

E

P

D

S

A

L

G

N
K

C

(c) 5-shot

weblogo.berkeley.edu

0

1

b
it

s

N

-7

T

I

G

C

N

H

D

Y
V
K
L
A
E
S

-6

V

N

L

K

F

S

I

A

E

D

T

G

P

-5

T

R

M

L

K

I

D

V

P

E

G
S
A

-4

V

R

M

C

Y

T

L

G

D

K

A

P

E

S

-3

T

N

I

G

S

E

R

D

L

-2

V

H

A

P

D

S
R
L
E
G

-1

Y

Q

K

I

H

F

A

D

L

N
E
S

0 1

A

V

S

E

D

P

M

G

T
I
L

2

V

S

N

K

I

F

A

T

R

P

E

H
L
D

3

Y

K

D

V

E

A

T

S
L
G
P
M

4

D

5

T

M

K

I

D

C

A

Q

E

P

S
R

L
G

6

R

Q

I

H

T

N

S

D

P
E

G

7

C

(d) 10-shot

weblogo.berkeley.edu

0

1

b
it

s

N

-7

Y

R

P

L

F

T

V

D
A
N
G
E
S

-6

V

Q

I

A

D

K
G

S
L
P
R
E

-5

P

M

L

I

V

N

H

S

T
D
K
E

-4

L

A

Y

C

Q

N

K
D
G
T
E
S

-3

Q

I

H

T

N

K

L

Y

P

G

R

S
D
E

-2

K

T

V

Q

P

N

L

S
E
D
G

-1

Y

T

R

P

K

A

Q

C

S

I

L
G
E
D
N

0 1

Y

A

S

L

C

T
G
E
V
D

I
M

2

V

A

L

K

C

E
D
T
S
P
N

3

W

T

R

N

K

H

F

S

G

E

A

Y

D

V
I

P
L
M

4

R

I

A

T

P

Q

Y
L
N
G
E
S
D

5

T

R

M

K

D

I
N
F
S
L
G
P

6

T

S

R

D

P

N

V
E
L
Q
K
G

7

T

N

E

V

P

C

L
G
F
A
K
S

C

(e) Experimental data

Figure S3: Sequence logo representation of specificities of InsR kinase family. (a)-(d) Specificities captured by
models fine-tuned with 0, 1, 5 and 10 samples, respectively. (e) Specificity derived from experimentally verified phosphorylation
sites. The phosphorylation residue (position 0) of InsR family is always Tyrosine (Y) and is omitted in the logo representation.
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