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Abstract: Expression quantitative trait loci (eQTLs) are context dependent, and therefore change 12 
between tissues, cell types, and after cell treatment. In addition, SNP positions and RNAseq counts 13 
must be updated after assembly of new reference genome sequences. Therefore, we remapped 14 
eQTLs with Matrix eQTL using the previously generated and publicly available data from four 15 
contexts of peripheral blood mononuclear cells (PBMCs) from European Warmblood horses to the 16 
EquCab3.0 reference genome, and used a linear mixed model in R to identify eQTLs with 17 
significantly different gene expression regulation in treated PBMCs when compared to no treatment 18 
(baseline). We found no evidence that SNPs associated with significant changes in gene expression 19 
between MCK and a treatment in PBMCs caused strong opposing regulatory effects. We identified 20 
canonical pathways with a significant number of genes in PBMCs with altered gene expression 21 
regulation when treated with lipopolysaccharides (LPS) and hay-dust extract (HDE). Significant 22 
pathways included RhoA signaling in LPS, as well as histamine degradation, cholesterol 23 
biosynthesis, FcγRIIB signaling, and others in HDE. Our results support previous research 24 
indicating that pathways altered between baseline and treatment of PBMCs in horses with LPS or 25 
HDE affect inflammatory responses through RhoA, B-cell signaling, IL-4 and IFN-γ, and histamine. 26 
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 28 

1. Introduction 29 
Peripheral blood mononuclear cells (PBMCs) are cells with a single round nucleus (T-cells, B-30 

cells, and natural killer (NK) cells, etc.) that are readily isolated from whole blood [1]. The 31 
transcriptional responses of PBMCs in four different in vitro contexts has been measured with 32 
RNAseq data in horses: no treatment (MCK) to represent baseline RNA expression, 33 
lipopolysaccharides (LPS) to mimic an inflammatory response, recombinant cyathostomin antigen 34 
(RCA) to mimic response to parasitic antigens, and hay-dust extract (HDE) to mimic severe equine 35 
asthma (SEA) (formerly known as recurrent airway obstruction, RAO) exacerbation in susceptible 36 
horses [2–5]. These RNAseq data were previously used to generate the horse transcriptome, and 37 
discover differentially expressed genes between horses with and without SEA [2–4]. The equine 670k 38 
SNP array was previously used to discover SNPs associated with SEA, and both SNP and RNAseq 39 
data were used to discover expression quantitative trait loci in horses (eQTLs) for the EquCab2 horse 40 
genome assembly [6–8]. 41 

A region of the genome containing a variant that influences the number of expressed RNA 42 
molecules from a gene is an eQTL. eQTLs are reproducible when the same conditions are applied to 43 
the same cell type from the same species [9,10]. However eQTLs are also context-dependent, and 44 
therefore eQTLs change depending upon environmental conditions, length or type of cell treatment, 45 
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or cell types analyzed [11,12]. Therefore, analysis of many tissues and cell-types under various 46 
environmental conditions is required to understand context-dependent changes in gene expression 47 
regulation in various species. 48 

Historically, eQTL studies analyzed multiple treatments of the same cells separately, determined 49 
significance based upon an alpha cutoff value, and searched for overlap between the lists of 50 
significant eQTLs. These studies provide lists of eQTLs present or absent in each context, but do not 51 
explicitly model changes between eQTLs across contexts and can be misleading due to variation in 52 
statistical power between contexts. Therefore, many recent studies have jointly modeled different 53 
contexts to ameliorate the differences in statistical power, and identify eQTLs unique and shared 54 
between treatments. Here, we used an interaction term in a mixed model to describe how eQTLs 55 
change between baseline (MCK) and treatment of PBMCs (LPS, RCA, HDE) in European Warmblood 56 
horses. Additionally, we updated previously published eQTLs to the EquCab3.0 reference genome, 57 
and identified pathways significantly enriched for genes with altered gene expression regulation 58 
between MCK and each PBMC treatment (LPS, RCA, or HDE) with Ingenuity Pathway Analysis (IPA) 59 
[13]. 60 

2. Materials and Methods 61 
An outline of the computational workflow is shown in figure 1. 62 

2.1. Sample Information 63 
 Samples used in this study were previously collected, isolated, treated, and extracted as 64 
described in earlier publications [2,6–8,14,15]. Horses were kept in "low dust" environments before 65 
sample collection so that the SEA affected horses were in partial or full remission of SEA [2]. Horses 66 
were kept in stables with daily access to pasture all over Switzerland [2]. SEA horses received no 67 
prior treatment for SEA and a clinical exam was performed to rule out other systemic or localized 68 
infections [2].  69 

DNA was previously extracted from PBMCs during two different studies [6,7]. PBMCs were 70 
previously treated, RNA extracted, and RNA sequenced (RNAseq) by Pacholewska et al. [15]. 71 
Pacholewska et al. followed the density gradient centrifugation procedure from Hamza et al. to 72 
isolate PBMCs and followed the treatment of PBMCs and RNA extraction method from Lanz et al. 73 
[2,14,15]. European Warmblood horses were selected as the breed to study because of the two 74 
warmblood families (Fam1 and Fam2) with high incidences of SEA [16]. eQTL analyses used DNA 75 
and RNA from 82 European Warmblood horses (40 with SEA, and 42 healthy). Ages of SEA (mean = 76 
16.7, min = 10, max = 24, units = years) and healthy controls (mean = 17.8, min = 6, max = 32, units = 77 
years) were comparable. These 82 horses belong to three familial cohorts, two half-sibling (half-sib) 78 
families with 17 individuals (Fam1) and 15 individuals (Fam2) respectively, and 50 unrelated horses. 79 
The sires of Fam1 and Fam2 both had SEA. Unrelated horses are not part of Fam1 or Fam2, and do 80 
not show strong patterns of population structure within the group (S3 Fig). Unrelated horses are 81 
minimally two generations removed from one another (unrelated at the grandparent level) [7].  82 

2.2. SNP coordinate conversion to EquCab3.0 and filtration 83 
We used the NCBI remap API to convert a VCF file of imputed SNPs from EquCab2 to a VCF 84 

file with coordinates for EquCab3. The VCF file used is available on the European Variant Archive 85 
(EVA) as project accession: PRJEB23301. This file was split into separate files with 5,000 lines each 86 
with a python script. Then each file was submitted to the NCBI remap API with remap_api.pl to 87 
convert the SNP coordinates. We used the parameters --mode asm-asm and converted --from 88 
GCF_000002305.2 to --dest GCF_002863925.1, and specified –in_format vcf and –out_format vcf. 89 
Meta-data in the output VCF file was not properly preserved, and therefore we replaced the 90 
genotypes in the output file with the correct values from the input files with a python script. 91 

SNPs with a minor allele frequency less than 0.05 were removed. We removed SNPs that 92 
deviated strongly from HWE p-value < 1e-6 when only including healthy individuals. SNPs were 93 
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filtered with vcftools v0.1.14 [17]. PCA plots based upon SNP genotypes was previously published 94 
[8]. 95 

2.3. RNA sequences remapped to EquCab3.0 and gene expression counts 96 
RNA sequences were remapped to the EquCab3 genome with STAR v.2.5.3a [18]. We set the 97 

parameters for STAR as follows: --outFilterMultimapNmax 50  --seedSearchStartLmax 25 --98 
alignIntronMin 20 --alignIntronMax 1000000 --alignMatesGapMax 100000  --sjdbGTFfeatureExon 99 
exon --sjdbGTFtagExonParentTranscript Parent --sjdbGTFtagExonParentGene gene --100 
outFilterMismatchNmax 4 --outFilterType BySJout SortedByCoordinate --outSAMstrandField 101 
intronMotif. 102 

The counting of and normalization of RNA molecules was done following Mason et al. (2018) 103 
with minor changes [8]. We defined gene features with the NCBI annotation (release 103) of the horse 104 
reference genome sequence EquCab3.0 (Assembly accession: GCF_002863925.1). We specified 105 
desired features to be all transcripts of genes with the transcriptsBy() function in the Bioconductor R 106 
library GenomicFeatures [19]. We counted the number of RNA reads that aligned to all transcripts of 107 
each gene with the summarizeOverlaps() function in the Bioconductor R GenomicAlignments library 108 
[19]. We simplified the count matrix to have one feature per gene, making genes (not transcripts of 109 
genes) the RNAseq count feature. In the summarizeOverlaps function we specified ‘mode = “Union”, 110 
singleEnd = FALSE, ignore.strand = TRUE, fragments = TRUE’. We counted each treatment 111 
separately, and required genes to have at least one RNAseq read aligned to the gene in one 112 
individual. We normalized read counts to make them comparable across individuals in DESeq2, and 113 
then exported them to calculate a mean read count cutoff with the KS test statistic [8]. Genes with 114 
mean normalized read counts below this mean count threshold removed from analysis for each 115 
treatment separately. After trimming the number of genes, the gene expression raw counts were 116 
again normalized and then variance stabilized with the varianceStabilizingTransformation() in 117 
DESeq2 once for each treatment separately [20]. PCA plots of the variance stabilized gene counts were 118 
generated with DESeq2 (Fig S01). No individuals were identified to have aberrant expression profiles 119 
after analyzing the PCA plots, therefore no individuals were removed based upon expression profiles 120 
(Fig S01). 121 

2.4 eQTL analyses 122 
We performed four multivariate linear models with Matrix eQTL (one for each context) to 123 

determine presence or absence of eQTLs in each treatment, and one mixed linear model to detect 124 
significant interaction terms representing significant changes in gene expression regulation between 125 
MCK and each treatment respectively. 126 

2.4.1 Multivariate linear models with Matrix eQTL 127 
eQTLs for each treatment were detected with Matrix eQTL [21]. Local eQTL relationships within 128 

500,000 bp upstream and 500,000 bp downstream of each gene's transcription start site were tested 129 
for 833,937 SNPs and 13,849 genes. eQTLs with FDR values less than 0.05 were considered significant. 130 
Significant eQTLs from these analyses were used to determine presence or absence of eQTLs for each 131 
treatment. The following multivariate model was used for the analyses. 132 

 133 
y X muβ ε+ +        (1) 134 

 135 
In equation two, y  represents the dependent variable (normalized and variance stabilized 136 

gene expression), X  is an incidence matrix for fixed effects intercept, age, sex, Fam1, Fam2, and 137 
disease status, β  is the solution for the fixed effects intercept, age (in years), sex, Fam1, and Fam2, 138 
m  is a vector of SNP marker genotypes, u  is the SNP marker effect, and ε  are the residuals. 139 

2.4.2 Mixed linear model analysis in R 140 
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The mixed model was ran on all local eQTL relationships within 500,000 bp upstream and 141 
500,000 bp downstream of each gene's transcription start site were tested for 833,937 SNPs and 13,849 142 
genes. We wrote a program in R that implemented a mixed model to jointly model one untreated 143 
baseline group, and three treatments of peripheral blood mononuclear cells (PBMCs) in European 144 
Warmblood horses to describe significant changes in eQTLs between baseline and the three 145 
treatments of PBMCs. The mixed model included an interaction term between genotype and context 146 
(treatement), corrected for effects due to population structure with binary variables Fam1 and Fam2, 147 
and we included a random intercept for each individual in R v.3.4.2 with R library hglm v.2.1-1 148 
[22,23]. 149 
 150 

( )y X mY Zuuβ ε+ + +     (2) 151 
 152 

In equation two, y  is the dependent variable representing the residuals of the trimmed, normalized, 153 
and variance stabilized gene expression counts. In equation one, X  is an incidence matrix for fixed 154 
effects intercept, age, sex, Fam1, Fam2, disease status, SNP genotype (0, 1, or 2 for each individual: 0 155 
is homozygous reference allele, 1 is heterozygous, and 2 is homozygous alternative allele), LPS 156 
context, RCA context, and HDE context, β  is the solution for the fixed effects intercept, age (in 157 
years), sex, Fam1, Fam2, disease status, SNP genotype, LPS context, RCA context, and HDE context, 158 
m  is a vector of SNP marker genotypes, Y  is an incidence matrix that identified which gene 159 
expression values were present in which context (LPS, RCA, and HDE), u  is the interaction effect 160 
of m* Y , Z  is an incidence matrix which identified the repeated gene expression measurements 161 
(one from each context) for each individual, u  is the vector of random individual effects, and ε  is 162 
the random residuals. 163 

2.5. Removing associations with outlier individuals for the mixed model 164 
Prior to multiple testing correction, we removed all models where with outlier individuals. 165 

Outlier individuals were identified by the R module hglm as "influential observations". Influential 166 
observations were identified with the value "$bad" in the R model object of class hglm. 167 

2.5. Multiple testing correction for the mixed model 168 
 All raw p-values were corrected for multiple testing with EigenMT [24]. We ran EigenMT for 169 
each chromosome and for each covariate of interest. EigenMT also selects the best eSNP for each gene. 170 
We set the window size to include 200 SNPs, the variance threshold to 0.99, the cis distance to 500,000 171 
(equivalent to 1Mb window), and considered results as significant if the adjusted p-value was < 0.05.  172 

2.6. Pathway analysis 173 
 A core analysis in Ingenuity Pathway Analysis (IPA) v.01-13 was run on all genes from eQTLs 174 
with significant interaction terms between baseline (MCK) and each of the three treatments of PBMCs  175 
(LPS, RCA, and HDE) [13]. Results were considered significant if the p-value was less than 1e-2. 176 
Results discussed are from the canonical pathway analysis. Gene names were mapped onto human, 177 
mouse and rat. We required the relationship between molecules to be direct and experimentally 178 
observed.  179 

2.7. Data availability 180 
 RNAseq data is deposited in the European Nucleotide Archive (ENA), and can be accessed at: 181 
http://www.ebi.ac.uk/ena/data/view/PRJEB7497 (project ID: PRJEB7497). Imputed SNP genotypes 182 
are submitted to European Variant Archive (EVA), project accession: PRJEB23301. Relevant python, 183 
R, and bash code is available on GitHub: https://github.com/VCMason. 184 

3. Results 185 
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3.1. EquCab2.0 vs EquCab3.0 186 
Gene expression counts in MCK were similar between EquCab2 and EquCab3 (r2 = 0.96) (Fig 187 

S02).  188 

3.1. Changes in gene expression regulation by genotype due to PBMC treatment 189 
An eQTL represents a significant association between a SNP's genotype and a gene's expression, 190 

while a significant interaction term represents a significant change in slope of an eQTL between MCK 191 
and each individual context. We detected 72,364 MCK, 100,382 LPS, 72,030 RCA, and 90,998 HDE 192 
significant eQTLs through Matrix eQTL analyses (Tables S1-S4). We detected a significantly different 193 
genotypic effect on gene expression between MCK and LPS, RCA, or HDE (a significant 194 
SNPxTreatment interaction term) for 1,057, 938, and 1,847 genes respectively (Tables S5-S7). To be 195 
kept for further analyses, we required each gene SNP pair with a significant interaction term (Tables 196 
S5-S7) to also be a significant eQTL in 1) MCK, 2) a treatment (LPS, RCA, or HDE), or 3) both MCK 197 
and treatment (Table 1, & S1-S4). This reduced the list of eQTLs analyzed to 144 for LPS, 60 for RCA, 198 
and 213 for HDE (Fig 2). Biologically, these represent 1) eQTLs present in MCK but not present in a 199 
treatment, 2) eQTLs present in a treatment but not present in MCK, 3) eQTLs present in both MCK 200 
and a treatment with the same direction of effect, or 4) eQTLs present in both MCK and a treatment 201 
with opposing directions of effect (Fig 2) [12]. We report the number of eQTLs with significant 202 
interaction terms present in each of the four scenarios (Table 1).  203 

We found no eQTLs with opposing directions of effect when eQTLs were significant in both 204 
MCK and a treatment (black data-points) (Fig 2, Table 1). All data points with opposing directions of 205 
effect in figure 1 have one non-significant gene/SNP association in either MCK or a treatment (orange 206 
or blue data-points). Therefore, we found no evidence that SNPs associated with significant changes 207 
in gene expression between MCK and a treatment caused strong opposing regulatory effects. Rather, 208 
the majority of eQTLs with a significant difference in gene expression regulation between contexts 209 
resulted in either a complete loss of an eQTL, gain of an eQTL, or the eQTL was modified but 210 
maintained the same direction of effect. 211 

 212 
 MCK Only Treatment Only 

MCK & 
Treatment 

Not MCK or 
Treatment Total 

MCKxLPS: Same DOE 39 45 24 102 210 
MCKxLPS: Opposite DOE 19 17 0 811 847 
MCKxLPS: Total 58 62 24 913 1057 

      

MCKxRCA: Same DOE 24 10 11 79 124 
MCKxRCA: Opposite 
DOE 13 2 0 799 814 

MCKxRCA: Total 37 12 11 878 938 
      

MCKxHDE: Same DOE 62 38 71 234 405 
MCKxHDE: Opposite 
DOE 39 3 0 1400 1442 

MCKxHDE: Total 101 41 71 1634 1847 
Table 1. The numbers of eQTLs with similar or opposite directions of effect (DOE) when MCK is 213 
compared to a treatment (LPS, RCA, or HDE). 214 

3.2. IPA 215 
Three separate core analyses in IPA (one for each treatment) discovered biological pathways 216 

significantly (p-value < 0.01) enriched for genes with significantly (adjusted p-value < 0.05) altered 217 
gene expression regulation due PBMC treatment (Tables 2). Each treatment (LPS, RCA, and HDE) 218 
resulted in unique canonical pathways enriched for genes with altered gene expression regulation 219 
(relative to MCK) (Table 2). 220 
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 221 
Interaction 
Term Ingenuity Canonical Pathways  -log(pval) Ratio Molecules 
SNPxLPS RhoA Signaling 2.53 0.0323 PLXNA1,KTN1,ROCK1,RDX 

SNPxRCA Citrulline-Nitric Oxide Cycle 2.04 0.2 ASS1 

SNPxRCA L-carnitine Biosynthesis 2.26 0.333 ALDH9A1 

SNPxHDE UVA-Induced MAPK Signaling 2.79 0.0446 PIK3R2,RAP1B,BCL2L1,RPS6KB1,RPS6KC1 

SNPxHDE Role of Tissue Factor in Cancer 2.5 0.0385 PIK3R2,F7,RAP1B,BCL2L1,RPS6KB1 

SNPxHDE FcγRIIB Signaling in B Lymphocytes 2.4 0.0471 PIK3R2,CACNB4,RAP1B,CACNA1D 

SNPxHDE Cholesterol Biosynthesis III (via Desmosterol) 2.38 0.154 SC5D,DHCR7 

SNPxHDE 

Cholesterol Biosynthesis II (via 24,25-

dihydrolanosterol) 2.38 0.154 SC5D,DHCR7 

SNPxHDE Cholesterol Biosynthesis I 2.38 0.154 SC5D,DHCR7 

SNPxHDE Acute Myeloid Leukemia Signaling 2.16 0.0404 PIK3R2,RAP1B,IDH1,RPS6KB1 

SNPxHDE 

Melanocyte Development and Pigmentation 

Signaling 2.09 0.0385 PIK3R2,RAP1B,RPS6KB1,RPS6KC1 

SNPxHDE Histamine Degradation 2.05 0.105 ALDH1L2,ALDH1A3 

Table 2. Significant canonical pathways with a significant number of genes with altered gene 222 
expression regulation. 223 
 224 

4. Limitations 225 
Horses with and without SEA were included in this study. We accounted for variation associated 226 

with disease status in the linear model, however some variation due to disease status (and other 227 
covariates) that is not explained by the fitted linear relationships may still be unaccounted for. Our 228 
method to determine presence or absence of eQTLs in each context might be improved with joint 229 
modeling of all treatments. We detected canonical pathways significantly enriched for genes with 230 
altered gene expression in PBMCs due to treatment. In the discussion we hypothesize about their 231 
relevance in horses, however we do not have further evidence about gene expression patterns in other 232 
tissues. Therefore, our hypotheses should be interpreted in an accordingly limited fashion. 233 

5. Discussion 234 
We discovered eQTLs associated with significant changes in gene expression regulation due to 235 

treatment of PBMCs in European Warmblood horses to identify gene pathways affected by treatment 236 
of LPS, RCA, or HDE. We removed variation in eQTLs correlated with age, sex, family structure, and 237 
disease (SEA) status to discover changes in eQTLs due to antigen treatment. By adjusting for these 238 
confounding factors, we focused our analysis on changes in gene expression regulation caused by 239 
antigen treatments. We expected LPS to influence genes involved in inflammatory regulation because 240 
it is present in the cell membrane of gram-negative bacteria, RCA to elicit an immune response as it 241 
is an antigen released from parasitic cyathostomins, and HDE to elicit allergic and inflammatory 242 
responses as HDE is derived from moldy hay. Therefore, we hypothesized that gene expression 243 
regulation altered by PBMC treatment would affect pathways involved in inflammatory and allergic 244 
immune responses. We detected significant canonical pathways for each treatment. However, the 245 
results for RCA may not be robust as only one gene was present in significant pathways. Therefore, 246 
we focused the discussion of significant canonical pathways on LPS and HDE treatments.  247 

LPS altered gene expression for a significant number of genes in the RhoA signaling pathway. 248 
The RhoA signaling pathway is critical to pro-inflammatory responses and LPS/NF-κB signaling [25]. 249 
Depletion of RhoA in a human lung cancer cell line has been shown to significantly reduce the LPS-250 
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induced secretion of IL-6 and IL-8 [25]. Therefore, we hypothesize that RhoA also plays a role in the 251 
inflammatory response following PBMC stimulation with LPS in horses.  252 

HDE significantly altered gene expression regulation in pathways involving cellular signaling, 253 
blood coagulation, vascular inflammation, and B cell signaling (Table 2). HDE influenced the 254 
histamine degradation pathway. Dietary histamines can cause allergic symptoms, gastrointestinal 255 
ailments, inflammatory responses, as well as a variety of other symptoms in histamine intolerant 256 
patients [26]. Histamine is present in respirable hay dust, and has been implicated as an irritating 257 
agent that contributes to respiratory problems, and is an inflammatory mediator secreted by IgE 258 
activated mast cells [27,28]. Cholesterol biosynthesis was also influenced by HDE treatment. Dietary 259 
cholesterol increases production of inflammatory indicators (IL-4 and IFN-γ) in lung lymphocytes in 260 
mice [29]. The two genes (SC5D and DHCR7) with altered gene expression regulation are required 261 
for the final steps of cholesterol biosynthesis (Table 2) [30,31]. Therefore, altered cholesterol 262 
metabolism could also contribute to the inflammatory symptoms in horses after inhalation of hay 263 
dust. FcγRIIB signaling in B lymphocytes was significantly affected by treatment of PBMCs with 264 
HDE. Fcγ receptors activate or inhibit inflammatory responses, and a proper balance is critical for 265 
normal immune response [32,33]. FcγRIIB is the only inhibitory Fcγ receptor, making it critical for 266 
controlled immune responses, and acts as a negative regulator of B cell activation. 267 

6. Conclusions 268 
We found no evidence that SNPs associated with significant changes in gene expression between 269 

MCK and a treatment in PBMCs caused strong opposing regulatory effects. Pathways influenced by 270 
PBMC treatment through changes in gene expression regulation include: RhoA signaling in LPS, as 271 
well as histamine degradation, cholesterol biosynthesis, FcγRIIB signaling, and others in HDE. Our 272 
results support previous research indicating that pathways altered between baseline and treatment 273 
of PBMCs in horses with LPS or HDE affect inflammatory responses through RhoA, B-cell signaling, 274 
IL-4 and IFN-γ, and histamine. 275 
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Appendix A 285 
Figure 1. Flow chart depicting informatic methods. Figure 2. Differences in eQTLs between 286 

baseline (MCK) and the three treatments of PBMCs B) LPS, C) RCA, and D) HDE. A) A partial 287 
regression plot for the interaction term SNPxLPS shows the difference in slope of an eQTL for gene 288 
RDX and the SNP located on chromosome 7 position 19442134 between MCK and LPS. The partial 289 
regression plot scales the eQTL in MCK to have a slope of zero and is represented by the dashed line. 290 
The eQTL in LPS is represented by the solid black line and the standard error of the eQTL is 291 
represented by the grey shading. Circles represent homozygous reference, triangles are 292 
heterozygous, and plus symbols represent homozygous alternative genotypes. The y-axis is the 293 
residuals of gene expression that is not explained by any covariates (excluding SNPxLPS). The x-axis 294 
is the residuals of product of SNP x LPS that is not explained by any other covariates. SNP is 295 
represented by values 0, 1, and 2 while LPS is 0 or 1. The three remaining figure sections represent 296 
the significance and change of gene expression regulation between baseline (MCK) and the three 297 
treatments of PBMCs B) LPS, C) RCA, and D) HDE. The area of the plot points are proportional to 298 
the –log10 of the p-values of the SNPxTreatment interaction term. The slopes of the eQTLs in MCK 299 
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are plotted on the x-axis in B), C), and D). The slopes of the same eQTLs after treatment are plotted 300 
on the y-axis for B) LPS, C) RCA, and D) HDE. eQTLs significant in MCK, but not in a treatment B) 301 
LPS, C) RCA, or D) HDE are colored orange. eQTLs not significant in MCK but significant in a 302 
treatment B) LPS, C) RCA, or D) HDE are colored blue. eQTLs significant in both contexts B) MCK 303 
and LPS, C) MCK and RCA, and D) MCK and HDE are colored black. Table S1. Significant eQTLs 304 
(FDR < 0.05) in MCK calculated for the EquCab3 genome with Matrix eQTL. Table S2. Significant 305 
eQTLs (FDR < 0.05) in LPS calculated for the EquCab3 genome with Matrix eQTL. Table S3. 306 
Significant eQTLs (FDR < 0.05) in RCA calculated for the EquCab3 genome with Matrix eQTL. Table 307 
S4. Significant eQTLs (FDR < 0.05) in HDE calculated for the EquCab3 genome with Matrix eQTL. 308 
Table S5. EigenMT results reporting significant (Bonferroni correction < 0.05) SNPxLPS interaction 309 
terms. Table header labels are described as follows: 'SNP' is the chromosome.position of the SNP in 310 
the genome, 'gene' is the gene name, 'beta' is the slope of the interaction term, 't-stat' is the t-statistic 311 
value, 'p-value' is the unadjusted p-value, 'BF' is the Bonferroni corrected p-values of the interaction 312 
term, 'TESTS' equals the effective number of SNPs used for the Bonferroni correction. Table S6. 313 
EigenMT results reporting significant (Bonferroni correction < 0.05) SNPxRCA interaction terms. 314 
Table header labels are described as follows: 'SNP' is the chromosome.position of the SNP in the 315 
genome, 'gene' is the gene name, 'beta' is the slope of the interaction term, 't-stat' is the t-statistic value, 316 
'p-value' is the unadjusted p-value, 'BF' is the Bonferroni corrected p-values of the interaction term, 317 
'TESTS' equals the effective number of SNPs used for the Bonferroni correction. Table S7. EigenMT 318 
results reporting significant (Bonferroni correction < 0.05) SNPxHDE interaction terms. Table header 319 
labels are described as follows: 'SNP' is the chromosome.position of the SNP in the genome, 'gene' is 320 
the gene name, 'beta' is the slope of the interaction term, 't-stat' is the t-statistic value, 'p-value' is the 321 
unadjusted p-value, 'BF' is the Bonferroni corrected p-values of the interaction term, 'TESTS' equals 322 
the effective number of SNPs used for the Bonferroni correction.  323 
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