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Abstract 

Amount and rate of information that may be transferred from one residue to another in a protein 

is quantified using the transfer entropy concept of information theory. Information transfer from 

one residue to the second is defined as the decrease in the uncertainty in the second residue due to 

coupling with past values of the first. Three types of information transfer between pairs of 

residues are defined: transfer between residues that are (i) close in both space and along the 

primary protein chain, (ii) close in space but distant along the chain, and (iii) distant in space and 

along the chain may be distinguished. The widely studied third PDZ domain from the synaptic 

protein PSD-95 is used as an example. The three types of transfer show that residues close in 

space and chain transfer the largest amount of information. Transfer along the primary chain is 

also significant. Predictions of the model show that significant amount of transfer may also take 

place between spatially distant pairs of residues. The latter forms the basis of dynamic allostery 

in proteins. The role of information transfer between distant pairs in relation to coevolution has 

been controversial, some works assigning it to near neighbor residue pairs only and others 

supporting long range coupling. The present paper shows that significant amount of information 

may be transferred between distant pairs in PSD-95.Transfer rates of the order of gigabytes per 

second are predicted by the present theory. Information transfer between a specific set of residue 

pairs exhibit strong directionality, or causality, an observation that may be of use in protein 

engineering and drug design.  
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Introduction 

Proteins are dynamic systems whose atoms exhibit fluctuations about their equilibrium positions 

with amplitudes in the order of nanometers and characteristic times of pico to nanoseconds. 

When observed individually, each atom performs fluctuations as an independent random 

stationary process that may be mapped onto a time-amplitude trajectory. Fluctuations and 

randomness of motion are built-in sources of uncertainty at the nano-scale as clearly displayed in 

any atomic trajectory. Considering the trajectories of pairs of atoms simultaneously, however, 

gives important clues on how the two atoms communicate with each other. Any degree of 

coupling between pairs of trajectories leads to a hint for the function of the protein. Coupling of 

two trajectories may be analyzed most conveniently in terms of information transfer from one to 

the other. Information transfer from trajectory i to j is the amount of uncertainty reduced in the 

states of j at a future time t+t due to its coupling with the trajectory i at time t 1. The basic 

concept of information transfer relies on the calculation of average number of bits needed to 

encode independent events by using Shannon’s entropy formulation. Shannon was interested in 

the capacities of telecom lines to transfer information by using minimum number of bits and 

derived a procedure that is essentially based on the maximum entropy principle (Max Ent) 2 and 

the maximum caliber, Max Cal 3. The latter is used for predicting the relative probability that a 

system will take a certain trajectory in going from one state to another. As will be shown in the 

following sections, information transfer between two residues is a special application of Max Cal 

where only states allowable for a pair of residues are considered. A consequence of Max Cal 

formalism for pairwise interactions is that the trajectory may be treated as a Markov process 4. 

The information transfer formalism adopted here is based on time dependent conditional 

probabilities derived from a Markov process. With this perspective, information transfer between 
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residues lies at the root of the dynamic view of allostery in proteins: perturbation at one site, 

called the allosteric site, leads to changes of conformations as well as dynamics in other regions 

of the protein including the site at which the protein performs its function. The present paper may 

be regarded as a paradigm shift from static coupling of two residues to coupling of trajectories. 

Coupling of trajectories may be classified into three types in terms of residue pair-distances along 

the primary chain and in space. Residue pairs that are (i) close along the primary chain and in 

space, which we refer to as Type 1 coupling, (ii) distant along the primary chain but close in 

space, Type 2 coupling, and (iii) distant along the chain and space, Type 3 coupling. The role of 

Type 1 and 2 coupling in allostery, evolution, and protein function in general, is well 

documented. The role of Type 3 coupling needs more elaboration. Starting in the past decade, 

information transfer in allostery has been associated with evolutionary processes. First, 

Ranganathan’s group identified evolutionarily conserved pathways in coevolved protein families 5 

and quantified Type 3 coupling on such pathways according to Boltzmann statistics, which is 

now referred to as ‘statistical coupling’. Role of Type 3 coupling in coevolution was soon 

challenged by Chi et al., 6 who determined changes in free energies resulting from mutations of 

the proposed statistically coupled residue pairs. Chi et al., concluded that the observed coupling, 

which they referred to as ‘energetic coupling’, is in disaccord with statistical coupling but rather 

depends on the distance between residues, spatially closer pairs being more strongly coupled, i.e., 

Type 1 and 2 coupling. More recent work based on large numbers of coevolved protein families 

showed that coevolution is basically controlled by Type 1 and 2 coupling 7. The role of spatially 

distant residue pairs on coevolution notwithstanding, the coupling of spatially distant residue 

pairs in relation to protein function is well documented in the literature. Millisecond molecular 

dynamics simulations of Lindorff-Larsen et al 8, and the corresponding NMR results  9 10 11 show 
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the importance of long range correlations in Ubiquitin. Kong and Karplus 12 used a molecular 

dynamics (MD) simulations based approach, referred to as ‘interaction correlation analysis’, to 

study long range correlations in the signaling pathways of the PDZ2 domain, and identified paths 

which are also supported by NMR experiments. The three methods cited, (i) statistical, (ii) 

energetic, and (iii) MD analysis, are independent approaches. In the present paper, we propose a 

fourth approach an entropy-based information transfer approach, which is independent of the 

other three. The model is based on the time dependent transfer entropy concept of Schreiber 1 for 

systems in which fluctuations of one residue are correlated with fluctuations of a second residue 

at a later time. The model quantifies the decrease in the uncertainty in the second residue due to 

coupling with past values of the first. The decrease in the uncertainty in the second residue due to 

its coupling with the first is a transfer of entropy or information from the first to the second. 

Entropy is a more suitable description of problems of physical nature due to its association with 

free energy transduction, but we prefer the use of the term information transfer and attempt to 

quantify transfer in terms of bits. Essentially one is convertible to the other by suitable choice of 

the proper proportionality. Although information or entropy transfer is widely used in 

neurosciences 13, it is relatively recent in single protein physics 14. Throughout the paper, we use 

both instantaneous and cumulative information transfer. The former is the amount of transfer 

from a trajectory at time t to another trajectory at a future time t+t. Different values of the delay 

time t are used in the literature (See for example 1, 15). For the protein example used in this paper, 

instantaneous information as a function of t starts from zero, since it is designed to ignore static 

correlations 1, makes a peak around a fraction of a nanosecond and dies off in a few nanoseconds. 

Cumulative information transfer is the instantaneous transfer summed up over all delay times 

t and may be considered as a measure of channel capacity. Cumulative information transfer 
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divided by the peak time may be viewed as an approximate information transfer rate, which we 

show here to be in the order of gigabytes per second for a protein. Here, we use the widely 

studied third PDZ domain from the synaptic protein PSD-95, (Protein Data Bank code 1BE9) as 

our example. We use the Gaussian Network Model of information transfer, which we 

implemented in Reference 16. Interestingly, this simple Gaussian model can be used to determine 

the amount and rate of information transfer as well as causality, i.e., the difference between 

transfer from i to j and from j to i. The latter is important due to its possible role in evolution and 

drug design 16. The main interest of the paper is to quantify the maximum amount of information 

that may go from one residue to another and the corresponding rate of information transfer.  

 

Results 

 

Based on the transfer entropy model of Schreiber 1 and the Gaussian network model of folded 

proteins 17 we analyzed the amount of information that can be transferred from one residue to 

another, and the rate at which this transfer takes place. We use the crystal structure of 1BE9.pdb. 

The stick form of the three-dimensional structure is shown in Figure 1. Chi et al. 6 defined six 

residues, H372, A376, G329, V362, F340, K380 as the energetic network residues of the PDZ 

domain. These residues are also significant in the works of Lockless and Ranganathan 5a and 

Kong and Karplus 18. We focus on the same set of residues in this paper and refer to them as 

‘network residues’. The alpha carbons of the network residues are used in all calculations and are 

shown as large black spheres in Figure 1. Distances between pairs of network residues and their 

interaction types based on pair-distances are shown in the second and third columns of Table 1. 

Pairs with short-range interactions are shown in bold fonts. The fourth column shows the amount 
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of maximum information that may be transferred between each pair in bits. The fifth column 

shows the peak delay time at which maximum instantaneous information is transferred from one 

residue to the other. The last column shows the information transfer rate in gigabits per second.  

 

Analysis of the table shows that information transfer between residues in contact, Type 1 and 2 

interactions, and the corresponding transfer rates are the largest. However, transfers between 

residues with long-range contacts are not negligible, maximum transfer of Type 3 being between 

H372-K380. Transfer rate between these two residues is also large. The next highest information 

transfer of Type 3 is between K380 and V362 with an information transfer of 2 bits and an 

information transfer rate of 8.7 GB/s. Information transfer between other network residues with 

long range coupling also exhibit non-negligible values. These findings support the hypothesis of 

statistical coupling of Lockless and Ranganathan and the experiments of Suel et. al.5 
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Figure 1. Three-dimensional structure of 1BE9. Six residues responsible in allosteric information transfer, identified 

both in references [5] and [7] are shown as black spheres. Distances between residues are given in Table 1.  

 

 

 

Table 1. Various metrics of information transfer in 1BE9. 

 

Network 

Residue Pairs 

Distance 

(Å)* 

Interaction 

type** 

Information 

transfer 

(Bits)*** 

Peak Time 

ns 

Transfer rate 

(GBits/s) 

**** 

H372-K380 12.3 3 4.2 0.2 19.1 

H372-F340 15.4 3 0.1 0.06/1.6 1.7/0.1 

H372-G329 6.1 2 3.3 0.1 33.0 

H372-V362 13.9 3 1.8 0.5 3.9 

H372-A376 6.3 1 4.0 0.1 40.0 

K380-F340 15.9 3 0.1 0.11/1.7 0.9/0.1 

K380-G329 16.2 3 1.5 0.5 3.2 

K380-V362 10.2 3 2.0 0.2 8.7  

K380-A376 6.0 1 4.1 0.1 41.0 

F340-G329 12.8 3 0.3 0.2 0.6 

F340-V362 17.5 3 0.2 0.05/1.2 4/0.2 

F340-A376 14.1 3 0.1 0.07/1.6 1.4/0.1 

G329-V362 15.6 3 0.9 0.6 1.5 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 14, 2019. ; https://doi.org/10.1101/519827doi: bioRxiv preprint 

https://doi.org/10.1101/519827


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G329-A376 10.5 3 1.8 0.3 6.0 

V362-A376 10.5 3 1.6 0.4 4.2 

*The distance between two residues is measured as the distance between their alpha 

carbons 

** Types 1, 2 or 3.  

***Cumulative information transfer (See Eq. 7, Materials and Methods Section) 

****Transfer rate is defined as Cumulative information transfer divided by peak time. 
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Figure 2. Dependence of cumulative inter-residue information transfer and transfer rate on distance between 

residues. Solid lines on the left and right panels are the best fitting straight line and exponential decay, respectively. 

 

The maximum amount of cumulative information that can be transferred from one residue to 

another, the channel capacity, is the integral of the instantaneous information transfer between the 

two residues. It decreases approximately linearly with the distance between the pairs, as shown in 

the left panel of Figure 2. On the right panel, the distance dependence of transfer rate between 

residue pairs is shown, which decays approximately exponentially with distance.  

 

Information transfer from network residues to others that are within a radius of 9.3 Å, i.e., the 

radius of the second coordination shell, is shown in Figure 3. The residue from which information 

is transferred is identified in each panel. In the upper left panel of Figure 3, we see a Type 2 

transfer from H372 to residues I328-E331. The upper middle panel shows that K380 exhibits a 

weak Type 2 transfer to hinge residues between S320-L323. Upper right panel shows that the 

none-network residue F340 shows a Type 2 transfer to L323-I327 and L353-G356. Residue G353 

is known as the active site and only F340 can transfer a Type 2 information to it. The lower left 

panel shows a Type 2 transfer from G329 to an alpha helix between residues H372-380 and a 
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weaker Type 2 transfer to an alpha helix between residues P394-F400. The lower middle panel 

shows a Type 2 interaction from V362 to A375, A378, A382, and to the range of residues T385-

A390. The lower left panel shows that V362 can exhibit a Type 1 transfer to residues D357 to 

R368. The lower right panel shows a weak Type 2 transfer from A376 to I327 and I336.  

 

 

Figure 3. Information transfer from the residue indicated in each panel to all other residues. Only the interactions of 

residues that are close in space are considered. These are either Type 1 or 2 types of transfer.  
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Figure 4. Information transfer from the residue indicated in each panel to all other residues. Only pairs with long-

range interactions. i.e., Type 3, are shown. 

 

Information transfer between spatially distant pairs of residues, i.e., Type 3 transfer is presented 

in Figure 4. Ordinate values of the six panels show that Type 3 transfer is of the same order of 

magnitude as those of contacting residues. It is interesting that significant long-range information 

transfer takes place also between network residues and non-network residues. In the upper left 

panel of Figure 4, information transfer of 4.2 Bits is possible from H372 to K380 with a transfer 

rate of 19.1 GB/s. The magnitude and rate of transfer between this pair are slightly lower than 

those of the contacting network residues. The two residues H372 and K380 are at the extremities 

of the long helix of the protein with a distance of 12.3Å between their alpha carbons. This 

coupling is an indicator of transfer along helices, which we will discuss below. Transfer from 

H372 to N369 at a distance of 9.47 Å is even more dramatic, with an amplitude of 4.3 Bits and a 

rate of 25.3 GB/s. H372 and N369 lie at the extremities of an elongated coil structure. H372 and 
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G333, 10.1 Å apart exhibit a coupling through which a total of 3.65 Bits may be transferred with 

a rate of 21.5 GB/s. The upper middle panel of Figure 4 shows Type 3 transfer from residue 

K380 to the rest of the system. Maximum amount of information is transferred to Q374. Residues 

K380 and Q374 are 9.8 Å apart. Residue K380 also shows a Type 3 interaction with hinge 

residues between G330 and G335. The upper right panel shows that F340 exhibits Type 3 

transfer to an alpha helix between residues P346-S350. The lower left and middle panels in 

Figure 4 show that both G329 and V362 are coupled with the helix between H372-K380 and 

A376, a residue in this helix exhibits Type 3 transfer to the hinge regions of the protein. 

 

All of the six panels of Figure 4 show that the network residues interact with the N and C-

terminals of the protein. The C-terminal which has been the focus of earlier work 19 consists of a 

helix-turn and two beta strands. The strongest interaction of the C-terminal is with residue V362. 

The distance between the centroid of the C-terminal and V362 is 24 Å, the average information 

transfer from the centroid of the C-terminal and V362 is around 1.3 Bits and the information 

transfer rate is 6.8 GB/s. 
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Figure 5. Instantaneous information transfer obtained from Eq. 6 between network residue pairs as a function of 

delay time. The rates of transfer calculated according to Eq. 7 are indicated in the Figures. 

 

 

 

Figure 6. Instantaneous information transfer between network residue pairs F340-A376 and K380-F340 exhibit 

double peaks. The transfer rate is indicated for each peak.  

 

19.09 GB/s 
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Information transfer along secondary structures: In figure 7, left panel shows the information 

transfer from residue A376, which is the central residue of the main helix to the neighboring 

residues along the helix structure. The cumulative transfer is significant, where approximately the 

same amount of information is transferred without decay as one moves along the helix. The right 

panel of Figure 7 shows that the transfer rates along the helix are high irrespective of the distance 

between residue pairs along the helix. 

 

 

 

Figure 7. Information transfer along a helix. The left panel shows the information transfer between residue 376 and 

its neighbors along the primary chain. The right panel shows the instantaneous information transfer as a function of 

delay time between near neighbors (A376-I377) and non-near neighbors (A376-N381) along the secondary 

structure.  

 

Causality: The amount of information going from a residue i to j may be different than 

information going from j to i. This feature is referred to as causality and is implicit in the 
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Schreiber theory 1. The directionality can be detected either from instantaneous information 

transfer, where 𝑡"→$(𝜏) ≠ 𝑡$→"(𝜏), or from cumulative information transfer,	𝑇"→$ ≠ 𝑇$→". Typical 

plots of 𝑡"→$(𝜏) between network residue pairs are shown in Figure 8.  

 

 

 

 

Figure 8. Directionality of the information flow. Ordinate values represent the instantaneous information transfer. 
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Figure 9. Cumulative information transfer from residue i indexed along the abscissa to the rest of the protein. 

 

According to Rios et al, 20, the hinge region between R318-G324 and the alpha helix between 

H372-K380 undergoes the largest deformation upon binding. Our results show that these regions 

undergoing the largest deformation are the ones that show highest coupling with the remaining 

regions of the protein through Type 1, 2 and 3 transfers 20.  
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Figure 10. Residues of minimal information transfer, highlighted in yellow, separate the tail of the protein from the 

rest.  

 

The four strong minima seen in Figure 9 correspond to minimal information transfer residues that 

lie approximately along a straight line that separates the amino and carboxyl tails from the rest of 

the protein. All of the pathway residues lie on the part that does not contain the two tails. Any 

information exchange that involves the tails of the protein and the rest take place through Type 3 

contacts. 

 

Discussion 

Mutation experiments of Chi et al., showed no coupling between residues with long-range 

correlations, including the H372-K380 pair. On the contrary, Lockless and Ranganathan observed 

that these two sites are statistically coupled. Kong and Karplus 18 determined coupling between 

distant residues in PDZ domain proteins and showed that this coupling has been imprinted into 
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the structure during evolution. In this paper, we quantified long-range coupling in terms of 

information transfer and showed that strong coupling is present among spatially distant residues 

of the PDZ domain. Whether this long-range coupling is the major factor in coevolution or not 

cannot be answered by information transfer, but a definite and strong long-range coupling is 

present among the network residues of 1BE9. There are several studies about the single domain 

allostery concept, which proved that PDZ domain proteins connect signals within the system and 

exhibit allosteric behavior 5a, 19, 21. Here, we utilize the GNM approach and detect the allosteric 

information transport features in 1BE9. In an experimental study, it has been confirmed that 

removal of the third helix, located at a distant site from the binding pocket between residues 

H372-K380 in 1BE9, affects the dynamics of the system and thus reduces the binding affinity 

[23]. A possible allosteric pathway is constructed by a perturbation response scanning analysis 19, 

and the residues involved in the pathway is detected by our method. The residues that are pointed 

out in reference 19 which are involved in information transfer are I314, I327, I338, A347, L353, 

V362, L367, H372, K380, V386 and E396. The peaks in Fig 9 correspond to the significant 

information transmitting residues listed in previous studies [2, 20, 22-24]. The direction of the 

transfer can be detected from plotting the pairwise instantaneous information transfer from i to j, 

𝑡"→$(𝜏), and from j to i, 𝑡$→"(𝜏). The directionality, causality relationship, for several residue 

pairs is shown on Fig 8, which shows that information going from i to j may differ from the 

transfer from j to i. Determining the driver-driven relationship among a residue pair is a crucial 

step in terms of drug design and the directionality plots in Figure 8 help reveal the underlying 

mechanism of information transfer process.  
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Materials and Methods 

 

Defining short and long-range interactions: Two residues are spatially close if they lie within the 

first coordination sphere of each other, which indicates direct contact. The radius of the first 

coordination sphere is in the range 7.0-7.4 Å 17. The second coordination sphere has a volume 

twice that of the first with radii in the range 8.8-9.3. Pair contacts that are outside the first but 

within the second coordination volume do interact and are relatively close in space but not so 

close along the main chain, therefore we classified them as Type 2 contacts. All residue pairs at a 

distance larger than the second coordination sphere radius may safely be assumed as spatially 

distant. Coupling between pairs of residues lying beyond their second coordination volumes are 

all classified in this paper as Type 3 interactions.  

 

The Gaussian network Model (GNM): The Gaussian network Model is based on the harmonic 

interactions of contacting residue pairs. The nodes of the network are defined by the alpha carbon 

coordinates, and the springs of the network that connect the nodes are representative of the 

interactions between residue pairs within a specified cutoff distance. The cutoff distance is taken 

as 7 Å. The matrix that contains the connectivity of the protein is described by a matrix G whose 

ijth element equates to -1 if residues i and j are closer than the cutoff distance. The diagonal 

elements are equal to the negative sum of the corresponding row. The coefficient of this matrix is 

the spring constant. The spring constant between residues in contact is derived from scaling the 

B-factors that are obtained from the inverse of the G matrix and experimentally measured ones. 

For 1BE9.pdb, the scaling constant is calculated as 75.3.  
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The time correlation of fluctuations of two residues are obtained from the solution of the 

Langevin equation 22.  

  

<𝛥𝑅"(0)𝛥𝑅$(𝜏)> =1 𝐴"$(𝑘)𝑒𝑥𝑝 7−𝜆: 	
;
;<
=

:
                                              (1) 

 

where  

 

 𝐴"$(𝑘) = −𝜆:>?𝑢"
(:)𝑢$

(:)                                                                                  (2) 

        

lk is the kth eigenvalue and ui(k) is the ith component of the kth eigenvector of the G matrix. The 

probability distribution of a Gaussian instantaneous fluctuation is given as 

 

𝑝(𝛥𝑅) = ?
A(BC)DEFGHI

𝑒𝑥𝑝 J− ?
B
(𝛥𝑅)K𝛤(𝛥𝑅)M                                    (3)  

    

where G-1 is the matrix of covariance of instantaneous fluctuations, <𝛥𝑅"𝛥𝑅$>.  

 

Information transfer from one residue to another: We consider two processes X and Y identified 

by the trajectories of the fluctuations, 𝛥𝑅"(𝑡) and 𝛥𝑅$(𝑡) at time t, of residues i and j, 

respectively. We identify information transfer from residue i to residue j as as the amount of 

uncertainty reduced in future values of Y by knowing the present values of X and Y. This 

concept was introduced by Schreiber 1 where he used the term ‘entropy transfer’ from i to j, 𝑡"→$, 

defined by 
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    (4) 

 

Here,  is the conditional entropy of residue j at time t+t given the values of 

𝛥𝑅$(𝑡)	at time t.  is the conditional entropy of residue j at time t+t 

given the values of 	𝛥𝑅"(𝑡)and 𝛥𝑅$(𝑡) at time t. The difference shows the amount of entropy 

reduced in the trajectory of j due to a knowledge of the present values of i. In terms of Shannon’s 

entropy Eq. 4 reads as: 

 

    (5) 

 

Here,  is the joint probability of fluctuations of i and j at time zero and 

the fluctuation of j at time t, with similar definitions of the remaining probabilities in Eq, 5. The 

joint probabilities may be obtained either by extensive molecular dynamics simulations or using 

the dynamic Gaussian Network Model. Here, we use the latter theory, which is outlined below. 

 

The Gaussian Network Model of information transfer: Substituting from Eq. 3 into Eq. 5 leads to 

the following final expression for entropy transfer 
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Cumulative information transfer: The transfer of information given by Eq. 6 is the information 

transferred instantaneously at time t  resulting from an effect imposed at zero time. The model 

contains a characteristic time t0. In earlier work 23 it was shown that the dynamics of folded 

proteins may be expressed in terms of a universal characteristic time t0, which was estimated to 

be around 5-6 ps. Adopting a value of  𝜏N = 5	𝑝𝑠, the values of information transfer may be 

calculated from Eq. 6 for each t. Some of the instantaneous information transfer curves obtained 

in this manner are shown in Figs. 5 and 6. 

The cumulative information transfer is obtained from the instantaneous transfer according to  
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Calculating the transfer rate: The peak values shown in Figure 5 correspond to times when a 

large fraction of the information is transferred. As a first order approximation, we assume that all 

of the cumulative information is transferred at the peak time. Then, the transfer rate becomes the 

cumulative information transfer divided by the peak value. All the transfer rates reported in the 

paper are obtained in this way. 

Maximum Caliber: Maximum Caliber (Max Cal) predicts the probabilities of trajectories by 

maximizing the trajectory entropy over all possible trajectories subject to certain dynamical 

constraints. A trajectory is defined as a discrete time sequence (𝑡N𝑡?𝑡B … 𝑡K). of length T+1. We 

assume that the system contains N particles, and each particle may be in M states. A particle may 

be a residue of the protein and its trajectory may be represented as the trajectory of its alpha 

carbon. At any given instant, the system will occupy a state among a total of MN possible state. 

During the trajectory of length T, MTN states will be available to the system. At time 𝑡:, the state 

of the system is denoted as or simply as 𝑖:. The states visited during the trajectory are denoted 

as (𝑖N𝑖?𝑖B … 𝑖K).	The set of all trajectories is shown by . The probability of the 

trajectory is 𝑝(𝑖N𝑖?𝑖B … 𝑖K) = 𝑝X. The path entropy is defined as 

. The summation is over all possible states MTN. Max Cal 

principle maximizes the following function, the entropy, subject to certain constraints: 

−∑ 𝑝X log
]^
_^
− 𝛾(∑ 𝑝X𝐹(Γ)X )X + 𝛼(∑ 𝑝X − 1X )                                            (8) 

Here, 𝑞X is a reference distribution for the problem. The distribution resulting from the variation 

of this equation is 𝑝X =
_^EHgh(^)

i
, where 𝑍 = ∑ 𝑞X𝑒>kl(X)X .  

Of particular interest is the constraint on the pairwise statistics where the functional F(G) is now 

defined as 
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𝐹mn = ∑ 𝑝(𝑖N𝑖?𝑖B … 𝑖K) ∑ 𝛿"p,r𝛿"psI,t
K>?
:uNvwx                                                   (9) 

where, 𝛿"p,ris the Kronecker delta, which equates to unity if the state 𝑖:	is the mth state and zero 

otherwise. Ge et al., 4 showed that constraining the problem to pairwise statistics leads to a 

Markov process in which the probability distribution of the path is obtained as 

𝑝(𝑖N𝑖?𝑖B … 𝑖K) = ∏ 𝑝(𝑖:𝑖:z?)K>?
:uN                                                                    (10)  

Relationship between Max Cal and information transfer methodology: In our problem, we select 

two particles, i and j, out of the N particles of the system. The trajectory for each of the particles 

is defined as in the general case. The statistics then reduces to pairwise statistics. There will be a 

total of M2T states available for each of the particles throughout the trajectory for the system.  

Transfer entropy is defined as a Markov process over the phase space of M2T elements as 

𝑇"→$ = −∑ 𝑝(𝑗nz?𝑖n𝑗n) log
]($tsI|"t$t)
]($tsI⌊$t)v~w                                                    (11) 

Expanding gives 
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𝑇"→$ = −∑ 𝑝(𝑗nz?𝑖n𝑗n) log 𝑝(𝑗nz?𝑖n𝑗n) + 〈log 𝑝(𝑖n𝑗n)〉 + 〈log 𝑝(𝑗nz?𝑗n)〉v~w − 〈log 𝑝(𝑗n)〉  (14) 

Letting log 𝑝(𝑗nz?𝑖n𝑗n) = 〈log 𝑝(𝑖n𝑗n)〉 + 〈log 𝑝(𝑗nz?𝑗n)〉 − 〈log 𝑝(𝑗n)〉  
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We obtain  

𝑇"→$ = −∑ 𝑝(𝑗nz?𝑖n𝑗n) log
]($tsI"t$t)
_($tsI"t$t)v~w                                                     (15) 

Here, 𝑞(𝑗nz?𝑖n𝑗n) is some reference distribution over paths. This Eq. 15 is identical with Eq. 6 of 

Ref. 3. 

The probability term, 𝑝(𝑗nz?𝑖n𝑗n), in the transfer entropy equation conforms with pairwise 

statistics where jn+1 is the state at the n+1st step and 𝑖n𝑗n is the state at the nth step. From molecular 

dynamics trajectories, we created the joint distribution 𝑝(𝑗nz?𝑖n𝑗n) and formed the average  

𝐹�� = ∑ 𝑝(𝑖N𝑖?𝑖B … 𝑖K)∑ 𝛿"p,�𝛿"psI,�
K>?
:uNvwx , where r is the state in+1 at time n+1 and s is the state 

injn at step n. Thus, Frs defines the states averaged over all conformations of all other residues. All 

calculations of 𝑇"→$	from molecular dynamics trajectories are performed by using Frs in the 

equation. 
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