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Abstract 

Liability to schizophrenia is inversely correlated with general cognitive ability at both the 

phenotypic and genetic level. Paradoxically, a modest but consistent positive genetic correlation has 

been reported between schizophrenia and educational attainment, despite the strong positive genetic 

correlation between cognitive ability and educational attainment. Here we leverage published GWAS in 

cognitive ability, education, and schizophrenia to parse biological mechanisms underlying these results. 

Association analysis based on subsets (ASSET), a pleiotropic meta-analytic technique, allowed jointly 

associated loci to be identified and characterized. Specifically, we identified subsets of variants 

associated in the expected (“Concordant”) direction across all three phenotypes (i.e., greater risk for 

schizophrenia, lower cognitive ability, and lower educational attainment); these were contrasted with 

variants demonstrating the counterintuitive (“Discordant”) relationship between education and 

schizophrenia (i.e., greater risk for schizophrenia and higher educational attainment). ASSET analysis 

revealed 235 independent loci associated with cognitive ability, education and/or schizophrenia at 

p<5x10−8. Pleiotropic analysis successfully identified more than 100 loci that were not significant in the 

input GWASs, and many of these have been validated by larger, more recent single-phenotype GWAS. 

Leveraging the joint genetic correlations of cognitive ability, education, and schizophrenia, we were able 

to dissociate two distinct biological mechanisms: early neurodevelopmental pathways that characterize 

concordant allelic variation, and adulthood synaptic pruning pathways that were linked to the 

paradoxical positive genetic association between education and schizophrenia. Further, genetic 

correlation analyses revealed that these mechanisms contribute not only to the etiopathogenesis of 

schizophrenia, but also to the broader biological dimensions that are implicated in both general health 

outcomes and psychiatric illness.  

Keywords: Cognitive ability, Educational attainment, Schizophrenia, GWAS, Pathways, Genetic 

correlation, pleiotrop 
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Introduction 

 

It has long been observed that impaired cognitive ability is a significant aspect of the illness in 

schizophrenia1–5. Cognitive deficits have been shown to be largely independent of clinical state and 

treatment status in patients with schizophrenia1,4,6–9, and are observed (in more subtle form) in their 

first-degree relatives10,11. Moreover, cognitive deficits precede illness onset by many years, beginning in 

early childhood5,12–14, resulting in reduced educational attainment in patients diagnosed with 

schizophrenia15,16. Recent advances in psychiatric and cognitive genomics have reliably demonstrated 

that the inverse relationship between cognitive ability and risk for schizophrenia is also observed at the 

molecular genetic level (rg~-.20) 17–23. Paradoxically, genetic correlation studies have indicated a positive 

relationship between educational attainment and risk for schizophrenia (rg~.10)20,22,24–27, despite the fact 

that educational attainment and cognitive ability exhibit a very strong polygenic overlap (rg~.70)19,20,27. 

Educational attainment is often considered to be a proxy for cognitive ability; however, the lack of 

perfect genetic overlap between the two, combined with the paradoxical genetic correlation between 

educational attainment and schizophrenia, suggest an opportunity to decompose distinct genetic 

mechanisms accounting for this pattern of results. 

Whereas genetic correlation analysis has recently become widespread due to the availability of 

techniques such as linkage disequilibrium (LD) score regression (LDSC)25,28, these approaches generally 

result in a single, genome-wide estimate of polygenic overlap. Moreover, novel meta-analytic 

approaches (e.g., Multi-Trait Analysis of GWAS [MTAG]29) for merging seemingly heterogeneous GWAS 

datasets tend to exploit commonalities across phenotypes rather than differences; for example, two 

recent studies have employed MTAG across the highly correlated cognitive and educational GWASs in 

order to accelerate the process of gene discovery19,20. By contrast, few studies have attempted to 

examine the counter-intuitive correlation between schizophrenia and educational attainment, or to 
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parse subsets of SNPs that might drive cross-phenotype correlations. An initial effort has successfully 

identified a few individual loci that act in paradoxical fashion, increasing educational attainment while 

simultaneously increasing risk for schizophrenia30; two other studies have identified loci that 

demonstrate other pleiotropic effects21,31. 

To date, however, no studies have utilized pleiotropic meta-analytic techniques to 

comprehensively parse variance from cognitive, educational, and schizophrenia GWAS that may 

pinpoint differential biological mechanisms. In order for the paradoxical pattern of genomewide 

correlations to exist, there must be identifiable subsets of SNPs that are differentially involved in driving 

these genetic relationships. Therefore, we sought to identify differentially associated variants, as they 

may yield crucial insights into the fine-grained genetic architecture of schizophrenia, in turn giving us 

insights into the etiopathogenic mechanisms underlying the illness that standard GWAS cannot detect.  

In the present report, we first utilize a simple subsetting approach to identify SNPs that are 

significantly associated with either cognitive ability or educational attainment, but not both 

(Supplementary Figure 1a). We hypothesized that these SNP subsets would demonstrate stronger 

genetic correlations with schizophrenia than observed with a simple genomewide approach. We then 

employ a pleiotropic meta-analytic approach, ASSET32, which permits the characterization of each SNP 

with respect to its pattern of effects on multiple phenotypes (Supplementary Figure 1b). For example, 

ASSET has previously been used to demonstrate that the minor allele of rs2736100 (at the TERT locus) is 

positively associated with risk for pancreatic cancer, negatively associated with risk for kidney and lung 

cancers, and not significantly associated with risk for cancers of the breast, bladder, and prostate; other 

cancer loci were demonstrated to have various other patterns of effects32. We utilized ASSET to identify 

two types of loci: 1) those SNPs that are consistently associated with all three phenotypes in the 

expected direction (i.e., the same allele associated with higher cognitive ability, higher educational 

attainment, and lower risk for schizophrenia), which we label “Concordant”; and 2) SNPs that 
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demonstrate the paradoxical association between education and schizophrenia (i.e., the same allele 

associated with higher educational attainment and higher risk for schizophrenia), labelled “Discordant.” 

Next, we compared the statistically significant ASSET results to the output of single trait GWASs of 

cognitive ability, educational attainment, or schizophrenia22,35,36, in order to identify novel loci suggested 

by ASSET.  Subsequently, we conducted a series of pathway and transcriptome-wide analyses to 

biologically characterize differential mechanisms underlying Concordant vs Discordant loci. Finally, we 

performed a series of genetic correlation analyses to compare the overlap of Concordant and Discordant 

SNP subsets with other relevant traits. Further analytic details are covered in the methodology section; 

the full analysis workflow is also represented in Supplementary Figures 1-2.  

 

Methods 

 

Stage 1: Simple Subsetting Approach Based on P-values in Cognition and Education GWAS 

Note that for most purposes in this manuscript, we are using the largest GWAS for 

schizophrenia33, cognitive ability19, and educational attainment34 published prior to 2018. For each of 

these phenotypes, larger GWAS have been published in 2018; these were used for validation and 

extension as described in subsequent sections. Before any subsetting analyses, genomewide genetic 

correlations using LD score regression25,37 were used to confirm the earlier observed genetic correlations 

between schizophrenia with both cognitive ability and education. In Stage 1, preliminary SNP subsets 

were formed simply based on p-value thresholds of cognitive ability and educational attainment GWAS: i) 

SNPs nominally associated with cognition (p < 0.05) and not associated with education (p > 0.05) were 

selected, resulting in 74,470 SNPs; ii) SNPs nominally associated with cognition (p < 0.05) and not 

associated with education using a stricter threshold (p > 0.5) resulted in 66,657 SNPs; iii) similar 

procedures were carried out for SNPs nominally associated with education (p < 0.05) but not cognition 
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(p > 0.05), resulting in 104,807 SNPs; and iv) SNPs nominally associated with education (p < 0.05) and 

not cognition using a stricter threshold (p > 0.5), resulting in 44,803 SNPs.  

Next, we performed a heterogeneity test between results of cognitive and educational GWAS 

using METAL38, and generated sets of SNPs showing opposite effects between the two (i.e, the same 

allele predicts better cognitive performance but less educational attainment, and vice versa). We 

identified sets of SNPs of varying sizes based on varying p-value thresholds for the heterogeneity test (p 

< .5; p < .25; p < .1; p < .05; p < .01; p < .001).  

To evaluate the degree of genetic correlation of these preliminary subsets of SNPs with respect 

to schizophrenia, we utilized GNOVA39, a recently published method similar to LD score regression. 

However, GNOVA is specifically designed for examination of genetic correlations using SNP subsets 

(rather than full genomewide summary statistics), whereas such applications have not been explicitly 

tested in LD score regression and may not be robust.  

 

Stage 2: ASSET Meta-Analysis and ASSET-generated SNP Subsets 

Schizophrenia GWAS summary statistics were obtained from the Psychiatric Genomics 

Consortium33 based on the European ancestry GWAS of schizophrenia (N = 77,096, Cases = 33,640, 

Controls = 43,456; GWAS mean χ2 = 1.677). To make them compatible with effect sizes (Beta weights) 

derived from the linear regression-based cognition and education GWASs, odds-ratios from the case-

control schizophrenia GWAS were converted to Beta by taking the natural logarithm. Effect direction per 

SNP was also reversed for schizophrenia to make them consistent with the interpretation of cognition 

and education (i.e., concordant alleles are those where the direction of effect is the same for cognitive 

ability, educational attainment, and for schizophrenia). Summary statistics for the education GWAS was 

obtained from the Social Science Genomics Association Consortium34 (N = 328,917, GWAS mean χ2 = 

1.638). GWAS summary statistics for cognition are available via earlier inverse-variance meta-analysis of 
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samples19 from the COGENT27 consortium (N = 107,207, GWAS mean χ2 = 1.245). General quality control 

parameters were applied to the schizophrenia and cognitive GWAS summary statistics excluding SNPs 

with INFO scores < 0.6 and minor allele frequency < 0.01; multiple quality control parameters thresholds 

were reported for the education GWAS34 and summary statistics were used as provided on 

https://www.thessgac.org/data.  Detailed quality control and meta-analytic procedures were reported 

previously19. Only SNPs that were present for all three phenotypes were retained as input to the ASSET 

meta-analysis, resulting in 7,306,098 SNPs for subsequent analysis.  

Pooling GWAS summary statistics using conventional inverse-variance meta-analysis increases 

power, but also poses methodological challenges when different studies are capturing 

heterogeneous/pleiotropic phenotypes. In the case of pleiotropy, individual variants are likely to be 

associated with only a subset of the traits analyzed, or may even demonstrate effects in different 

directions for the different phenotypes under analysis. ASSET meta-analysis32 is an agnostic approach 

that generalizes standard fixed-effects meta-analysis by allowing a subset of the input GWASs to have 

no effect on a given SNP, and exhaustively searches across all possible subsets of “non-null” GWAS 

inputs within a fixed-effect framework to identify the strongest association signal in both positive and 

negative directions. ASSET then evaluates the significance of these positive and negative associations 

while accounting for multiple testing. This methodology allows for a powerful pooled two-tailed Z-score 

test statistic that effectively combines p-values for variants with strong effects in opposite directions 

across input GWASs. ASSET also permits the addition of a covariance term for the adjustment of 

overlapping samples. More recently, comparisons between cross phenotype meta-analysis 

methodologies demonstrated that ASSET performed best as the number of meta-analysed traits with 

null effects increases, along with specificity and sensitivity of the results; in addition the ASSET approach 

best controlled for potential Type 1 inflation due to sample overlap, and non-uniform distribution of 
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effect sizes40.  As such we selected ASSET for its conservative effect estimates and minimal inflation for 

the purpose of the current report.  

GWAS summary statistics from schizophrenia, cognition, and education were combined using 

ASSET two-tailed meta-analysis (version 1.9.1) to obtain a single cross phenotype pleiotropic GWAS 

results. Default parameters were carried out using the “h.traits” function. Inter-study correlations of the 

phenotype were first ascertained using linkage disequilibrium score regression (LDSC)25,28, which 

accounts for the genetic correlation of the phenotypes as well as sample overlap. For each given SNP, 

ASSET generates Z-scores of effect size and p-values based on the strongest association from the input 

studies in positive and negative directions, respectively; then these p-values are pooled into a single 

two-tailed p-value for pleiotropy32,40,41. SNPs with similar relationships across the input traits (regardless 

of statistical significance) are then grouped into subsets identified by ASSET (see Figure 1b; 

Supplementary Figure 1, bottom).  

Again, as noted above, it is important to emphasize that the per-SNP direction of effect was 

reversed for schizophrenia to make it consistent with the interpretation of cognition and education (i.e., 

higher scores are better, such that higher scores for schizophrenia are now coded as decreased risk for 

the disorder). Thus, in the notations to follow, a ‘∩’, represents variant subsets with the same effect 

directions, following the reversal of the direction of effect for the schizophrenia data set, and ‘|’, 

represent traits that goes in the opposite direction in terms of effect sizes compared to the other two 

traits (again following the reversal of the direction of effect for the schizophrenia data set). ASSET 

subsets included: i) scz ∩ edu ∩ cog (Concordant, variants with an allele associated with an increase in 

cognitive ability and educational attainment, but a decrease in schizophrenia risk); ii) edu ∩ cog | scz 

(Schizophrenia outlier, variants associated with an increase in cognitive ability and educational 

attainment, but also an increase in schizophrenia risk); iii) scz ∩ cog | edu (Education outlier, variants 

associated with an increase in schizophrenia risk and reduced cognitive ability, but an increase in 
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educational attainment); iv) scz ∩ edu | cog  (Cognition outlier, variants associated with an increase in 

schizophrenia risk and reduced educational attainment, but an increase in cognitive ability) subsets. 

ASSET also identified SNPs where only a single trait (scz or edu or cog) was significant; these were 

included in a category called ‘Single phenotype’.  

Finally, to generate an appropriate contrast for the ‘Concordant’ subset, we included a 

combined single ‘Discordant’ subset, representing the counter-intuitive genetic correlation between 

education and schizophrenia, where, ‘Discordant’ = (edu ∩ cog | scz) + (scz ∩ cog | edu) [subsets ii and 

iii above], regardless of the effect for cognition. These contrasts are also represented visually in Figure 1 

and Supplementary Figure 1.  

 

Consolidation of Independent Loci  

 Independent genomewide significant loci for each ASSET meta-analysis subset were identified 

via SNP clumping procedures that are a part of the Functional Mapping and Annotation (FUMA) 

pipeline42. For the LD-rich MHC region, a single top SNP was retained. For all other loci, clumping 

procedures were carried out based on the European 1000 Genomes Project phase 3 reference panel. 

First, “independent significant SNPs” were defined as those SNPs with a p-value < 5×10−8 and with 

linkage disequilibrium r2 < 0.6 with other, more significant SNPs at the same locus. Second, candidate 

SNPs were then identified for subsequent annotations and were defined as all SNPs that had a MAF of 

0.01, a maximum p value of 0.05, and were in LD of ≥ r2 0.6 with at least one of the independent 

significant SNPs. To ensure that biological annotation of these loci would not be hampered by poor 

coverage at any locus, candidate SNPs included SNPs from the 1000 Genomes reference panel that may 

not have been included in the ASSET data. Third, “lead SNPs” were defined as the independent 

significant SNPs that had the strongest signal at a given locus and were strictly independent from each 

other (r2 < 0.1). Finally, risk loci that were 250kb or closer were merged into a single locus. The FUMA 
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procedure was iterated across all ASSET SNP subsets, which were comprised (by definition) of non-

overlapping SNPs. Additional variant annotations were conducted with ANNOVAR43, and lookups with 

published GWAS were conducted using the GWAS catalog44. Additional SNP lookups were performed 

with the input summary statistics (Cognition, Education and Schizophrenia GWASs33,34,19), recent MTAG 

analysis of Intelligence20, recent Cognition/Intelligence22,23 GWASs, and pleiotropic analyses of cognition 

and schizophrenia21 as well as education and schizophrenia31. RAggr45 was utilized to extract SNPs within 

250kb and r2 > 0.6 from published reports to allow merging from loci generated from ASSET subsets.  

 

MAGMA Gene-based Analysis: Tissue Expression and Competitive Pathway Analysis 

SNPs were mapped to 19,436 protein coding genes using MAGMA, as implemented in the 

FUMA42 pipeline. MAGMA46 gene analysis was performed using default SNP-wide mean model using the 

1000 Genomes phase 3 reference panel and default gene annotations that are part of the FUMA 

pipeline. Genome-wide SNP p-values and SNP-level sample sizes were included in the input files. 

MAGMA gene tissue expression analysis was carried out utilizing the Genotype-Tissue Expression (GTEx; 

version 747–49) resource, examining the relationship between gene expression in a specific tissue type 

and ASSET results. The gene-property test was performed for average expression (log2 transformed 

RPKM with pseudocount 1 after winsorization at 50) of 53 specific tissue types conditioning on average 

expression across all tissue types.  

MAGMA competitive pathway analysis was also conducted with results that emerged from the 

ASSET analysis in order to identify specific biological processes linked to our sub-phenotypes of interest. 

Gene sets that were tested included drug-related pathways50,51, as well as custom-curated 

neurodevelopmental and other brain-related gene sets that had gone through stringent quality control 

in a study originally designed to interrogate rare variants in schizophrenia52. In the latter, pathways with 

more than 100 genes from Gene Ontology (release 146; June 22, 2015 release), KEGG (July 1, 2011 
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release), PANTHER (May 18, 2015 release), REACTOME (March 23, 2015 release), DECIPHER 

Developmental Disorder Genotype-Phenotype (DDG2P) database (April 13, 2015 release) and the 

Molecular Signatures Database (MSigDB) hallmark processes (version 4, March 26, 2015 release) were 

initially included. Additional gene sets were selected based on risk for schizophrenia and 

neurodevelopmental disorders, including those reported for schizophrenia rare variants53 (translational 

targets of FMRP54,55, components of the post-synaptic density56,57, ion channel proteins57, components of 

the ARC, mGluR5, and NMDAR complexes57, proteins at cortical inhibitory synapses58,59, targets of mir-

13757, and genes near schizophrenia common risk loci57,60) and autism risk (autism risk genes: targets of 

CHD861–63, splice targets of RBFOX63–65, hippocampal gene expression networks66, neuronal gene lists 

from the Gene2cognition database [http://www.genes2cognition.org]63, as well as “loss of function 

intolerant” genes (pLI > 0.9 from the ExAC v0.3.1 pLI metric), ASD risk genes for FDR < 10% and 30%, and 

ASD/developmental disorder de novo genes hit by a LoF or a LoF/missense de novo variant67,68). Brain-

level tissue expression gene-sets included the Brainspan RNA-seq dataset69 and the GTEx v7 dataset47. 

MAGMA gene-based and gene-set analysis were conducted using MAGMA v1.646.  

 

S-PrediXcan: Brain Tissue Expression Profiles and Hypergeometric Gene-set Enrichment Analysis 

Genetically regulated gene expression was imputed for the ASSET summary statistics using 

tissue models from GTEx v7 and the CommonMind Consortium via S-PrediXcan (formerly MetaXcan)70–72. 

S-PrediXcan computes downstream phenotypic associations of genetic regulation of molecular traits 

using elastic nets, adjusting for model uncertainty and colocalization of GWAS and eQTL signals73. GTEx 

v7 tissue included amygdala (N = 88), anterior cingulate cortex (N=109), basal ganglia (N=144), 

cerebellar hemisphere (N=125), cerebellum, cortex (N=136), frontal cortex (N=118), hippocampus 

(N=111), hypothalamus (N=108), nucleus accumbens (N=130), putamen (N=111), spinal cervical-1 (N=83) 

and substantia nigra (N=80).  The CommonMind consortium data consist of tissue expression derived 
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from the dorsolateral prefrontal cortex (DLPFC, N=279)74.  GTEX v7 Tissue expression models were 

trained using elastic net models that were made publicly available here (http://predictdb.org/). Elastic 

net models for DLPFC were contributed by collaborators from the CommonMind Consortium74–76. 

Bonferroni correction was first conducted for each ASSET subset of genes. Genes that survived multiple 

testing correction were entered to GENE2FUNC to conduct a test of over-representation, which is part 

of the FUMA42 pipeline. This analysis differs from the MAGMA gene set analysis as the MAGMA gene set 

analysis is used to examine if gene sets, united by a known biological theme, are enriched for the 

phenotype under investigation. In a test of overrepresentation, as conducted using GENE2FUNC, the 

shared function of the genes of interest is unknown, and its elucidation is the goal of a test of over-

representation. The over-representation test conducted using GENE2FUNC queries gene sets from the 1) 

Molecular Signature Database (MsigDB v 5.2) 2) WikiPathways (Curated Version 20161010) and 3) 

GWAS Catalogue (reported genes ver e91 20180206); to avoid spurious results, we required a minimum 

of 3 genes per pathway. For each gene set, hypergeometric tests were conducted, examining the list of 

genes significant in each ASSET subset for overlap with gene sets within the databases stipulated above 

and applying Bonferroni correction for multiple testing. To reduce the likelihood that hypergeometric 

pathway analysis would be influenced by the dense number of genes within the MHC region, genes 

within the coordinates of 28,000,000 – 35,000,00077 on chromosome 6 were removed.  

 

Genetic Correlations 

 To examine how our ASSET Concordant and Discordant SNP subsets relate to other phenotypes 

with available GWAS data, we conducted genetic correlations using GNOVA39, an approach similar to LD 

score regression but capable of working with SNP subsets.  A series of neuropsychiatric, inflammatory, 

brain, metabolic and cardiovascular phenotypes that have been previously demonstrated to have 

genetic correlations with cognitive measures were selected to interrogate the genetic overlaps of our 
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ASSET subsets.  Interpretation of GNOVA for the Concordant subset was straightforward, as the three 

input GWAS weights all follow the same direction (following the reverse-coding of schizophrenia as 

noted previously). By contrast, Discordant SNPs have two separate potential weights (allelic β for 

schizophrenia vs. allelic β for education); as shown in Figure 1B, a given SNP might have somewhat 

different effect sizes (distance from the center line) for education as compared to schizophrenia. 

Therefore, we weighted each SNP by the stronger value of β: variants for which the schizophrenia β was 

stronger than the education β were referred to as “schizophrenia type,” while variants with the opposite 

pattern were referred to as “education type.” Nevertheless, it is important to emphasize that the 

Discordant SNPs represent a single dimension of biology, and the net effects of all “schizophrenia type” 

variants were equivalent to the “education type” SNPs, albeit with opposite signs.  

 

 

Results 

 

Stage 1: Preliminary evaluation of genetic correlations  

 GWAS summary statistics for cognition (N = 107,207)19 and education (N = 328,917)34 were used 

to evaluate preliminary genetic correlations with schizophrenia (N = 77, 096)33. Consistent with previous 

results, the inverse genetic correlation between cognition and schizophrenia was significant (rg = -.19, se 

= .03, p=2.85×10−10), as was the counter-intuitive positive correlation between education and 

schizophrenia (rg=.10, se=.02, p=3.91×10−5). Note that these analyses were conducted prior to reversing 

the direction of effect for schizophrenia. 

Prior to the main ASSET analysis, two simple approaches were used to examine subsets of SNPs 

and their association with schizophrenia (Supplementary Figure 1). First, we selected SNPs that were 

nominally associated with education (p < 0.05) and generally not associated with cognition (p > 0.05); 
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GNOVA for this subset of educational attainment SNPs revealed a slightly stronger positive correlation rg 

of .15  with schizophrenia (Figure 2a). With a stricter threshold for SNPs not associated with cognition (p > 

0.50), these “non-cognitive” educational attainment SNPs attained an rg of .20 with schizophrenia. 

GNOVA analyses were repeated for SNPs nominally associated with cognition (p < 0.05), but generally 

not associated with education (p > 0.05), and then repeated again with the stricter threshold for 

education (p > 0.50). Values for rg of -.55 and -.10 were obtained between schizophrenia and these 

cognition subsets (Figure 2a).  

The second approach involved calculating the heterogeneity p-values for cognition and 

education, identifying SNPs that have discrepant direction of effects between cognition and education. 

These SNPs are then binned, ranging from low probability (p < 0.5) to high probability (p < 0.001) for 

heterogeneous effect sizes between cognition and education (Figure 2b). GNOVA indicated that the 

greater the discrepancy in effect direction between SNP effects for cognition and education, the 

stronger the association between cognition and schizophrenia. The same pattern was observed for 

education and schizophrenia, although to a more modest degree.  

 

Stage 2: ASSET Meta-Analysis and SNP subsets 

 Genome-wide cross-phenotype ASSET meta-analysis across 7,306,098 SNPs revealed 300 lead 

SNPs across 236 independent loci that met the genomewide significance threshold of p <5×10−8 for the 

ASSET 2-tailed test (see Figure 3a and Supplementary Tables 1 and 2). There were 1,381,020 SNPs that 

demonstrated consistent direction of effects between cognition, education and schizophrenia (i.e., 

lower cognitive ability, lower educational attainment, and increased risk for schizophrenia); these were 

assigned to the “Concordant” subset, which contained 89 genomewide significant loci harboring 103 

independent significant SNPs. By contrast, the “Discordant” subset, which consisted of SNPs with 

counter-intuitive allelic effects for schizophrenia vis-à-vis education, encompassed 1,891,743 SNPs, with 
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65 genomewide significant loci comprising 77 independent significant SNPs (Figures 3b and 3c ; 

Supplementary Table 1). Significant loci for other ASSET subsets are also detailed in Supplementary 

Table 2, along with FUMA-derived annotations for potential functional consequences, including CADD 

scores (Supplementary Table 3), eQTL lookups (Supplementary Table 4), and prior GWAS lookups 

(Supplementary Table 5). 

 

Consolidation of Independent Loci to Identify Novel Hits  

Next, we wanted to identify which loci from our ASSET results were novel with respect to the 

three input GWAS. Using RAggr45 we extracted SNPs with r2 > 0.6 within a window of 250kb of lead SNPs 

in reported GWAS i.e. 101 loci from the European-ancestry cohorts of the Psychiatric Genomics 

Consortium GWAS of schizophrenia33, 74 loci from the SSGAC educational attainment GWAS34 and 40 

loci from the COGENT GWAS of cognitive ability19. These were merged with the 236 loci from ASSET. As 

earlier described, independent loci within 250kb were merged, resulting in 280 independent loci being 

identified across ASSET and the input GWAS. As shown in the resulting Venn diagram (Figure 4), 110 

“novel” loci were identified by the ASSET meta-analysis. By contrast, 126 loci overlapped with either 

schizophrenia, education or schizophrenia, while 44 loci were only significant in the input GWAS but not 

ASSET.  

Very recently, new GWAS have been published for schizophrenia, cognitive ability, and 

educational attainment, which are larger than the input GWAS used for our ASSET analysis22,35,36. This 

permitted us to perform a lookup of our 110 “novel” ASSET SNPs, thus providing an opportunity to 

validate ASSET as a tool for novel locus discovery (Supplementary Table 6). We also performed lookup in 

a paper utilizing MTAG to examine intelligence20 or several recent papers using pleiotropic approaches 

to these phenotypes21,31. We found that 75% of the loci were in fact reported as significant in the later 
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GWASs with larger sample sizes, while 28 of the 110 loci were novel. The 28 novel loci are reported in 

Table 1. Further ANNOVAR43 annotations are available for novel loci (Supplementary Table 7). 

 

MAGMA Gene-based Analysis: Tissue expression and Competitive Pathway Analysis 

MAGMA gene-based analysis was conducted on all ASSET subsets. 772 genes survived 

Bonferroni correction in the overall ASSET analysis, with 306 genes in the Concordant subset and 304 

genes within the Discordant subset (Supplementary Table 8). MAGMA gene property analysis revealed 

significant association (p < 0.000926, Bonferroni-corrected) of gene expression of ASSET SNP subsets 

across GTExv7 brain tissues (Supplementary Figure 3, Supplementary Table 9). There were no significant 

differences between Concordant and Discordant result subsets; both subsets were significantly enriched 

(positive Beta weights) across all brain compartments. 

 Because of the significant enrichment in brain tissues, we next performed MAGMA competitive 

pathway analyses using neurodevelopmental and other brain-related gene sets as curated in a recent 

publication (Singh et al. 2017); full results are reported in Supplementary Table 10. Although there was 

considerable overlap of pathway enrichment across ASSET categories, several gene sets were uniquely 

associated with either the Concordant or Discordant result subsets (Table 2). Specifically, the CHD8 

pathway, reflecting genes involved in early neurodevelopment, was uniquely associated with the 

Concordant subset (p = 7.11×10−6). By contrast, a number of synaptic pathways (e.g. ion channel, 

synaptic density) and constrained gene sets appeared to be uniquely associated with the Discordant 

subset. It is notable that when the MHC region is removed from the pathway analysis, the overall 

pattern of results remained (See Supplementary Table 10).  

To see if the Concordant/Discordant distinction harbors potential implications for drug targeting 

(for schizophrenia and/or cognitive enhancement), we performed drug-based and drug family 

competitive gene set analysis on our MAGMA results. These analyses revealed that the class of drugs 
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associated with voltage-gated calcium channel genes was over-represented amongst the Discordant 

subset results (Bonferroni-corrected p=0.02), as was Abacavir (nucleoside reverse transcriptase inhibitor; 

Bonferroni-corrected p=0.00018). While both of these sets showed similar direction of effects with 

respect to the Concordant subset, no drug-related gene sets attained Bonferroni-corrected significance 

in the Concordant set of results (Supplementary Table 11).  

 

S-Predixcan: Brain tissue expression profiles and gene-set enrichment analysis 

 Transcriptome-wide association analysis (TWAS) was carried out via S-Predixcan to identify top 

expressed genes within GTEXv748 and CommonMind Consortium71,74–76 brain tissue models (Figure 5; 

Supplementary Table 12). The top brain expressed genes unique to the Discordant subsets were 

CYP21A1P, CFB, and C4A, along with 177 additional genes significantly expressed in the Discordant, but 

not Concordant, subsets. On the other hand ELOV7, NAGA and 201 other genes were uniquely 

associated with the Concordant subset. Significant genes identified by S-Predixcan were subjected to 

gene-set analysis using GENE2FUNC hypergeometric gene set analysis (excluding MHC genes, which 

were over-represented due to significant linkage disequilibrium, see Methods for more details). The goal 

of this analysis was to examine if the genes identified in the TWAS overlapped with those found in 

known biological systems. As shown in Table 3, the results of the TWAS consistently identified genes 

found in cell adhesion and membrane protein gene sets for the Concordant subset. By contrast, synaptic 

(specifically, dendritic) pathways, as well as chromosomal repair pathways were consistently identified 

by the TWAS when examining the Discordant subset.  

 

Genetic Correlations 

  A series of psychiatric, personality, structural brain imaging, and metabolic, cardiovascular and 

anthropometric traits were selected for GNOVA modelling with the ASSET subset results (See Figure 6, 
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Supplementary Table 13); multiple testing was adjusted using false discovery rate (FDR).The Concordant 

subset demonstrated significant (FDR<.05) genetic correlations, in the expected direction, with many 

forms of psychopathology in addition to schizophrenia (ADHD, bipolar disorder, and MDD, as well as 

neuroticism and smoking). This subset also demonstrated a significant (FDR<.05) positive genetic 

correlation (i.e., better cognition/higher education/lower risk for schizophrenia) with larger volumes of 

several brain regions (including total intracranial volume) as measured by structural MRI, as well as 

several measures of infant size and adult height. Significant positive associations were also seen with the 

personality dimensions of openness and conscientiousness, and (surprisingly) self-reported cancer; 

significant negative associations were seen for total cholesterol and triglycerides, as well as presence of 

ulcerative colitis/inflammatory bowel disease. Additionally, a negative genetic correlation was observed 

for the Concordant subset with BMI and measures of cardiovascular disease (i.e., lower cognition/lower 

education/greater risk for schizophrenia associated with greater BMI and risk for cardiovascular disease).  

 The Discordant subset was strongly associated with schizophrenia and education, by definition, 

in a manner demonstrating the paradoxical relationship (higher education, greater risk for schizophrenia 

(Figure 6). (It is important to note that the light blue bars and dark blue bars in Figure 6 are essentially 

mirror images of each other and are therefore providing somewhat redundant information; both sets of 

bars are included to indicate the both sides of this dimension). Interestingly, a similar pattern was 

observed for bipolar disorder (higher education/greater risk for schizophrenia – greater risk for bipolar 

disorder). Similar relationships were also observed, at a nominally significant level, for autism spectrum 

disorder and eating disorders, which were not associated with the concordant subset, as well as MDD. 

The reverse relationship, however, was observed with ADHD (i.e., higher education/greater risk for 

schizophrenia – lower risk for ADHD). This pattern was also observed for the smoking, BMI, and 

cardiovascular disease phenotypes. A counter-intuitive pattern was observed for the relationship 
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between the Discordant subset and neuroticism, which was the opposite of that observed for MDD 

(despite the fact that MDD and neuroticism are themselves highly correlated).  

 

Discussion 

 

A consistent finding in recent schizophrenia, cognitive, and educational GWAS has been the 

involvement of both neurodevelopmental pathways and synaptic processes19,20,34,78,79; the present study 

aimed to at least partially disentangle these mechanisms. In this study, we leveraged the genetic 

pleiotropy underlying three partially overlapping, complex phenotypes in order to identify 

homogeneous subsets of SNPs with distinct characteristics. Specifically, we were able to parse a subset 

of SNPs with alleles that were associated in the expected fashion across our three phenotypes of 

interest: lower cognitive ability, lower educational attainment, and greater risk for schizophrenia.  These 

“Concordant” SNPs were characterized by their association with genes and pathways relevant to early 

neurodevelopmental processes. By contrast, SNPs that demonstrated a counterintuitive, discordant 

pattern of association (higher educational attainment yet greater risk for schizophrenia), were primarily 

associated with genes/pathways involved in synaptic function of mature neurons.   

This distinction was robustly observed across several methods of functional annotation. First, 

MAGMA competitive gene-set analysis revealed a significant enrichment of CHD8-related genes in the 

Concordant subset (Table 2). CHD8, encoding a chromatin remodeling protein, is a gene that has been 

robustly associated with autism80–83, but to date has only limited or anecdotal evidence for association 

to schizophrenia84,85. Disruption of the homologous gene (Chd8) in animal models has demonstrated 

that the resulting protein plays a key role in very early neurodevelopmental processes, including 

neuronal proliferation and differentiation86,87, as well as cell adhesion and axon guidance88. On the other 

hand, MAGMA competitive gene-set analysis revealed a significant enrichment of discordant genes for 
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functions including synaptic transmission and the postsynaptic density, as well as membrane 

depolarization and voltage-gated cation channel activity.  While these processes have been commonly 

associated with both schizophrenia33,35 and cognitive phenotypes22–24,90–92, our study is the first to 

demonstrate that these synaptic mechanisms operate in a surprising manner: the same synaptic 

functions that increase risk for schizophrenia also serve to enhance educational attainment.  

 

The linkage of early neurodevelopmental processes to SNPs associated with impaired cognition 

and increased risk for schizophrenia is consistent with a large literature demonstrating that cognitive 

deficits are often observed early on in the lifespan of these individuals13,14,93,94. At the same time, the 

Discordant variant subset implicates more mature neuronal regulation, and synaptic pruning 

mechanisms that are most prominent later in childhood, adolescence, and into adulthood, ostensibly as 

part of a neuroplasticity mechanism to make more “efficient” connections within the brain95. However, 

the dysregulation of such mechanisms have been shown to be intricately linked to schizophrenia 

psychopathology96. It is important to note that these results are obtained from separate GWASs of two 

different phenotypes, and do not represent a subset of highly educated patients with schizophrenia. 

Rather, it is plausible to posit an inverted U relationship, such that efficient synaptic pruning processes 

are essential mechanisms underlying academic performance, but may be carried too far in disorders 

such as schizophrenia.  

Additionally, transcriptome-wide analysis using S-Predixcan pointed towards the same 

distinction between Concordant and Discordant genes and pathways. Two of the strongest genes with 

differential expression in the Concordant subset were NAGA (an enzyme cleaving specific moieties from 

glycoconjugates) and NDUFAF2 (part of the mitochondrial complex); rare mutations in each of these 

genes are associated with early and severe neurodevelopmental disorders97,98. TWAS of the discordant 

subset revealed synaptic genes including C4A, which plays a key role in synaptic pruning96, as well as 
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other transcripts essential to synapse structure and function such as ARL3, FXR1, and CNNM2. Moreover, 

pathway analysis of S-Predixcan results (Table 3) demonstrated that the strongest gene set associated 

with the Concordant subset was cell-cell adhesion via plasma-membrane adhesion molecules 

(GO:0098742), which encompasses processes such necessary for neural tube closure, cerebral cortex 

migration, and neuronal-glial interactions. By contrast, the Discordant subset transcriptome was 

significantly enriched for genes located at dendrites, as well as DNA repair. Recently, the role of DNA 

repair in modulating neuronal activity-induced gene expression has been shown to be crucial for 

synaptic plasticity and related processes of learning and memory99; impairments in DNA repair have 

been linked to neurodegeneration100,101 

ASSET also permitted the identification of novel SNPs for cognition-related phenotypes. Lookups 

of the full ASSET results revealed that ~75% of the additional 110 loci, not identified in the input GWAS 

studies19,33,34, were in fact replicated in by an MTAG study examining intelligence20 and more recent 

follow-up GWAS22,35,36 with larger samples that were more well powered for variant discovery. This 

result strongly supports the validity of the ASSET methodology, and demonstrates that the approach 

indeed improves power for cross-phenotype discovery of new loci as previous discussed by the 

developers of the method32. Notably, several of our novel loci were associated with eQTLs suggesting 

new potential biological mechanisms for individual variation in cognitive and psychiatric phenotypes. For 

example, one of the novel loci strongly implicates variation in PLXNB2, a gene associated with GABA and 

glutamate synapses in the hippocampus102. Another novel locus shows strong eQTL signal with NDE1, a 

neurodevelopmental gene at the 16p13.11 locus, where copy number variants have been associated 

with neurodevelopmental disorders103.  

 Our work supports and extends a recent study by Bansal and colleagues30, which is the only 

published report (to our knowledge) that has deeply examined the paradoxical relationship between 

educational attainment and schizophrenia. Using a proxy-phenotype approach, these investigators 
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identified two novel loci, implicating the FOXO6 and SLITRK1 genes, with pleiotropic (i.e., “discordant”) 

effects across the two phenotypes. Using ASSET, we also uncovered those genes amongst our 110 

“novel” loci (one of which was also not identified in any of the updated single-phenotype GWAS, see 

Table 1). Several other studies19–21,31 have employed other statistical approaches to identify pleiotropy 

and/or overlap across cognitive/educational and schizophrenia GWAS, uncovering a subset of the novel 

loci identified by ASSET. By utilizing ASSET, we were able to systematically and powerfully identify 

concordant and discordant pleiotropic loci across the genome, and to then characterize underlying 

biological mechanisms. 

In addition to functional characterization using pathway analyses, we were able to characterize 

the Concordant and Discordant SNP sets with respect to genetic overlap with other relevant phenotypes. 

To our knowledge, this is the first study to examine genetic correlations with dimensional sub-sets, 

rather than global correlations with full GWAS. While the Concordant subset followed the expected 

patterns of genetic correlation with several forms of psychopathology, as well as brain/head size, results 

for the Discordant subset were somewhat surprising. For example, we had anticipated that the 

Discordant subset might be significantly related to personality, as a non-cognitive trait that could 

promote greater educational attainment. However, correlations with conscientiousness, openness, and 

neuroticism were stronger for the Concordant as opposed to the Discordant subset.  

On the other hand, significant correlations for the Discordant subset were observed with risk for 

autism, which has previously been shown to demonstrate a counter-intuitive positive genetic correlation 

with cognition104. Given that variants within the Discordant subset tend to index regulation of synaptic 

function and pruning processes, our results suggest that these mechanisms be investigated with respect 

to their impact on autism, eating disorders, and bipolar disorder. Moreover, it is noteworthy that autism, 

despite being a neurodevelopmental disorder, did not demonstrate a significant genetic correlation with 

the Concordant subset, indicating that it does not share the specific neurodevelopmental pathways 
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implicated in the common variant genetic overlap between schizophrenia risk and impaired cognition.  It 

is also intriguing that bipolar disorder demonstrated a very similar pattern of GNOVA results to 

schizophrenia, despite prior reports that bipolar disorder is not significantly correlated at the genetic 

level with general cognitive ability104,105. Thus, our approach was able to refine components of 

neurodevelopment and synaptic function that are shared across cognitive phenotypes, schizophrenia, 

and bipolar disorder. Further research is needed to identify components of cognition that differentiate 

schizophrenia and bipolar disorder.  

 One limitation of this study is only common SNPs (MAF > 0.01) were examined. The genetic 

architecture of cognitive ability and educational attainment is composed of causal variants in LD with 

common SNPs (cognitive ability h2 = 22.7%, education h2 = 15.6%) as well as with causal variants in LD 

with rare and less common SNPs (cognitive ability h2 = 31.3%, education h2 = 28.1%), with rarer variants 

making greater contribution to cognitive differences than more common variants106. Rare variants are 

also known to explain some of the differences in schizophrenia prevalence52. However, GNOVA, used to 

identify genetic correlations across data independent data sets using summary GWAS data, can only 

capture the contributions made by common genetic effects. Future work aiming to investigate the 

concordant and discordant effect of rare variants across cognitive ability, schizophrenia, and education 

is needed107. Additionally, the input GWAS for ASSET were of somewhat different sample sizes and 

power, with the cognitive GWAS demonstrating smaller mean effect sizes compared to schizophrenia 

and educational attainment; the effects of such differences on ASSET results are not fully understood, 

although ASSET has been benchmarked as the best available approach to handling non-uniform 

distribution of effect sizes40. 

 Having demonstrated the utility and validity of the ASSET approach, future studies are planned 

that can further exploit this method using larger, and more varied, input GWAS. Recent studies have 

demonstrated that genetic correlations exist across seemingly disparate brain-related phenotypes.108 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 20, 2019. ; https://doi.org/10.1101/519967doi: bioRxiv preprint 

https://doi.org/10.1101/519967


28 
 

However, such genetic correlations only describe the average genetic effect between pairs of traits. As 

such, they are not informative as to which variants are associated across traits, nor if a minority of these 

variants have effects across traits that are the opposite of what would be expected by the direction of 

the genetic correlation. The application of the ASSET approach to these data sets would help to move 

beyond the analysis of shared genetic variance, and begin to identify shared genetic variants which, as 

shown in the current study, may be composed of variants with different combinations of protective and 

deleterious effects. Future studies, with additional statistical techniques, incorporating rare variants, 

and novel annotation resources, are needed to further decompose the early neurodevelopmental and 

adult synaptic pathways highlighted in the present report. 
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Figure Legends 

Figure 1. Design of the present study. a) input GWAS studies used for ASSET analysis. b) definition of 

Concordant and Discordant SNP subsets. Concordant SNPs have alleles which demonstrate negative 

effects on cognitive ability, educational attainment, and schizophrenia risk (i.e., increased schizophrenia 

risk, reverse-coded for consistency). Discordant SNPs have alleles which demonstrate paradoxical effects 

on educational attainment and schizophrenia (i.e., higher educational attainment and increased 

schizophrenia risk, reverse-coded).  

Figure 2. Genetic correlations with schizophrenia, for SNPs demonstrating heterogeneity of effects 

between cognitive ability and educational attainment. 

Figure 3. Manhattan plots for ASSET results. a) All subsets. b) Concordant subset. c) Discordant subset 

Figure 4. Venn diagram comparing significant ASSET loci to significant loci from input GWASs. 

Figure 5. Transcriptome-wide association results using S-PrediXcan as applied to Concordant and 

Discordant subsets. 

Figure 6. Genetic correlations for Concordant and Discordant subsets with other relevant phenotypes. 
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LDSC https://github.com/bulik/ldsc 
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VEP http://grch37.ensembl.org/Homo_sapiens/Tools/VEP 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 20, 2019. ; https://doi.org/10.1101/519967doi: bioRxiv preprint 

https://doi.org/10.1101/519967

