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Abstract 28 

It is essential for microbes to acquire information about their environment. Fungi use 29 

soluble degradation products of plant cell wall components to understand the substrate 30 

composition they grow on. Individual signaling pathways have been well described. 31 

However, the interconnections between pathways remain poorly understood. In the 32 

present work, we provide evidence of “confusion” due to cross-talk between the 33 

perception pathways for cellulose and the hemicellulose mannan in several filamentous 34 

fungi, leading to the inhibition of cellulase expression. We used the functional genomics 35 

tools available for Neurospora crassa to investigate this signaling overlap at the molecular 36 

level. Cross-talk and competitive inhibition could be identified both during uptake by 37 

cellodextrin transporters and intracellularly. Importantly, the overlap is independent of 38 

CRE-1-mediated catabolite repression. These results provide novel insights into the 39 

regulatory networks of lignocellulolytic fungi and will contribute to the rational optimization 40 

of fungal enzyme production for efficient plant biomass depolymerization and utilization. 41 

 42 

Keywords: filamentous fungi | Neurospora crassa | plant cell wall degradation | 43 

cellulose/hemicellulose signaling | competitive inhibition 44 

Introduction  45 

Fungi are of ecological, economical, pharmaceutical and biotechnological importance. 46 

This group of microorganisms has a major commercial impact in product areas including 47 

food and feed, pulp and paper, textiles, detergents, bio-fuel and chemical production [1]. 48 
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The importance of filamentous fungi in biotech lies in their potential to efficiently degrade 49 

plant cell wall material and release sugar monomers [2]. They utilize their cellular 50 

resources for the production of a wide range of enzymes including cellulases and 51 

hemicellulases. The great heterogeneity and resulting chemical complexity of 52 

lignocellulosic feedstocks provides a range of fermentable carbohydrates for high value 53 

biological, chemical, and pharmaceutical products [3]. Yet, the production of the fungal 54 

cellulolytic and hemicellulolytic enzymes for hydrolysis of complex biomass remain a high 55 

cost factor [4]. Research efforts to optimize enzyme production and remove unwanted 56 

constraints therefore are still warranted. Previous research has greatly focused on how 57 

filamentous fungi regulate the degradation of single polysaccharides as isolated cell wall 58 

components. However, relatively little is known about the cross-talk between separate 59 

signaling pathways for cellulose and hemicellulose perception during the utilization of 60 

complex carbon sources. In this study, we demonstrate that cross-talk not only occurs but 61 

can result in inhibition with detrimental effects for the production of hydrolytic enzymes. 62 

Cellulose and hemicellulose are the major constituents of lignocellulosic biomass. While 63 

cellulose is a linear chain of glucose molecules connected by β-(1,4)-glycosidic linkages 64 

[5], hemicelluloses are a heterogeneous group of branched and linear polysaccharides 65 

[6] consisting mainly of xylans and mannans in variable ratios depending on the source 66 

of the biomass. While xylans, such as glucuronoxylan, arabinoxylan, and 67 

arabinoglucuronoxylan [7], are the most abundant hemicellulose in hardwoods, 68 

glucomannan represents the major hemicellulose in softwood (15%-20%) [8]. It consists 69 

of a β-(1,4) linked D-mannopyranose and D-glucopyranose backbone in a Man:Glc ratio 70 

of about 1.6:1 [9]. Cellulose and glucomannan are hydrolyzed by glucanases and 71 
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mannanases into cello- and (gluco-)mannodextrins, respectively, which are further 72 

processed into the simple constituent monosaccharides by intra- and extracellular β-73 

glucosidases and β-mannosidases [10,11]. The production of such enzymes is controlled 74 

by complex signaling networks including several transcriptional regulators. In N. crassa, 75 

CLR-1 and CLR-2 (cellulose degradation regulator 1 and 2) are essential transcription 76 

factors (TFs) responsible for the vast majority of the cellulolytic response [12]. In the 77 

presence of cellulose or its degradation products (such as cellobiose) as an inducer [10], 78 

a signaling pathway results in the activation of CLR-1 which in turn induces the expression 79 

of β-glucosidases and the cellodextrin transporter-encoding genes cdt-1 and cdt-2. Both 80 

CDT-1 and CDT-2 are Major Facilitator Superfamily (MFS)-type transporters described 81 

to be capable of transporting cellobiose/cellodextrins into the cell [13]. Additionally, CLR-82 

1 induces the expression of the transcription factor CLR-2, which in turn triggers the major 83 

cellulolytic response [14].  84 

Homologs of these regulators are present in most filamentous Ascomycetes, albeit 85 

differing in their functional role [15-17]. For example, ManR, the CLR-2 ortholog in 86 

Aspergillus oryzae, is involved in the regulation of both cellulolytic and mannanolytic 87 

genes [18], a function that is partly conserved in N. crassa [14,19], while the function of 88 

the CLR-2 homolog in Trichoderma reesei (TR_26163) for the production of cellulase and 89 

hemicellulase is less clear so far [20]. In T. reesei and Aspergillus spp., the regulator 90 

XYR1/XlnR controls both the hemicellulolytic and the cellulolytic response [21-24] which 91 

is divergent from the mechanism utilized by N. crassa. The XYR1-homolog in N. crassa, 92 

XLR-1, is more specific for the regulation of hemicellulose degradation, yet it only 93 

modulates cellulase induction [25]. In the presence of a preferred carbon source, another 94 
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highly conserved regulatory system, carbon catabolite repression (CCR), is activated to 95 

repress unnecessary metabolic routes and prevent the wasting of energy. A key 96 

component of CCR in filamentous fungi is the TF CreA/CRE1/CRE-1, which represses 97 

the expression of genes encoding enzymes involved in lignocellulose degradation [26-98 

30]. The presence of partially conserved regulatory mechanisms for lignocellulose 99 

degradation [17,31] and the partially different functions assigned to homologous 100 

regulators in the various fungal species add another level of complexity to the regulation 101 

of lignocellulolytic genes. However, the elucidation of the underlying mechanisms in those 102 

fungi, despite (or precisely because of) existing differences and similarities, is likely the 103 

key to a better understanding of how fungi utilize transcriptional rewiring to enable efficient 104 

plant biomass degradation adapted to their specific ecological niche. 105 

Most of our knowledge regarding the molecular details of the underlying regulatory 106 

pathways is based on the analysis of the fungal response to single polysaccharides. While 107 

this was important to delineate many of the known signaling components, the 108 

heterogeneous nature of lignocellulosic substrates demands an understanding of the 109 

molecular interplay between the separate regulatory pathways. Our observations of N. 110 

crassa growth on complex biomass suggested a relation between the cellulase activity 111 

and the mannan content of the biomass. We therefore used genetics, biochemical and 112 

rheological approaches to find that mannan and cellulose signaling pathways involve 113 

common components and are interconnected. Surprisingly, this cross-talk does not lead 114 

to synergies but rather leads to confusion on the molecular level with negative effects on 115 

cellulase production in several tested fungi. This study thereby provides insights that 116 

advance our fundamental understanding of the complex network behind the cross-talk 117 
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between regulatory systems governing plant cell wall perception and can potentially be 118 

applied to produce industrially favorable fungal strains with a lower propensity to be 119 

inhibited in presence of complex biomass. 120 

Results 121 

The presence of mannodextrins inhibits N. crassa growth on cellulose 122 

Comparing the cellulase activity of N. crassa WT growing on different carbon sources, we 123 

initially observed a consistently lower enzymatic activity on softwood-derived wood 124 

powders as carbon source than on hardwood-derived materials and grasses (Fig. 1A). A 125 

compositional analysis verified the main difference between hardwoods and softwoods 126 

being the content of hemicelluloses. Hardwoods usually have higher xylan content while 127 

the main hemicellulose in softwoods are mannans (Fig. S1A) [8,32,33]. We hypothesized 128 

that the higher amount of mannan present in softwoods might be involved in the inhibition 129 

of cellulase activity of N. crassa. To verify this hypothesis, we utilized a biochemical 130 

genetics approach aiming to provoke a stronger effect of mannan by artificially altering its 131 

intracellular metabolism. The genome of N. crassa encodes only one gene (NCU00890) 132 

encoding a predicted β-mannosidase for the processing of (gluco-)mannodextrins into 133 

monomers [34], a member of the glycosyl hydrolase family two (GH2-1) with no predicted 134 

N-terminal secretion signal peptide [35]. To this end, we checked the cellulosic activity of 135 

both the WT and the GH2-1 deletion strain (∆gh2-1) grown on the same complex carbon 136 

sources as used above. The ∆gh2-1 strain showed a sharp decrease in total cellulase 137 

activity which correlated well with an increased mannan content of the biomass, 138 

suggesting a connection between both parameters with a half maximal inhibitory 139 
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concentration (IC50) of about 1.1% of mannan (Fig. 1B, Fig. S1A-C). To further verify this 140 

result, we grew WT and ∆gh2-1 on mannan-free bacterial cellulose (Fig. S1F) [36] and 141 

added low concentrations (0.03% (w/v) corresponding to 3% (w/w) of the used bacterial 142 

cellulose) of commercially available mannans or mannobiose to roughly mimic the 143 

mannan content present in softwood (Fig. S1A). The added mannan and even 144 

mannobiose was sufficient to inhibit cellulase production in the WT and provoked an even 145 

more severe phenotype in the ∆gh2-1 strain (Fig. 1C). To directly test which sugar 146 

molecules may cause the inhibition, both the WT and ∆gh2-1 mutant strain were grown 147 

on Avicel, a mannan-contaminated microcrystalline cellulose (Fig. S1F) [36-38]. 148 

Afterwards, the HSQC spectra for the anomeric region of the extracted intracellular 149 

sugars of both strains were observed by NMR (nuclear magnetic resonance). In 150 

comparison to WT, the ∆gh2-1 strain was found to accumulate mannose as part of a β-151 

1,4-polymer, glucose as part of a β-1,4-polymer, and reducing-end β-mannopyranosyl in 152 

the cytosol (Fig. 1D). These results provide strong evidence for β-1,4-linked 153 

(gluco-)mannodextrins being the causative molecules for the observed inhibition.  154 

Characterization of the predicted β-mannosidase 155 

To verify its predicted function, GH2-1 was heterologously expressed and purified. The 156 

purified enzyme showed strong activity on ρNP-β-D-mannopyranoside with high 157 

specificity compared to its activity on ρNP-4-Nitrophenyl-β-D-cellopyranoside, ρNP-4-158 

Nitrophenyl-β-D-glucopyranoside, and ρNP-4-Nitrophenyl-α-D-mannopyranoside as 159 

substrates (Fig. 2A). Also a GFP-fusion construct displayed cytosolic localization in vivo 160 

(Fig. S1D). When assayed at a combination of different temperatures and pHs, in parallel, 161 

GH2-1 showed the highest activity in a temperature range between 43 and 54 °C and a 162 
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pH range between 6.25 and 7.5 (Fig. 2B) and a thermostability up to about 49 °C (Fig. 163 

S1E). Moreover, to assess the possibility of mannodextrin cleavage by cross-reactivity of 164 

β-glucosidases, we tested the hydrolysis of ρNP-β-mannopyranoside by cytosolic protein 165 

extracts from WT, ∆gh2-1, ∆3βG (a strain carrying deletions for all three β-glucosidase 166 

genes [10]) and ∆qko (the ∆3βG strain crossed to ∆gh2-1) grown on 1% Avicel. Only 167 

strains possessing GH2-1 displayed β-mannopyranosidase activity (Fig. 2C). Also, when 168 

complementing the ∆gh2-1 strain with the gh2-1 gene under control of its native promoter 169 

and terminator, gh2-1-comp, it showed WT-like β-mannosidase (Fig. 2C). Assaying the 170 

cellulase production by the WT, Δgh2-1, and gh2-1-comp strains grown in 1% Avicel 171 

showed that in addition cellulase inhibition was relieved in the gh2-1-comp strain (Fig. 172 

2D). This indicated a functional complementation of the gh2-1 deletion mutation. In 173 

summary, these assays confirmed that GH2-1 is the main cytosolic hydrolase encoded in 174 

the N. crassa genome capable of cleaving mannodextrins. 175 

A delicate intracellular balance between cello- and mannodextrins  176 

Considering the substantial inhibition caused by intracellular accumulation of 177 

mannodextrins, the question arose whether this could be the result of a possible conflict 178 

with cellulose signaling. We therefore wanted to assess the influence of the intracellular 179 

cellodextrin levels on cellulase inhibition in the ∆gh2-1 strain. To this end, a cross with 180 

∆gh1-1, a deletion strain of the main intracellular β-glucosidase gene [10] was created. 181 

Deleting gh1-1 in the ∆gh2-1 background completely rescued the ∆gh2-1 phenotype on 182 

mannan-contaminated cellulose (Avicel) (Fig. 3A). This indicated that the effect of 183 

accumulating mannodextrins could be counterbalanced by raising the intracellular 184 

concentration of cellodextrins. Since the presence of cellodextrins leads to the induction 185 
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of CLR-2 via the activation of CLR-1 [31], we next tested the possibility to suppress the 186 

inhibited phenotype of ∆gh2-1 by constitutive expression of clr-2, rendering its protein 187 

levels independent of the levels of its inducing molecules (strain ∆gh2-1 clr-2 oex; [31]). 188 

Indeed, inducer-independent overexpression of clr-2 was able to (partially) rescue the 189 

∆gh2-1 phenotype on Avicel (Fig. 3A).  190 

The accumulation of polysaccharide degradation products in ∆gh2-1 could theoretically 191 

also have led to activation of CCR. We thus tested the possibility that the observed 192 

inhibition might be due to repression by CRE-1 and studied the effect of a cre-1 deletion 193 

on the phenotype. However, a de-repression due to the loss of CRE-1 in the ∆gh2-1 194 

background did not lead to a substantial relief of inhibition when grown on 1% Avicel (Fig. 195 

3A), arguing against an involvement of CCR. 196 

Taking into account that CLR-2 is an ortholog of ManR, the regulator of mannan 197 

degradation in A. oryzae [12,18], and that ChIP-seq data showed CLR-2 to be a direct 198 

regulator of gh5-7 [14], the main predicted β-mannanase-encoding gene in N. crassa, we 199 

hypothesized that the regulatory pathway of mannan perception shares a common 200 

ancestor with the cellulolytic one. This led us to grow clr-1 and clr-2 deletion (∆clr-1, ∆clr-201 

2 and ∆clr-1 ∆clr-2) and mis-expression (clr-1 oex and clr-2 oex) strains on glucomannan 202 

as sole carbon source. By measuring the culture viscosities over time, we aimed to detect 203 

the decrease in molecular weight of the hemicellulose polymer [39] due to mannanolytic 204 

degradation. Besides clr-2 oex also the clr-1 oex strain led to a significantly stronger 205 

decrease in glucomannan viscosity than the WT strain (Fig. 3B), indicating an enhanced 206 

enzyme production on this substrate, which in the case of clr-1 oex however might have 207 

been an indirect effect via CLR-2. On the other hand, ∆clr-2 and ∆clr-1 ∆clr-2 strains 208 
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showed a significantly lower reduction in glucomannan viscosity (Fig. 3B), suggesting that 209 

CLR-2 is indeed involved in the regulation of mannan degradation in N. crassa. 210 

Cello- and mannodextrins also compete at the level of uptake 211 

Since our data strongly indicate that mannodextrins are cleaved into their constituent 212 

monosaccharides only intracellularly by GH2-1, we investigated the transport of 213 

mannodextrins into the cell. The two MFS-type transporters CDT-1 and CDT-2 are known 214 

to facilitate the uptake of both cellodextrins and xylodextrins [40,41]. Due to structural 215 

similarity of (gluco-)mannodextrins, we hypothesized that CDT-1 and -2 might be involved 216 

in the uptake of mannodextrins as well. To this end, we tested the growth of the individual 217 

and double knockout strains (∆cdt-1, ∆cdt-2 and ∆cdt-1 ∆cdt-2) in 1% glucomannan. The 218 

individual deletion strains for cdt-1 and cdt-2 had 66.5% and 85.5% biomass compared 219 

to the WT strain, respectively. More significantly, the ∆cdt-1 ∆cdt-2 strain had a biomass 220 

reduction of about 51% compared to WT (Fig. 4A), indicating an involvement in 221 

metabolism of glucomannan. We next tested whether the loss of either CDT-1 or CDT-2 222 

would lead to an impaired uptake of mannobiose by N. crassa. For this, sucrose pre-223 

grown cultures of WT, ∆cdt-1 and ∆cdt-2 were first induced on 2 mM cellobiose, and then 224 

transferred to mannobiose. Following the residual concentration of mannobiose in the 225 

culture supernatant, the uptake was found to be almost completely abolished in the ∆cdt-226 

1 strain (Fig. 4B), whereas its transport was slightly reduced (by about 18 %) in the ∆cdt-227 

2 strain compared to the WT. We further used Saccharomyces cerevisiae that is unable 228 

of endogenously transporting cellobiose, to heterologously express CDT-1 or CDT-2[40]. 229 

The yeast cells were incubated in either cellobiose or mannobiose for 30 minutes. Indeed, 230 

not only cellobiose was imported by both S. cerevisiae strains, but also mannobiose (Fig. 231 
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4C). Notably, CDT-1 even preferred mannobiose over cellobiose, with only about 18% of 232 

mannobiose remaining in the culture supernatant compared to about 40% of cellobiose 233 

over the background of empty-vector transformed cells. Moreover, when both sugars 234 

were present simultaneously, cellobiose and mannobiose import by CDT-1 was reduced 235 

by about 33% and 61%, respectively, indicating that there is a competition between both 236 

sugars at the level of uptake by CDT-1 (Fig. 4C). 237 

The inhibitory effect of mannan is conserved in the industrially relevant 238 

species Myceliophthora thermophila and Trichoderma reesei  239 

Lignocellulosic substrates are regularly composed of >1% of mannan. Given the potential 240 

impact of the mannan-elicited inhibition on industrial cellulase production, we wanted to 241 

test if the inhibition is also present in industrially relevant fungal species. For this, we grew 242 

the thermophilic fungus M. thermophila [42] on 1% hardwood-derived cellulose being 243 

naturally poor in mannan (Emcocel [36]) with and without adding 0.05% glucomannan. 244 

Glucomannan addition clearly had an inhibitory effect on cellulase activity (Fig. 5A). 245 

Importantly, we checked if the effects are also present for the cellulase hyper-producing 246 

T. reesei strain RUT-C30.To this end, we grew both N. crassa WT and RUT-C30 on 1% 247 

Emcocel with and without the addition of 0.05% glucomannan. Similar to N. crassa, the 248 

low amount of glucomannan was therefore sufficient to significantly reduce total 249 

production of cellulases by RUT-C30 (Fig. 5B). This indicates that the overlap between 250 

cellulose and mannan signaling pathways appears to be conserved, showing a similar 251 

inhibition of cellulase induction in both M. thermophila and T. reesei as well. 252 
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Discussion 253 

In the current model of plant cell wall degradation by N. crassa, starvation will lead to the 254 

production of low quantities of polysaccharide-degrading enzymes and sugar transporter 255 

genes to degrade potential food sources present in the surrounding environment [43]. 256 

When cellulose and glucomannan are present (Fig. 6A), secreted cellulases and 257 

mannanases degrade the polysaccharides into smaller cellodextrins (such as cellobiose) 258 

and mannodextrins (such as mannobiose), which are transported into the cytosol via 259 

sugar transporters. While it is known that cellodextrin transporters CDT-1 and CDT-2 260 

transport cellodextrins [40], we found that both transporters are capable of transporting 261 

mannobiose as well (Fig. 4). This provides evidence that both transporters are also 262 

involved in hemicellulose perception and transport, which is in line with the xylodextrin 263 

transport activity already found for CDT-2 by Cai et al. [41]. Using S. cerevisiae as 264 

heterologous expression system, we were able to show that both molecules compete at 265 

the level of transport by CDT-1, which even prefers mannobiose over cellobiose (Fig. 4C). 266 

Cellobiose and mannobiose have a similar intramolecular β-(1,4)-glycosidic bond 267 

between their respective hexose units [44], and their constituent sugars (D-glucose and 268 

D-mannose, respectively) are C-2 epimers. Taking this into account, it might be possible 269 

that their structural similarity allows them to interact with the same transporters. This is in 270 

line with previous findings showing different sugar transporters to have broader 271 

specificities by which they have the ability to transport several structurally related sugars. 272 

For instance, the N. crassa transporters GAT-1 and XAT-1 are capable of transporting 273 

galacturonic/glucuronic acid [45] and D-xylose/L-arabinose [46], respectively. Also, the 274 

transporter encoded by mstA was shown to transport D-xylose, D-mannose and D-glucose 275 
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in Aspergillus [47], and the fungal D-fructose permease RhtA also accepts L-rhamnose 276 

(both 6-deoxy-hexoses) [48]. 277 

A multitude of previous and ongoing studies have been focusing on understanding the 278 

induction of fungal cellulase production by soluble sugars. Many oligosaccharides, such 279 

as cellobiose in N. crassa, sophorose and lactose in Trichoderma and xylose in the 280 

Aspergilli, have been identified as inducers of cellulase production [10,49-52]. Yet little is 281 

known about an oligosaccharide to have a direct inhibitory effect on the production of 282 

such enzymes. N. crassa degrades cellodextrins and mannodextrins further into glucose 283 

and mannose monomers by the action of (intra- and extracellular) β-glucosidases and the 284 

intracellular β-mannosidase GH2-1 (Fig. 6A) [10,11]. Our results indicate that the deletion 285 

of this β-mannosidase gene leads to the accumulation of substantial amounts of 286 

undigested (gluco-)mannodextrins in the cytosol of N. crassa. Our data furthermore 287 

provide evidence that these (gluco-)mannodextrins are causative for the strong 288 

repression of growth seen for example on mannan-contaminated Avicel as demonstrated 289 

by the observation that the addition of mannobiose to N. crassa cultures growing on pure 290 

bacterial cellulose (as in previous studies [53]) was sufficient to recapitulate the response 291 

of the ∆gh2-1 deletion strain to Avicel (Fig. 1D). Considering the structural similarity 292 

between cello- and mannodextrins, their competition at the level of uptake via CDT-1 and 293 

the fact that mannodextrins can also inhibit cellobiohydrolase [54], it appears likely that 294 

they can also “be confused” by a (yet unknown) signaling component or receptor protein 295 

in the cell being somewhat unspecific. The accumulation of (gluco-)mannodextrins is 296 

possibly skewing the original balance of signaling molecules in the cytosol and 297 

outcompeting the cellodextrins (Fig. 6B). While these would be positively inducing, the 298 
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interaction with (gluco-)mannodextrins however seems to be unproductive. Likely, this is 299 

causing antagonistic effects preventing the native response to cellobiose and interfering 300 

with the molecular events leading to the induction of cellulases by the major cellulolytic 301 

regulator CLR-2. Generally, less cellulolytic activity results in less substrate degradation 302 

and thus lower availability of carbon source and inducing molecules (cellobiose). 303 

Eventually, this vicious circle leads to a strong overall signal loss and inhibition of cellulase 304 

production and growth (Fig. 6B).  305 

Our use of viscosity measurements as a sensitive tool to detect glucomannan degradation 306 

[55] showed that CLR-2 indeed regulates glucomannan degradation, corroborating earlier 307 

findings by different methods [14,19]. For instance, ChIP-Seq had identified the genes 308 

encoding the β-mannosidase gh2-1, the endo-mannanase gh5-7 and the cellodextrin 309 

transporter cdt-1 to be direct targets of CLR-2 [14]. Homologs of this transcription factor 310 

are present in the genomes of many filamentous Ascomycetes including T. reesei, M. 311 

thermophila, and the Aspergilli [12,17]. In A. oryzae, ManR was described to regulate 312 

both cellulolytic and mannanolytic genes including the genes coding for the orthologs of 313 

the β-mannosidase gh2-1, the endo-mannanase gh5-7 and the cellodextrin transporter 314 

cdt-1 [56]. A similar regulon was also determined for ClrB, the ortholog in A. nidulans [31]. 315 

These results suggest that the dual function of CLR-2/ManR/ClrB as a combined 316 

mannanolytic and cellulolytic TF is conserved from the Aspergilli to N. crassa. The role of 317 

CLR-2 orthologs in T. reesei [20] and M. thermophila is much less clear [17]. 318 

Nevertheless, the fact that mannodextrins can also induce cellulase inhibition in both 319 

strains (Fig. 5) further supports the conserved role of CLR-2. The lack of a clear homolog 320 

of CLR-1 in T. reesei [20] and the case that an interaction between ClrA and ClrB in 321 
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Aspergilli may not occur [57], suggest a CLR-1-independent role of CLR-2 and its 322 

homologs. This is further supported by the ability of the clr-1 deletion strain to still utilize 323 

glucomannan in contrast to the clr-2 deletion strain (Fig. 3B). Whether a direct interaction 324 

between CLR-2 and both signaling molecules exists or whether these rather interact with 325 

an upstream component of the signaling cascade remains to be shown. However, our 326 

results support the existence of an intracellular competition upstream of CLR-2, since a 327 

misexpression of CLR-2 was able to at least partially rescue the inhibited phenotype (Fig. 328 

3A). 329 

Importantly, we show that there is a delicate intracellular balance between cellobiose and 330 

mannobiose which appears to be essential for a full level of cellulase production. While 331 

the accumulation of mannodextrins inside the cell has a repressing effect, as seen above, 332 

slowing down catabolism of the cellodextrins in the double deletion strain ∆gh2-1 ∆gh1-1 333 

counteracts the repression and restores a better cellulosic activity of cellulases (Fig. 6C), 334 

presumably by raising the intracellular concentration of cellodextrins. This supports the 335 

necessity of a balance that affects the signaling pathway eventually leading to induction 336 

or repression of cellulases as presented in our model (Fig. 6).  337 

The ability of molecules to induce or to repress the production of cellulases and 338 

hemicellulases by fungi might be masked by CCR. In the ∆gh2-1 ∆cre-1 strain, the major 339 

TF mediating CCR, cre-1, is deleted [30]. Nevertheless, the unaltered inhibition of 340 

cellulases caused by the intracellular accumulation of mannodextrins in this strain and 341 

the fact that glucomannan was able to inhibit growth on cellulose also in the carbon 342 

catabolite de-repressed industrial strain T. reesei RUT-C30 [29] confirms that this 343 

mannodextrin inhibition pathway is a novel process which is independent of CRE-1-344 
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induced CCR during lignocellulose degradation. Moreover, it is known that 345 

inducers/repressors are mostly smaller units (oligomers or monomers) that are derived 346 

from the polysaccharide itself, such as downstream metabolites and trans-glycosylation 347 

derivatives [49,58]. However, in the N. crassa ∆gh2-1 mutant, the β-mannosidase, which 348 

would be the likeliest enzyme to perform trans-glycosylation [59], was deleted, suggesting 349 

that trans-glycosylation of the inhibitory mannodextrins is not a relevant step for the 350 

inhibition.  351 

Although the degradation of cellulose and hemicellulose by filamentous fungi has been 352 

intensively studied on well defined, individual polysaccharides, only recently common 353 

components for cellulose and mannan perception pathways were described [18,19]. The 354 

conservation of the common signaling pathway components (CLR-2, GH2-1 and CDT-1) 355 

described in this study suggests that the molecular communication between cellulose and 356 

mannan utilization regulatory pathways is likely similarly conserved among filamentous 357 

fungi. Moreover, the presence of common signaling intermediates is probably a reflection 358 

of the environmental niche of plant-cell-wall degrading fungi, in which cellulose and 359 

mannan naturally co-exist in nature [60,61], which allows the fungus to utilize both via 360 

common routes.  361 

Finally, taking into account that the industrial production of cellulases is usually performed 362 

in presence of residual mannan (either as part of complex plant cell walls or in 363 

commercially available plant biomass-derived substrates such as Avicel), this study 364 

provides new targets for the improvement of industrial strains for higher cellulase 365 

production through the engineering of mannan-insensitivity in the future. This will benefit 366 
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the development of better enzyme cocktails for the production of biofuels and 367 

biochemicals.  368 

Materials and Methods 369 

Strains and growth conditions 370 

 N. crassa strains were obtained from the Fungal Genetics Stock Center (FGSC; [62]) 371 

unless indicated otherwise. The ∆cre-1, 3βG and clr-2 oex strains are a kind gift of N. L. 372 

Glass (UC Berkeley, USA). The other knock out strains ∆qko, ∆gh2-1 ∆gh1-1, ∆gh2-1 clr-373 

2 oex, ∆gh2-1 ∆cre-1, ∆clr-1 ∆clr-2 were created through crossings of the respective 374 

individual deletion strains as described in the FGSC protocols [62].  375 

All N. crassa strains and T. reesei RUT-C30 strain (kind gift of M. Schmoll, AIT, Austria) 376 

were maintained as described before [36]. M. thermophila WT strain (obtained from 377 

DSMZ, strain DSM1799) was maintained on 2% (w/v) sucrose Vogel’s minimal medium 378 

[63] at 45 °C for 10 days to obtain conidia.  379 

For gh2-1 complementation strain (gh2-1-comp), the gh2-1 gene amplified from gDNA 380 

was placed using SacII restriction site under the control of its native promoter and 381 

terminator in plasmid pCSR. The construct was transformed into the ∆gh2-1 (A) deletion 382 

strain by electrotransfection.  383 

The clr-1 misexpression strain (clr-1 oex) was constructed as described in [31] but by 384 

using SbfI and PacI restriction sites to insert the clr-1 gDNA in the pTSL126B plasmid 385 

placing the clr-1 gene under the control of the ccg-1 (clock-controlled gene 1) promoter. 386 

A ∆clr-1 (a) deletion background was used for transformation by electrotransfection.  387 
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S. cerevisiae strain used in this study was D452-2 transformed with pRS316-CDT1, -388 

CDT2 [64]. Growth was performed as described by [45].  389 

Growth experiments on complex biomasses and on bacterial cellulose were done in 3 mL 390 

of 1 × Vogel’s salts plus 1% (w/v) of the corresponding carbon source in 24 deep well 391 

plates (at 25 °C, 200 rpm and in constant light). 0.03% (w/v) of commercially available 392 

mannans or mannobiose was added to cultures where indicated. Growth experiments for 393 

N. crassa (at 25 °C and 200 rpm), M. thermophila (at 45 °C and 150 rpm), and T. reesei 394 

(at 30 °C and 200 rpm) were performed in flasks containing 100 mL 1% (w/v) carbon 395 

source as described with 1x Vogel’s (N. crassa and M. thermophila) or 1x Mandels-396 

Andreotti medium [65] in constant light. For inoculation, generally a respective volume of 397 

conidial suspension was added after optical density measurements in order to achieve a 398 

starting concentration of 106 conidia/mL. 399 

Biomass and enzymatic assays 400 

For biomass determination, the mycelial mass was dried for 16 h in aluminum pans at 401 

105 °C and measured afterwards. Azo-CMCase activity assays were done according to 402 

manufacturer’s protocols (Megazyme, Ireland, S-ACMC), slightly modified according to 403 

[36]. 404 

For the β-mannopyranosidase activity, N. crassa strains were grown in flasks containing 405 

100 mL 1% (w/v) Avicel with 1x Vogel’s (at 25 °C, 200 rpm and in constant light). The 406 

mycelia were then harvested by using a Buchner funnel and glass fiber filters, washed 3 407 

times by about 50 mL of 1x Vogel’s solution, then frozen in liquid nitrogen. Frozen mycelia 408 

were ground into powder using freezing-milling method. About 250 mg of frozen mycelia 409 

were then lysed for protein extraction by adding 750 µl lysis buffer (50 mM Na3PO4, 1 mM 410 
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EDTA, 5 % glycerol and 1mM PMSF at pH 7.4). Samples were kept at -20 °C for 30 411 

minutes, and then centrifuged (at 4°C and 1300 rpm for 10 minutes). Protein 412 

concentration was measured with Roti®-Quant (Carl Roth, K015.1) as described by the 413 

manufacturer. 414 

The β-mannopyranosidase activity was then assayed using 4-Nitrophenyl-β-D-415 

mannopyranoside (Megazyme, Ireland, O-PNPBM) as a substrate according to [66] with 416 

the following modification: the reaction mixture (containing 50 mM KP buffer at pH 5.5, 80 417 

µg substrate and 1 µg of intracellular protein solution) was incubated at 45 °C for 1 h, 418 

then stopped by the addition of 0.5 M Na2CO3 (pH 11.5). The absorbance was then 419 

measured at an OD of 405 nm. 420 

Compositional analysis  421 

Compositional analysis of biomass was performed as described previously [67].  422 

Nuclear Magnetic Resonance (NMR) analyses  423 

For the NMR analysis, both WT and ∆gh2-1 strains were grown in 2% (w/v) sucrose 424 

(Sigma Aldrich, S7903) for 16 h then transferred to 2% (w/v) Avicel (PH-101; Sigma 425 

Aldrich, 11365) for 24 h. Then the mycelia were collected and their intracellular 426 

metabolites were extracted using a protocol modified from Tambellini et al. [68]. Briefly, 427 

about 500 mg of homogenized mycelia were incubated for 30 minutes on ice with 24 mL 428 

cold CH3Cl:MeOH (1:1) and 6 mL dH2O. Samples were centrifuged at 4°C, 4000 rpm for 429 

15 minutes. Supernatants were collected and re-centrifuged for at 4°C, 12000 rpm for 30 430 

minutes. Samples were dried down in a Speed Vacuum concentrator without heating.  431 
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Samples were then dissolved in 440 μL D2O, 50 μL of Na2HPO4 and 10 μL DSS (internal 432 

standard) yielding clear solutions at approximately 60 mg/mL in 5 mm tubes. 2D NMR 433 

spectra were acquired at 25°C on a Bruker AVANCE 600 MHz NMR spectrometer 434 

equipped with an inverse gradient 5-mm TXI cryoprobe. Spectra were referenced to DSS 435 

at δH 0.00 ppm, yielding HOD resonance at 4.78 ppm. 13C−1H correlation spectra (HSQC) 436 

were measured with a Bruker standard pulse sequence “hsqcetgpsisp.2”. All the 437 

experiments were recorded with the following parameters: spectral width of 16 ppm in F2 438 

(1H) dimension with 2048 data points (TD1) and 240 ppm in F1 (13C) dimension with 256 439 

data points (TD2); scan number (SN) of 128; interscan delay (D1) of 1 sec; acquisition 440 

time of 10 h. Assignments of the anomeric signals were assigned based on reference 441 

data from the literature. The NMR data processing and analysis were performed using 442 

Bruker’s Topspin 3.1 software. 443 

GH2-1 heterologous expression  444 

For the heterologous expression of GH2-1, the gh2-1 cDNA was inserted between EcoRI 445 

and XbaI restriction sites on the plasmid pGAPZ-B. The construct was transformed into 446 

Pichia pastoris X-33 strain by electrotransfection according to Invitrogen protocol 447 

(https://assets.thermofisher.com/TFS-Assets/LSG/manuals/pgapz_man.pdf). The growth 448 

of the transformed Pichia strain and the preparation of cell lysate were done according to 449 

the previously mentioned protocol. The cell lysate supernatant was used for GH2-1 450 

purification by immobilized metal-affinity chromatography (IMAC) of the histidine affinity 451 

tag [69]. Elution of the enzyme was performed via a pH gradient of 5.5, 5.0, and 4.5 452 

(elution buffer: 50 mM NaH2PO4, 300 mM NaCl). Protein concentration was measured 453 

with Roti®-Quant (Carl Roth, K015.1) as described by the manufacturer.  454 
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Substrate specificity of GH2-1  455 

The substrate specificity of GH2-1 was determined by measuring its activities with 4 456 

different substrates: ρNP-4-Nitrophenyl-β-D-mannopyranoside, ρNP-4-Nitrophenyl-β-D-457 

cellopyranoside, ρNP-4-Nitrophenyl-β-D-glucopyranoside, and ρNP-4-Nitrophenyl- α-D-458 

mannopyranoside as substrates (Megazym). The reactions (50 mM KP buffer pH 5.5, 0.1 459 

µg enzyme and 80 µg substrate) were incubated at 37 °C for 1 h, and stopped by the 460 

addition of 0.5 M Na2CO3 (pH 11.5). The absorbance was then measured at an OD of 461 

405 nm. 462 

Contour plot of GH2-1 activity 463 

The optimal β-mannopyranosidase activity of GH2-1 at different combinations of 464 

temperatures and pHs, in parallel, was assayed according to the setup used before [70] 465 

with modifications. The reactions consisted of 50 mM KP buffer at different pHs (5, 5.5, 466 

6, 6.5, 7.5, and 8), 80 µg 4-Nitrophenyl-β-D-mannopyranoside (Megazyme, Ireland, O-467 

PNPBM) and 0.0025 µg of purified enzyme. The reactions were incubated for 15 minutes 468 

at different temperatures (25, 35, 45, 50, 55, and 65 °C) in a gradient PCR cycler. Then 469 

0.5 M Na2CO3 (pH 11.5) were added to stop the reaction. The absorbance was then 470 

measured at an OD of 405 nm. Blanked measurements were used to generate the 471 

contour plot using plotly [71].  472 

Viscosity measurements 473 

For the Viscosity measurement, the indicated strains were grown in 2% (w/v) sucrose for 474 

16 h then transferred to 1% (w/v) glucomannan. Culture supernatants were collected after 475 
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8 h. The viscosity measurements were carried out on an Anton Paar MCR502 rheometer. 476 

The control mode feature TruRate™ of the rheometer was enabled during all 477 

measurements. Sandblasted parallel plates with a diameter of 25 mm were used and the 478 

gap was varied between 0.5 and 1.1 mm, depending on the available amount of the 479 

solution. All experiments were carried out at 25 °C. The Peltier hood of the rheometer 480 

was used to cover the geometry and the sample. To avoid sample evaporation, the hood 481 

was used without applying the internal air circulation and the lower plate was equipped 482 

with a solvent trap filled with water, providing an enclosed volume inside the hood. A 483 

constant shear rate of 10 sec-1 was applied for 100 sec and sampling rate of the 484 

measurement was one point/1 sec. The average of the last 10 points was used for the 485 

calculation of viscosity. 486 

Uptake assays  487 

For the yeast-cell based uptake, yeast strain D452-2 cells transformed with pRS316-488 

CDT1 or -CDT2 [64] were used. Uptake assays in S. cerevisiae and N. crassa strains 489 

were performed as described before [40,45] with the following modifications: the induction 490 

and uptake media contained 1x Vogel’s salts plus 2 mM cellobiose and 0.5x Vogel’s salts 491 

plus 100 µM mannobiose, respectively. Samples of the culture supernatants of each 492 

strain were taken at the indicated time points (0, 5, 30 and 60 minutes). The samples 493 

were centrifuged (at 12000 rpm for 1 minute) and 50 µl of the supernatant was diluted 494 

1:10 with dH2O. Mannobiose concentration was quantified by High Performance Anion 495 

Exchange Chromatography coupled to Pulsed Amperometric Detection (HPAEC-PAD) 496 

on an ICS-3000 instrument (Thermo Scientific, USA). 25 μL sample was injected onto a 497 

Dionex CarboPac PA200 column (3 × 50 mm guard and 3 × 250 mm analytical columns) 498 
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and eluted at 30 °C using a gradient of 50–170 mM sodium acetate in 0.1 M NaOH at 0.4 499 

ml/min over 12 minutes.  500 

Statistical analyses  501 

Experiments were done in biological triplicate, and statistical significance was determined 502 

by applying analysis of variance followed by a Tukey test using the statistical computing 503 

software R [72]. Values of bars and lines in bar and line graphs, respectively, are the 504 

mean of the biological replicates, and error bars in all figures are SDs (n=3).  505 
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Supporting Information 707 

S1 Methods 708 

Thermal stability assay  709 

The thermal stability assay was carried out by incubating the enzyme at different 710 

temperatures (0, 25, 37, 45, 55, and 65°C) for 1 h. Afterwards, the residual activity of 0.1 711 

µg enzyme was assayed with 50 mM KP buffer (pH 5.5) and 80 µg 4-Nitrophenyl-β-D-712 

mannopyranoside substrate (Megazyme, Ireland, O-PNPBM). The reaction was 713 

incubated at 37 °C for 5 minutes, then stopped by the addition of 0.5 M Na2CO3 (pH 11.5). 714 

The absorbance was then measured at an OD of 405 nm. 715 

Microscopy  716 

For gh2-1-gfp strain, the gh2-1 gene amplified from gDNA was placed under the control 717 

of the constitutive promoter ccg-1 (clock-controlled gene 1) using XbaI and BamHI 718 

restriction sites in plasmid pCCG-C-Gly-GFP. The construct was transformed into the WT 719 

his-3 − strain by electrotransfection.  720 

GFP fluorescence was visualized using an epifluorescence microscope with a 100x oil-721 

immersion objective. 722 
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Fig 1. High mannan content is inhibitory for cellulase activity. (A) CMCase activity of

enzymes secreted into WT culture supernatants after 3 days of growth in 1% (w/v) powdered

biomass (M: Miscanthus, Ch: chestnut, O: oak, L: locust, P: pine, Ce: cedar, S: spruce and F:

fir). (B) CMCase activity of the WT and ∆gh2-1 cultures after growth the same as in (A). (C)

CMCase activity of the WT and ∆gh2-1 cultures after growth in 1% (w/v) bacterial cellulose

(BC) with the addition of 0.03% (w/v) glucomannan (GM) and mannan (Mn) or mannobiose

(MB). (D) NMR analysis of the HSQC spectra for the anomeric region of the extracted

intracellular sugars of the mycelia of both WT and the ∆gh2-1 strains after growth in 2% (w/v)

Avicel for 24 h post-transfer. β-Glcp: glucose as part of β-1,4-polymer, β-Manp: mannose as

part of β-1,4-polymer, and β-ManpR: reducing-end β-mannopyranosyl. Different lower and

upper case letters indicate data groups that are significantly different (one-way ANOVA, p-

values < 0.05 were considered significant).
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Fig 2. Characterization of GH2-1. (A) Substrate specificity assay of GH2-1 using ρNP-4-

Nitrophenyl-β-D-mannopyranoside (ρNP-β-Man), ρNP-4-Nitrophenyl-β-D-cellopyranoside (ρNP-

β-CB), ρNP-4-Nitrophenyl-β-D-glucopyranoside (ρNP-β-Glc) and ρNP-4-Nitrophenyl-α-D-

mannopyranoside (ρNP-α-Man) as substrates. (B) Contour plot for GH2-1 activity, at different

combinations of temperatures and pHs in parallel, using ρNP-4-Nitrophenyl-β-D-

mannopyranoside as a substrate. (C) β-mannopyranosidase activity of the cytosolic protein

extracts of the WT, ∆gh2-1, ∆3βG and ∆qko (the ∆3βG strain crossed to ∆gh2-1) after growth in

1% (w/v) Avicel with 1x Vogel‘s salts for 3 days. (D) CMCase activity of the WT, ∆gh2-1, and gh2-

1-comp cultures after growth in 1% (w/v) Avicel with 1x Vogel‘s salts for 3 days. Different lower

and upper case letters indicate data groups that are significantly different (one-way ANOVA, p-

values < 0.05 were considered significant).
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Fig 3. Cello- and mannodextrins compete intracellularly, and the inhibition is independent

of CCR by CRE-1. (A) CMCase activity of culture supernatants of the indicated strains after

growth for 3 days in 1% (w/v) Avicel. (B) Viscosity of the culture supernatant of the indicated

strains 8 h post-transfer to 1% (w/v) glucomannan. Different lower and upper case letters indicate

data groups that are significantly different (one-way ANOVA, p-values < 0.05 were considered

significant).
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Fig 4. Cello- and mannodextrins compete at the level of sugar uptake. (A) Mycelial dry

weight of the indicated strains after growth for 3 days in 1% (w/v) glucomannan (indicated in %

of WT). (B) Residual mannobiose in the supernatant of the indicated strains at indicated times

post-transfer to the uptake solution (100 μM mannobiose). (C) Residual sugars in the culture

supernatants of S. cerevisiae heterologously expressing CDT-1 or -2 transporters, 30 minutes

post-transfer to the 100 µM uptake solutions (cellobiose (CB) or mannobiose (MB), or both

disaccharides simultaneously). Different lower and upper case letters indicate data groups that

are significantly different (one-way ANOVA, p-values < 0.05 were considered significant).
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Fig 5. Mannan addition is inhibitory to cellulase production in T. reesei and M.

thermophila as well. CMCase activity of culture supernatants of (A) M. thermophila WT strain

and (B) N. crassa WT and T. reesei RUT-C30 after 3 days growth in 1% (w/v) Emcocel with or

without the addition of 0.05% (w/v) glucomannan (GM). Different lower and upper case letters

indicate data groups that are significantly different (one-way ANOVA, p-values < 0.05 were

considered significant).
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Fig 6.

Fig 6. A model of the induction (A), inhibition (B) and relief of inhibition (C) of cellulase

production in N. crassa. After the degradation of cellulose and glucomannan by cellulases

(endo- and exo-acting glucanases, orange) and mannanase (blue), respectively,

(gluco)mannodextrins outcompete cellodextrins extracellularly at the level of transport by the

(MFS)-type transporter CDT-1. Intracellularly, cellodextrins and (gluco)mannodextrins are further

cleaved into the corresponding glucose and mannose monomers by the action of the

intracellular β-glucosidase (GH1-1) and β-mannosidase (GH2-1), respectively. In case of an

intracellular balance between cello- and mannodextrins (A), an unknown signaling cascade will

lead to the activation of the upstream transcription factor CLR-1, which induces expression of

the downstream transcription factor CLR-2, which then evokes the major cellulolytic and

mannanolytic responses. In the ∆gh2-1 deletion strain (B), undigested (gluco)mannodextrins

accumulate in the cytosol disrupting the intracellular balance of signaling molecules and

outcompeting the positively inducing cellodextrins, leading to a potential “confusion” in the

cellulolytic signaling pathway in a sense that the fungus is unable to determine the “adequate”

amount of cellulase enzymes to be produced, eventually causing a reduced cellulase

production. When gh1-1 is deleted in the ∆gh2-1 background (∆gh2-1 ∆gh1-1 strain, C), the

accumulating mannodextrins could be counterbalanced by the higher amount of undigested

cellodextrins present in the cytosol, which re-inforce the induction of the cellulolytic response

and relieve the inhibition.
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Fig S1. (A) Results of compositional analysis of the complex carbon sources (grass:

Miscanthus, hardwood-derived: chestnut, oak, and locust, softwood-derived: pine, cedar,

spruce and fir) after sulfuric acid hydrolysis (in %). (B, C) WT and ∆gh2-1 phenotype. Both

strains were grown for 3 days in 1% (w/v) powdered biomass from different sources with 1x

Vogel‘s salts (B) then the endo-glucanase activity and (C) the protein concentration of culture

supernatants were assayed. (D) GH2-1 intracellular localization. A gh2-1-gfp strain was used

for the localization and visualization by fluorescence microscopy. Scale bar represents 10 µm.

(E) Thermal stability assay of GH2-1. Purified enzyme was pre-incubated for 1 h at the

indicated temperatures, and then the β-mannopyranosidase activity was assayed at 37 °C for 5

minutes. (F) Results of compositional analysis of Avicel and bacterial cellulose after sulfuric

acid hydrolysis (in %). Glc: glucose, Xyl: xylose, Man: mannose, Gal: galactose, Ara:

arabinose, and Fru: fructose.
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