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Abstract 20 

Despite the fact that ulcerative colitis (UC) patients show heterogeneous clinical manifestation 21 

and diverse response to biological therapies, all UC patients are classified as one group. 22 

Therefore, there is a lack of tailored therapies. In order to design these, an unsupervised 23 

molecular re-classification of UC patients is evoked. Classical clustering approaches based 24 

on tissue transcriptomic data were not able to classify UC patients into subgroups, likely due 25 

to associated covariates. In addition, while genome wide association studies (GWAS) have 26 

identified potential new target genes, their temporal dynamic revealing the optimal therapeutic 27 

window of time remains to be elucidated. To overcome the limitations, we generated time-28 

series transcriptome data from a mouse model of colitis, which was then cross-compared with 29 

human datasets. This allowed us to visualize IBD-risk gene expression kinetics and reveal 30 

that the expression of the majority of IBD-risk genes peak during the inflammatory phase, and 31 

not the recovery phase. Moreover, by restricting the analysis to the most differentially 32 

expressed genes shared between mouse and human, we were able to cluster UC patients 33 

into two subgroups, termed UC1 and UC2. We found that UC1 patients expressed higher 34 

copy of genes involved in neutrophil recruitment, activation and degranulation compared to 35 

UC2. Of note, we found that over 87% of UC1 patients failed to respond to two of the most 36 

widely-used biological therapies for UC.  37 

This study serves as a proof of concept that cross-species comparison of gene expression 38 

profiles enables the temporal annotation of disease-associated gene expression and the 39 

stratification of patients as of yet considered molecularly undistinguishable.     40 
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Introduction 41 

Ulcerative colitis (UC) is a type of inflammatory bowel diseases (IBD) that is mostly restricted 42 

to the colon and is characterized by changes in the mucosal architecture, epithelial function, 43 

increase in immune cell infiltration and an elevated concentration of inflammatory cytokines. 44 

Symptoms include diarrhea, abdominal pain, rectal bleeding, lack of appetite and fatigue, all 45 

of which significantly affect patient’s quality of life. UC is recognized as a heterogeneous 46 

disease, presenting diverse macroscopic features, symptoms, grads of inflammation and 47 

colonic affected areas 1,2.  48 

Although there is no definitive cure for UC, there are biological therapies available which 49 

target the inflammatory response during UC by means of inhibiting pro-inflammatory 50 

cytokines or by blocking immune cell migration 3. Among these, the most frequently used 51 

biological therapies in UC patients block tumor necrosis factor (TNF) with anti-TNF antibodies 52 

(such as infliximab, IFX) 4 or leukocyte migration (such as vedolizumab, VDZ) 5 6. However, 53 

about 35% 4,6 and 50% 5,6 of patients poorly achieve clinical response to IFX and VDZ, 54 

respectively. Patients that do not respond develop adverse effects, most notably increased 55 

risk of infections, thus requiring continuous medical monitoring and ultimate surgical 56 

intervention 7,8. 57 

In an attempt to identify genes/pathways as a potential novel therapeutic target, genome wide 58 

association studies (GWAS) have identified more than 200 polymorphisms associated with 59 

higher susceptibility to IBD 9,10. However, the function and temporal expression of IBD risk 60 

genes during experimental colitis are yet to be elucidated 9,10.  61 

Furthermore, while there is an obvious clinical heterogeneity among UC patients as seen for 62 

example by the location affected (i.e. distal colitis, left-sided and pancolitis, and responder 63 

and non-responder) and the extent of the severity, initial treatment for these patient 64 

subgroups is identical and modified only if the patients have not responded 6,8. Biomarkers 65 

that could distinguish the different entities of the UC spectrum are currently lacking and they 66 

are required in order to achieve the highly needed stratification of UC patients into 67 

molecularly functional subgroups 8,11. Moreover, an unbiased stratification of UC subtypes 68 
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has never been accomplished at the molecular and functional levels. Here, using 69 

transcriptomic data from a well-characterized experimental model of colitis we were able to 70 

identify conserved genes between mouse and UC patients. As a result, we were able to gain 71 

insights into IBD-risk gene kinetics and to molecularly stratify UC patients in an unsupervised 72 

manner.   73 
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Results 74 

Human UC is highly variable at the transcriptome level 75 

In order to molecularly stratify UC patients into subgroups, we combined 4 publicly available 76 

human UC cohort datasets (n=102 patients), in which transcriptomic microarrays of total 77 

colonic biopsies was performed 12-15 (Table1 and Fig S1). We ranked genes using the top 78 

100 most variable genes and further tested whether molecular subgroups exist (Fig 1a). 79 

Analysis by visual assessment of cluster tendency (VAT)16 indicated that biopsies presented 80 

high inter-sample dissimilarities (Fig1b), suggesting a poor overall tendency to form 81 

consistent clusters. Dimensionality reduction analysis by tSNE using the top highly variable 82 

genes also indicates the formation of a single group with no apparent subdivisions (Fig 1c). 83 

Then, we further statistically tested whether multi-cluster substructures were present in the 84 

dataset, since most clustering algorithms define subgroups even on random noise 17-19. 85 

However, bootstrapping analysis using the Hartigan’s Dip test 19,20 presented a low cluster 86 

substructure trend (p > 0.9), regardless of the gene ranking metrics used (Fig 1d). 87 

Independently of the clustering tendency results, we forced patient subdivision using 88 

hierarchical clustering and tested for cluster stability using bootstrapping 17,18,21. In line with 89 

previous results, formed clusters were highly unstable using the list of highly variable genes 90 

(AU ≈ 0%) (Fig 1e). These results indicate that without prior knowledge of patient subdivision, 91 

standard gene ranking strategies do not allow clustering of UC patients into molecularly 92 

distinct subgroups.  93 

 94 

Time-series reveals processes underlying colon inflammation and repair 95 

One cause of such inter-patient variability can be attributed to the sampling procedure, which 96 

contributes largely to the total data variance and masks real biological differences 22,23. To 97 

overcome the total data variance, we sought to identify the genes that contribute to 98 

inflammation in an independent and unsupervised manner. To this end, we focused the 99 
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analysis on a list of evolutionarily conserved genes that best discriminate the nuances of 100 

inflammation in a well-characterized colitis mouse model 24. 101 

To identify these evolutionarily conserved genes, we first elucidated through an unbiased 102 

manner which genes and pathways are differentially regulated during mouse colonic 103 

inflammation followed by a tissue regeneration phase. In particular, we took advantage of the 104 

widely used dextran sodium sulfate (DSS)-induced model of colitis. This model is one of the 105 

few characterized by a phase of damage followed by a phase of regeneration. Therefore, this 106 

model gave the possibility to identify also sets of genes essential in the regeneration phase, a 107 

key step towards the resolution of the inflammation. In short, mice were exposed to DSS in 108 

the drinking water for 7 days, then allowed to recover for the following 7 days. During this 109 

period, we collected colonic tissue samples every second day to then be analyzed by RNA 110 

sequencing (RNA-seq), histology and flow cytometry (Fig 2a and Fig S2). First, we confirmed 111 

that 7 days of DSS exposure resulted in continuous body weight loss and acute disease 112 

severity until day 10 to then initiate the recovery phase (Fig S2a-b). Histological analysis 113 

confirmed epithelial damage, such as desquamation of the epithelial layer on day 6 (Fig S2c), 114 

while labeling proliferating cells within crypts (Ki67 staining) indicated disrupted crypt 115 

architecture by day 6 and restoration by d14 (Fig S2c). Loss of the epithelial cells 116 

(CD45negEpCAM+) by day 7-10 and restoration by day 14 was further confirmed by flow 117 

cytometry (Fig S2d). To test whether the epithelial barrier integrity was restored by day 14, 118 

we gavaged FITC-dextran and measured its concentration in the serum. We detected higher 119 

FITC-dextran concentrations on day 7, which indicates barrier disruption, whereas basal 120 

levels were detected by day 14 indicating restoration of the barrier integrity (Fig S2e). Thus, 121 

on the basis of this characterization we will refer to d6-d10 and d12-d14 as acute phase and 122 

recovery phase, respectively.  123 

Next, we performed a RNA-seq analysis from colonic samples throughout the experiment and 124 

computed differentially expressed genes (DEGs) taking the complete kinetics of expression 125 

into consideration for p-value estimation using EdgeR 25 (see Methods). A detailed list of all 126 

genes found differentially expressed is available for further exploration (Table S1). Principal 127 

component analysis (PCA) on DEGs revealed that samples displayed a sequential temporal 128 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2019. ; https://doi.org/10.1101/520379doi: bioRxiv preprint 

https://doi.org/10.1101/520379
http://creativecommons.org/licenses/by-nc-nd/4.0/


path in PCA space, starting on day 0, passing through day 7 (acute) and ultimately reaching 129 

day 14 (recovery) (Fig 2b). Of note, samples from day 14 did not reach the same gene 130 

expression profile compared to day 0, suggesting that complete molecular restoration was not 131 

reached by day 14. We observed that over 70% of the variance among the differentially 132 

expressed transcripts is retained in the first 5 principal components (PCs) (Fig S3a), and that 133 

each principal component corresponds to a unique expression kinetic through the time course 134 

of DSS-colitis (Fig S3b). For instance, the variance explained by PC1 peaked at the acute 135 

phase and returned to almost normal levels on day 14 (recovery), capturing most of the 136 

variance related to inflammatory genes that peaked from days 7 to 10, such as Ly6g, Reg3b, 137 

Reg3g, S100a8, S100a9, Mmp3, Mmp8, Mmp10 (Fig S3b and c). On the other hand, the 138 

variance explained by PC2 peaked on day 4 during DSS administration, to return close to 139 

normal by day 7, thus, capturing most of the variance related to genes expressed during 140 

initiation of inflammation, such as Mcpt1, Mcpt2, Mmp3, Mmp10, Il11, Scnn1g and Best2 (Fig 141 

S3b and c). These results indicate that several of the genes modulated between days 4-10 142 

are related to inflammation and together contribute the most to the variance in the dataset. 143 

 144 

By using hierarchical clustering on the spline smoothed gene expression of DEGs, we were 145 

able to classify the gene expression into 9 modules (Fig 2c). For further exploration, 146 

expression values for all genes in each module are available (Table S1). Three gene modules 147 

(m2, m7 and m8) were down regulated during the acute and recovery phases of DSS-induced 148 

inflammation, with lowest peak on days 6, 10 and 12, respectively. GO and KEGG enrichment 149 

analysis suggest that these modules represent genes mainly involved with epithelial cell 150 

functions, such as PPAR signaling (Acsl1, Fabp1), small molecule metabolism (Sult1a1, 151 

Sult1b1) and fat digestion and absorption (Paqr8, Clps, Pla2g3) (Fig 2c and Fig S4a).  152 

On the other hand, six modules (m9, m3, m1, m4, m6 and m5) were up-regulated over the 153 

early, acute and recovery phases of DSS-induced inflammation, peaking on days 2, 6, 7, 10, 154 

12 and 14, respectively. Among those, processes such as cytokine signaling (Il11, Il12b, Il6, 155 

Il1b), leukocyte migration (Sell, Ccr1, Ccr2, Cxcl2, Cxcr3), neutrophil degranulation (Ly6g, 156 
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Itgam, Itgax, Cd300a), matrix remodeling (Mmp3, Mmp7, Mmp10), response to 157 

lipopolysaccharide (Saa3, Nox2) as well as several inflammatory signaling pathways (Stat3, 158 

Jak3, Nfkbia, Smad4, Birc3) were enriched, suggesting the interplay of several immune cells 159 

and pathways as a cause/trigger of inflammation, especially during the acute phase (Fig 2c 160 

and Fig S4b). Moreover, modules m9 and m5 presented two degrees of bimodal expression 161 

pattern, peaking at day 2-4 (early phase), with slight down-regulation between days 7-10 and 162 

a second peak on days 12-14 (recovery phase). Genes in those modules were associated 163 

mainly with cell cycle (Ttk, Cdc7, Cdc20, Cdc25c, Ccna2, Ccnb1, Ccnb2) and cholesterol 164 

biosynthetic pathways (Acat2, Sqle, Mvd, Hmgcs1), respectively (Fig 2c and Fig S4b). Many 165 

other genes and GO/KEGG pathways not shown here are fully accessible for exploration of 166 

individual genes and their clusters (Table S1, S2 and S3). Taken together, time-series 167 

transcriptomic characterization of mouse colonic inflammation identifies distinct gene 168 

expression kinetics associated with epithelial and immune cell related pathways during the 169 

course of colitis. 170 

 171 

Inflammatory pathways are the most conserved between mouse and human colitis 172 

Having characterized genes and pathways that are associated with intestinal inflammation 173 

and tissue repair during experimental colitis, we investigated whether such pathways are 174 

conserved in humans. To this end, we compared the list of DEGs from the mouse 175 

experimental colitis with the recently published list of DEGs found in newly diagnosed 176 

treatment-naïve ulcerative colitis patients 26. This is a cohort containing human RNA-seq data, 177 

where they report DEGs between UC patients versus healthy controls. We found that among 178 

the 4045 mouse DEG, 650 genes were also found among the list of DEG obtained comparing 179 

UC patients versus healthy controls (Fig 2d and TableS4). Out of the 650 genes shared 180 

between mouse and humans, 53.9% were identified in the inflammatory modules m1 (28.2%), 181 

m3 (14.2%) and m4 (11.5%) (Fig 2d). This suggests that acute inflammatory genes in m1, 182 

m3 and m4 are conserved between DSS-induced colitis and UC. GO and KEGG enrichment 183 

analysis revealed that those 650 genes were enriched for inflammatory pathways related to 184 
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neutrophil degranulation and chemotaxis, as well as cytokine and inflammatory signaling 185 

pathways (Fig 2e and TableS5). These results showed that most of the genes/pathways 186 

conserved between experimental mouse colitis and human UC are associated with 187 

inflammatory responses. 188 

 189 

Forward translation from mouse to human UC patients allows the temporal 190 

classification of the IBD risk genes   191 

To understand the temporal expression of the genes associated with the identified IBD 192 

polymorphisms (candidate IBD risk genes) 9, we checked the expression of genes associated 193 

with UC or CD identified by single variant fine-mapping resolution 10 into the list of DEGs from 194 

the mouse dataset.  Out of the 233 reported candidate IBD risk genes, 40 genes presented 195 

very low or undetectable counts in the mouse dataset (i.e., IL23R, SULT1A2, ERAP2, 196 

MUC19), 118 were detected but did not have their expression altered through the 197 

development of inflammation (i.e., TNFRSF14, ATG16L1, GPR35, TNFSF8) and 75 were 198 

found among the DEGs in our mouse dataset (Fig S5a and Table S6). Among these, many 199 

IBD-risk genes with already known functions during mouse colitis were found (e.g. IFNG, 200 

GPR65, ITGAL, CCL7, STAT3, FUT1, CD40, SULT1A1, MUC1, CARD9, IL12B, IRF1, CD5), 201 

being specifically present in gene modules related to inflammation m1, m3 and m4. Moreover, 202 

26 genes of the 75 IBD risk genes found in our dataset are shared between UC and CD (i.e. 203 

CARD9, SULT1A1, STAT3, GPR65, IL12B), while 10 and 39 were restricted to UC or CD, 204 

respectively (Fig S5b and Table S7). In order to provide temporal information regarding the 205 

expression of IBD-risk genes during inflammation and repair, we utilized the mouse 206 

transcriptional landscape to map at which time point homolog IBD risk-genes were up- or 207 

down-regulated. Out of the 75 genes shared between mouse DEGs and IBD risk genes, 45 208 

(60%) were mapped to modules m1, m3 and m4, which represent the acute phase of 209 

inflammation (Fig S5c and Table S7). Among them we found Card9, Ifng, Il12b, Stat3, Stat4, 210 

Cd40, which have been reported to exert functions during the acute phase of intestinal 211 

inflammation 27-32. By contrast, Fut1, Sult1a1, Hes5 and Tnfsf15 were mapped to modules 212 
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m8, m7 and m2, which are down-regulated during acute inflammation, while Rasip, Ntn5 and 213 

Rtel1 matched with module 6 which is associated with genes that are up-regulated during the 214 

recovery phase after acute inflammation (Fig S5c). These data thus provided temporal 215 

information on when IBD risk genes are differentially expressed during damage and tissue 216 

repair, providing useful insights into their potential roles during inflammation and recovery. 217 

 218 

Key conserved inflammatory genes distinguish two human ulcerative colitis 219 

subgroups 220 

Having identified genes that contribute to inflammatory pathways that are conserved between 221 

mice and humans, we next used those genes to assess whether UC patients can be 222 

subdivided into subgroups (Table1, Fig 3a). To this end, we selected the top 100 leading 223 

genes in PC1 and PC2 from the mouse colitis dataset and identified the respective human 224 

homologs (Fig 3a). We found that 57 genes were shared between mice and humans. Of 225 

these, only 17 genes were found among the 100 most variable genes of the human dataset 226 

(Fig S6), which might explains why patient classification using highly variable genes was not 227 

possible.  228 

Therefore, we performed an unsupervised analysis of the human dataset using the 57 229 

homolog genes (Fig 3a). Of note, VAT analysis using these 57 homolog genes indicated the 230 

distinction into 2 major patient subgroups (Fig 3b), which also resulted in reduced Hartigan’s 231 

unimodality test (p < 0.001, Fig 3c). This indicates that by using mouse most variable genes 232 

as opposed to the sole top human variable ones, it is possible to obtain higher clustering 233 

tendency of the UC patient data. To test whether using the mouse homologs also impacted 234 

on cluster stability, we performed a bootstrapping analysis. This time, clustering using the top 235 

mouse homolog genes resulted in clusters with higher stability (AU ≈ 80%) (Fig 3d), 236 

compared to using the top human highly variable genes (AU ≈ 0%) (Fig 1e). Hierarchical 237 

agglomerative clustering using the mouse homolog genes thus defined 2 UC subtypes, 238 

namely UC1 and UC2, comprising 60 and 42 patients, respectively (Fig 3e). The UC1 239 

subgroup is defined as patients presenting the higher average expression of the inflammatory 240 
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genes compared to UC2 (Fig 3f). We also observed that neither UC1 nor UC2 subtypes were 241 

discriminated by the overall macroscopic disease severity (Fig 3g), suggesting that although 242 

these two UC subtypes are indistinguishable based on Mayo score, they are transcriptionally 243 

distinct. 244 

 245 

UC1 and UC2 are transcriptionally distinct 246 

In order to characterize UC1 and UC2 beyond conserved genes, we performed differential 247 

expression analysis using all genes present in the human dataset. We were able to identify 248 

205 highly differentially expressed genes, among which 187 were up-regulated in UC1 and 18 249 

were up-regulated in UC2 (Fig 4a). Detailed tables with information on all DEGs comparing 250 

UC1 and UC2 are available for exploration (Table S8 and Fig S7a). Among those, cytokines 251 

(TNF, IL11), enzymes (NOX1, MMP3, CYP26B1), calcium-binding proteins (S100A8, 252 

S100A9), chemokines (TREM1, CXCL8) and other proteins related to the inflammatory 253 

response (NR3C2, BCL2A1, PARM1, TNFSF13B) were clearly able to discriminate UC1 from 254 

UC2 (Fig 4b and Fig S7). Enrichment analysis for cell types, GO, and KEGG pathways 255 

revealed that genes highly expressed in UC1 (187) were associated with terms related to 256 

neutrophil, neutrophil degranulation and cytokine-cytokine receptor interaction, respectively 257 

(Fig S7b). Venn diagram of the top enriched terms revealed many overlapping genes are 258 

shared among these pathways (Fig 4c), suggesting that UC1 patients present a distinct 259 

transcriptional signature enriched in neutrophil activity and cytokine signaling compared to 260 

UC2 patients. 261 

We trained a logistic regression classifier using each of the DEGs between UC1 and UC2 to 262 

identify key genes that could be further used in the clinics for distinction of UC1 and UC2. 263 

Genes were tested and scored individually using the area under the curve (AUC) as a 264 

combined measure of sensitivity and specificity (Fig 4d). We observed that genes such as 265 

TREM1 (AUC=99%), CYP26B1 (AUC=97%) and CXCL8 (AUC=97%) were among the top 266 

markers to distinguish UC1 from UC2. Other genes such as WNT5, BCL2A1, C5AR1, MMP1, 267 
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MMP3 and IL11 also presented AUC scores above 90% and also represented good 268 

candidates for UC1 and UC2 distinction in clinical practice. 269 

 270 

UC1 and UC2 respond differently to biological therapies 271 

While we stratified UC patients into two molecularly distinct subgroups, it was unclear whether 272 

UC1 and UC2 show different treatment responses to biological therapies. To address this, we 273 

used the patient-specific treatment response obtained 4 to 8 weeks after the biopsy was 274 

taken and treatment with IFX started (Table 1). Interestingly, we observed that on average, 275 

70% of the patients belonging to the subtype UC2 responded to infliximab therapy (Fig 5a) in 276 

contrast to less than 10% of the patients classified as UC1, regardless of the dataset 277 

analyzed (Fig 5a).  278 

To extend the applicability of our findings, we made use of another set of UC patients 279 

receiving vedolizumab and repeated the same procedure as before (Table 1). Transcriptomic 280 

data from UC patients were analyzed using the most relevant genes identified in our mouse 281 

colitis model and then clustered as described above to reveal UC1 and UC2. Between them, 282 

UC1 presented a higher expression of the conserved inflammatory genes (Fig 5b). We 283 

observed that about 60% of the patients belonging to the UC2 subgroup responded to VDZ, in 284 

comparison to about 13% of the patients belonging to the UC1 subgroup (Fig 5c). Taken 285 

together, the data indicates that patients belonging to the UC2 subgroup, which present a 286 

higher percentage of response, respond to either IFX or VDZ treatment. Importantly, our 287 

approach actually allows a more accurate identification of those patients with UC1, in which 288 

87% of the patients are refractory to both IFX and VDZ. 289 

 290 

Discussion 291 

A systematic study demonstrated that biopsy sampling was the major source of inter-patient 292 

variability22. Therefore, such technical variations can mask real biological differences, even 293 

though UC is known to present a high level of variability in macroscopic and endoscopic 294 
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scoring among patients1,2,8. To solve this, we limited the analysis to the relevant genes for 295 

inflammation including the phases of tissue repair and regeneration. By using the key DEGs 296 

obtained by a mouse model of colitis, we were able to “ignore” genes that were highly variable 297 

between patients (e.g. as a result of technical variation), and focus only on those that 298 

contribute to inflammation. This allowed us to temporally classify IBD risk genes and 299 

molecularly sub-classify UC patients into two subgroups; one of these characterized by genes 300 

involved in neutrophil recruitment, activation and degranulation, and by low response to 301 

biologicals.  302 

Different experimental models to study mucosal immune processes associated with the 303 

pathogenesis of UC are available 33,34. Among them, the DSS-induced colitis model is broadly 304 

used due to its simplicity and applicability with different therapeutic drugs 35. Early studies 305 

characterized the temporal changes by qPCR for a handful of inflammatory markers 36, but 306 

how non-inflammatory (i.e. repair-related) genes fluctuate over time during tissue repair was 307 

unknown. Others had previously performed a kinetic microarray analysis only during the acute 308 

inflammation phase of DSS (from days 0 to 6)37, but whether those genes continue to be 309 

expressed during tissue repair remained unclear. Moreover, although the DSS-induced colitis 310 

model has been extensively used for the study of UC, an open reference for gene expression 311 

during intestinal inflammation and tissue repair was still missing. Here, we used a time-series 312 

transcriptional characterization of colitis, which allowed us to identify which genes contribute 313 

to most of the nuances of inflammation over time. In addition, this manuscript provides an 314 

open data source that can be further investigated by others with different questions. As an 315 

example, we provided a temporal assignment of IBD risk genes that might offer insight into 316 

their potential functions. Finally, our data show that the DSS mouse model is a relevant model 317 

for studying certain aspects of human UC. 318 

Previous studies identified the molecular differences among responder and non-responder 319 

IBD patients 13. These studies were purposely biased by an a priori knowledge of the 320 

responder and non-responder IBD samples. In contrast, we successfully classified the 321 

patients using a completely unsupervised approach and therefore, we have potentially 322 

identified genes that go beyond the responsiveness to the therapy by describing the 323 
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molecular signature of the identified subgroups. We were able to do this by using the key 324 

DEGs found in the mouse model of colitis, by “debiasing” the human analysis, by “ignoring” 325 

genes that were highly variable between patients, and by focusing only on those genes that 326 

contribute to inflammation. Consequently, we identified two subpopulations of UC patients 327 

(UC1 and UC2). 328 

While per definition both UC1 and UC2 subpopulations are considered inflamed, only UC1 329 

patients present higher expression of genes associated with neutrophil degranulation and 330 

cytokine signaling, and only 10% of these patients responded to  biological therapies. Similar 331 

to our results, others have shown that IL6, IL11, IL13RA, STC1 and PTGS2 were down-332 

regulated in patients responsive to IFX 13 (namely UC2 in our study). Another recent report 333 

showed that the gene OSM is up-regulated in IBD patients compared to healthy controls and 334 

is predictive of anti-TNF responsiveness 38. However, we did not find OSM as differentially 335 

expressed between UC1 and UC2 patients. For VDZ, however, a signature for prediction of 336 

response to therapy was still missing 15. 337 

The identification of UC2 which is characterized by responsiveness to both IFX and VDZ may 338 

have direct implications in the clinical setting. For example, it indicates that UC2 patients 339 

would benefit from a treatment with IFX only, since IFX therapy has a higher response rate 6 340 

and is more cost-effective compared to VDZ 39.  On the other hand, identification of non-341 

responsiveness to both IFX and VDZ in the UC1 patient subgroup, suggests that another line 342 

of therapy should be applied. For example, we observed that the B cell activation factor 343 

(TNFSF13B, protein BAFF) was to be found up-regulated in UC1 patients. This suggests a 344 

potential role of B cells in UC1. Moreover, B cells are known to enhance inflammatory 345 

responses by cytokine secretion such as TNF and IL-6 40, which are also up-regulated in UC1 346 

patients. B cell depletion using anti-CD20 antibody in a small cohort showed a trend in 347 

reducing inflammation, although non-significant 41. However, it remains possible that B cell 348 

depletion might affect only UC1 patients, but not UC2. Similarly, we also observed that UC1 349 

patients have a higher expression of genes involved in the JAK/STAT signaling pathway 350 

(PTP4A3, SOCS3) and cytokine signaling (IL6 and IL1B), suggesting a potential role of other 351 
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therapies for this subgroup, such as canakinumab (anti IL-6 mAb), siltuximab (anti IL-1β 352 

mAb), JMS-053 (PTP4A3 inhibitor) and others might apply. 353 

In summary, we have performed an unbiased characterization of the inflammatory and tissue 354 

repair processes using a mouse colitis model, providing a useful resource for understanding 355 

colonic inflammation. Many of the genes identified in mice were also detected in human UC 356 

patients, thus allowing us to explore the temporal expression of IBD risk genes during the 357 

course of inflammation and gain useful insights into their potential function. Furthermore, they 358 

allowed us to identify for the first time two clinically relevant molecular ulcerative colitis 359 

subsets (UC1 and UC2) in an unsupervised manner. Thus, our methodology identified two 360 

molecularly distinct UC subgroups and will serve as a proof of concept for the use of 361 

transcriptomic data from highly controlled mice experiments to perform unsupervised and 362 

biologically-driven analysis of highly variable human datasets. 363 

 364 

Methods 365 

All methods used in this paper are described in the Online Methods linked to this manuscript. 366 
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Figure legends 497 

Figure 1. Human ulcerative colitis transcriptional profiles cluster patients into 498 

molecular subgroups. (a) Schematic representation of the strategy used for patient group 499 

identification, in which four publicly available datasets were combined. Gene ranking was 500 

done using the most variable genes in the human dataset, which were used for clustering 501 

analysis. (b) Sample dissimilarity heatmaps for visual analysis of clustering tendency (VAT), 502 

comparing the human dataset using the top 100 variable genes. (c) tSNE plot using the top 503 

100 variable genes in the human dataset. Each point represents a patient sample. (d) 504 

Hartigan’s Dip test for clustering tendency using all genes in the dataset, the top 100 variable 505 

genes, the top 100 highly dispersed genes or the top 100 leading genes in the principal 506 

components. (e) Bootstrapping analysis of hierarchical clustering, comparing the human 507 

dataset using the top 100 variable genes in the human dataset. Numbers in orange indicate 508 

the approximately unbiased (AU) p-value, shown as a percentage. AU closer to zero indicates 509 

a cluster with low stability. 510 

 511 

Figure 2. Unbiased characterization of the DSS colitis reveals conserved inflammatory 512 

signature between mice and humans. (a) Schematic illustration of the experimental design. 513 

Mice received DSS in drinking water for 7 days, after which the treatment was replaced with 514 

water. Samples were collected at indicated time points. (b) PCA on differentially expressed 515 

gene counts. Samples were color-coded according to their respective day of collection (from 516 

grey to orange to blue). The percentage of variance explained by the respective principal 517 

component indicated in parenthesis. (c) Clustered heatmap of all differentially expressed 518 

genes (left). The mean expression of each gene module is shown (right). Functional 519 

annotation of genes in each cluster was done based on Gene Ontology (GO) enrichment. 520 

Only the top 3 enriched processes are shown, sorted by P-value. (d) Venn diagram 521 

comparing the list of DEGs in treatment-naive UC and the DEGs identified in mouse DSS 522 

colitis (upper). Among the 650 genes shared among those lists (in red), the number and 523 

percentage of genes found in each module identified in our mouse dataset (lower). Modules 524 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2019. ; https://doi.org/10.1101/520379doi: bioRxiv preprint 

https://doi.org/10.1101/520379
http://creativecommons.org/licenses/by-nc-nd/4.0/


highlighted in bold are the ones enriched for inflammatory terms in Fig 2c. (e) GO and KEGG 525 

enrichment analysis out of the 650 shared genes identified in (d), sorted by P-value. 526 

 527 

Figure 3. Conserved inflammatory gene signature distinguishes two UC subgroups. (a) 528 

Schematic representation of the strategy used for patient group identification. Four publicly 529 

available datasets were combined. Gene ranking was done using the most variable genes 530 

identified mouse dataset that had a homolog in humans. (b) Sample dissimilarity heatmaps 531 

for visual analysis of clustering tendency (VAT), comparing the human dataset using the top 532 

mouse gene homologs. (c) Hartigan’s Dip test for clustering tendency comparing the analysis 533 

using top 100 variable genes and the top mouse gene homologs. (d) Bootstrapping analysis 534 

of hierarchical clustering, comparing the human dataset using the top mouse gene homologs. 535 

Numbers in orange indicate the approximately unbiased (AU) p-value, shown as percentage. 536 

AU closer to zero indicates a cluster with low stability. (e) tSNE plot using the top variable 537 

genes identified from the mouse dataset. Each point represents a patient sample. tSNE plot 538 

showing the separation of 2 patient subgroups (left). Unsupervised hierarchical agglomerative 539 

clustering was used to automatically define patient subdivision (center). Dashed line delimits 540 

UC1 (triangle) and UC2 (circles) patients. (f) Average expression of mouse homolog genes 541 

used to subdivide patients (right), where dark blue colour indicates higher average 542 

expression. Dashed line delimits UC1 (triangle) and UC2 (circles) patients. (g) Assessment of 543 

Mayo clinical subscore in patients from UC1 and UC2. Mann-Whitney test was used for 544 

comparison. 545 

 546 

Figure 4. UC1 subgroup is enriched for the inflammatory signature. (a) Heatmap of 547 

DEGs between UC1 and UC2 patients including all genes in the human dataset. Only the 548 

selected genes are shown, grouped by functional categories and respective to the expression 549 

level. (b) tSNE overlay of the expression level of selected DEGs between UC1 and UC2, 550 

showing inter-patient variation. (c) Venn diagram of the top GO, KEGG and cell enriched 551 

terms identified from the DEGs between UC1 and UC2. (d) Top 20 genes ranked by area 552 
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under the curve (AUC) for specificity and sensitivity to distinguish UC1 from UC2, among the 553 

list of DEGs (left). Classification was carried out using logistic regression. The fitted values of 554 

prediction are shown for selected genes (right). 555 

 556 

Figure 5. UC1 and UC2 differ on their repose to IFX and VDZ therapy. (a) Individual 557 

patient response to IFX therapy in each group and the percentage of patients responding to 558 

IFX in each cohort. (b) tSNE plot using the top variable genes identified from the mouse 559 

dataset. Average expression of mouse homolog genes used to subdivide patients (left), 560 

where dark blue colour indicates higher average expression. Unsupervised hierarchical 561 

agglomerative clustering was used to automatically define patient subdivision (right). Dashed 562 

line delimits UC1 (triangle) and UC2 (circles) patients. (c) Individual patient response to VDZ 563 

therapy in each group and the percentage of patients responding to VDZ in the cohort (right). 564 

 565 

Supplementary figure legends 566 

Figure S1. Normalization of publicly available ulcerative colitis datasets. (a) 567 

Multidimensional scaling plots before and after batch effect correction using ComBat. (b) 568 

Relative log expression plots comparing samples from the different datasets before and after 569 

adjusting for batches using ComBat. 570 

 571 

Figure S2. Macroscopic alterations in mice during DSS-induced colitis. (a) Body weight 572 

change over the time course of colitis. *P < 0.05; two-way ANOVA. (b) Disease activity index 573 

score (DAI) over time (in arbitrary units, A.U.). *P < 0.05; two-way ANOVA. (c) Representative 574 

histological section of the colonic tissue at indicated time points. H&E (upper) and 575 

immunohistochemistry staining for Ki-67 (bottom) are depicted. One representative figure out 576 

of three experiments. Scale bar 50 µm. 577 

(d) Flow cytometry data showing colonic epithelial cell (EpCAM+CD45-) frequencies during the 578 

course of the experiment. Dot plots are representative of three experiments. The graph on the 579 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted January 16, 2019. ; https://doi.org/10.1101/520379doi: bioRxiv preprint 

https://doi.org/10.1101/520379
http://creativecommons.org/licenses/by-nc-nd/4.0/


right shows epithelial cell absolute numbers during the course of the experiment. *p < 0.05; 580 

two-way ANOVA. (e) Quantification of intestinal permeability by FITC-dextran assay. Mice 581 

were gavaged with 10 mg/mL of FITC-dextran and sacrificed 4 hours later for quantification of 582 

fluorescence in the serum. *p < 0.05; two-way ANOVA. Error bars represent SEM. 583 

 584 

Figure S3. Identification of top leading genes and that drive overall differences in gene 585 

expression during DSS colitis. (a) Percentage of variance explained by each principal 586 

component (see Fig 2b). (b) Overall fluctuations in the first 6 PCs over the time course of DSS 587 

colitis. Note that the overall variance captured by PC6 is close to 0 and therefore not used in 588 

further analysis. (c) Ranking of the top 20 leading genes that contribute to the variance in 589 

each of the first 5 PCs. 590 

 591 

Figure S4. List of the top DEGs per module. (a) Down-regulated gene modules m8, m7 592 

and m2 (see Fig 2c). (b) Up-regulated gene modules m9, m1, m3, m4, m5 and m6 (see Fig 593 

2c). 594 

 595 

Figure S5. Mouse colitis and human UC share inflammatory pathways and IBD risk 596 

genes. (a) Venn diagram comparing IBD risk genes and the list of DEGs in the mouse 597 

dataset (upper). 75 genes are shared between these lists (in red). The number and 598 

percentage out of the 75 IBD-risk genes presented in each mouse module is shown (below). 599 

Modules highlighted in bold are the ones enriched for inflammatory terms in Fig 2c. (b) Venn 600 

diagram for the genes in the list of DEGs in the mouse dataset, genes associated with UC 601 

and/or to CD. Among those, 26 are shared between UC and CD (in red). (c) Expression level 602 

of IBD risk gene mouse homologs during the DSS colitis. 603 

 604 

Figure S6. List of highly variable genes in humans and mouse colitis. (a) Top 100 genes 605 

sorted by high variance in the human dataset. Genes highlighted in red are also present 606 
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among the top list of homolog genes identified in the mouse colitis dataset. (b) Top list of 607 

homolog genes identified in the mouse colitis dataset, sorted by variance on the human 608 

dataset. 609 

 610 

Figure S7. List of DEGs between UC1 and UC2 and enrichment analysis. (a) List of the 611 

top 32 up-regulated and 16 down-regulated DEGs between UC1 and UC2. (b) Cell, GO and 612 

KEGG enrichment analysis for the genes up-regulated in UC1 compared to UC2. 613 

 614 

Tables 615 

Table 1. Publicly available human datasets used for classification of 
ulcerative colitis subtypes. Only the number of patients used for 
analysis are shown (inflamed mucosa before receiving any therapy). 
Dataset ID Total Resp Non-resp Ref. 
Infliximab     
   GSE12251 23 11 12 13 
   GSE73661 23 15 8 15 
   GSE23597 32 7 25 14 
   GSE16879 24 16 8 12 
   Sum 102 49 53  
Vedolizumab     
   GSE73661 37 23 14 15 

	616 
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Online Methods 21 

 22 

1.1. Mice and induction of DSS colitis 23 

Female 8-12 weeks old C57BL/6J mice were obtained from ScanBur (Charles River, 24 

Germany) and housed in environmentally enriched ventilated cages under specific pathogen 25 

free conditions (SPF) at Astrid Fagræus laboratory (AFL, Karolinska Institutet) under 12h light 26 

cycle and receiving water and ration ad libitum (RM1(P), Special Diet Services). For induction 27 

of colitis, 2.5% w/v dextran sulfate sodium (DSS; Affymetrics) was supplemented in drinking 28 

water and given to mice for 7 consecutive days, with a change on day 3. After the treatment 29 

was ceased, mice returned to receive standard water. Mice were monitored everyday for 30 

alterations in body weight, disease activity index (DAI) 1. Mice were anesthetized with 31 

isofluorane and sacrificed for blood and tissue sampling. Animal experiments were done 32 

following institutional guidelines of the Stockholm Regional Ethics Committee under approved 33 

ethical permit number N89/15. 34 

 35 

1.2. Mouse gene expression by mRNA sequencing 36 

Colon samples were stored in RNAlater (Ambion) at -80˚C until further use. Colonic samples 37 

were homogenized using bead-beating system (Precellys) for total RNA purification using 38 

RNAeasy kit (Qiagen) following manufacturers recommendations. RNA purity and quantity 39 

was measured by NanoDrop spectrophotometer (ThermoFisher). All samples were screened 40 

for RNA integrity check and presented RIN values above 8 on 2100 Bioanalyzer instrument 41 

(Agilent). Samples were submitted to Novogene for library preparation using TruSeq Stranded 42 

mRNA Library Prep Kit (poly-A selection) and sequencing using HiSeq-2500 platform 43 

(Illumina). Samples were sequenced using single-end 50bp sequencing2, aiming an coverage 44 

of 20M reads. Read quality was inspected using MultiQC3, trimmed with Trimmimatic4 and 45 

further proceeded for abundance estimation using Kallisto5. 46 
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Further data analysis was done in R programming language (Rstudio). Genes with absolute 47 

read count less than 5 in at least 3 samples were considered with low expression and filtered 48 

out. Differences in tissue cell composition that could affect transcriptional pools were 49 

balanced by means of removing unwanted variation based on negative control genes using 50 

the RUVg function implemented in RUVseq package6. Analysis revealed that library sizes 51 

strongly correlated with several known intestinal housekeeping genes, such as Hprt (r=0.87) 52 

and Gapdh (r=0.85), but not Actb (r=0.68). Moreover, genes such as Cd63 (0.94), Trappc 53 

(r=0.97), and Cpped1 (0.97) and Slc25a3 (r=0.96) correlated even more strongly to the library 54 

sizes, indicating potentially novel housekeeping genes during colonic inflammation. Negative 55 

controls genes were thus defined as genes with positive Pearson correlation above 0.9 to 56 

their respective sample library sizes. Estimated unwanted variation vectors were then used as 57 

covariates for calculation of differentially expressed genes (DEGs) using EdgeR package7. 58 

EdgeR is specialized in performing time-series differential expression by means of 59 

generalized linear model (glm) function8, where time points were parsed as independent 60 

factors in the contrast matrix, thus allowing detection of differentially expressed genes at any 61 

given time point. Genes were considered differentially expressed when the overall false 62 

discovery rate (FDR) < 0.01 and at least one time-point had fold change > 1.5. DEGs 63 

identified in this manner were used for dimensionality reduction by principal component 64 

analysis (PCA), from which gene-wise contribution to the total variation can be calculated. 65 

Identification of gene modules was done based on smoothed temporal expression curves9. 66 

Briefly, gene-wise log fold changes were smoothed using spline curves and further grouped 67 

into modules by using Pearson correlation as distance for hierarchical agglomerative 68 

clustering with Ward’s method (“ward.D2”). Functional gene annotation was performed on 69 

each gene module individually using the Gene Ontology (GO_Biological_Process_2017) and 70 

the Kyoto Encyclopedia of Genes and Genomes (KEGG_2016) libraries with enrichR 71 

package10. 72 

 73 
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1.3. Mapping treatment-naïve ulcerative colitis and IBD risk genes to the murine 74 

RNA-seq dataset 75 

To identify which genes are shared between mouse and human ulcerative colitis, we 76 

compared the list of DEGs identified by in the DSS dataset and the list of genes identified by 77 

Taman et al.11. Mapping of IBD risk genes was done using the list of IBD risk genes identified 78 

by fine-mapping at the single loci resolution 12. Identification of enriched GO processes and 79 

KEGG pathways was done using enrichR10. 80 

 81 

1.4. Classification of ulcerative colitis molecular subtypes using genes in mouse 82 

principal components 83 

To investigate whether the nuances of inflammation observed in the mouse model could also 84 

be found in humans, we made use of four human microarray datasets from GSE1225113, 85 

GSE7366114, GSE2359715 and GSE1687916. Combined, these datasets contain gene 86 

expression and metadata of 447 patients, containing information such as disease type (UC or 87 

CD), Mayo macroscopic score, the therapy given, when the sample was collected and the 88 

response to infliximab (IFX) or to vedolizumab (VDZ). Across all datasets, patients were 89 

considered inflamed if presenting a Mayo score of 2 or 3 (out of 3). Similarly, patient were 90 

considered to respond to therapy when it respective Mayo score reduced to 0 or 1, between 91 

4-8 weeks of treatment with IFX or between 6-52 weeks of treatment with VDZ. For this study, 92 

we included only patients with UC before receiving any therapy (either IFX or VDZ), 93 

comprising a total transcriptional profiles of 143 patients, of which 102 received IFX and 41 for 94 

VDZ. The list of samples used in this study is supplied as metadata table (Table S9). 95 

Probes with log2 fluorescence count lower than 6 in at least 10 samples were excluded from 96 

the analysis. Batches between dataset were observed and corrected using the ComBat 97 

function in SVA package17. Selection of genes for further exploration was done by different 98 

approaches: 1) using all genes; 2) using only the top 100 highly variable genes; 3) using the 99 

genes with top 100 high dispersion; 3) The gene with high loading in principal component 1 100 

and; 4) The gene with high loading in principal component 2.  101 
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We determined whether clustering patterns exist by 4 independent methods: 1) By 102 

dimensionality reduction using tSNE. Since data originated from biopsies are known to 103 

present high variability across patients18, dimensionality reduction and visualization was done 104 

using t-Stochastic neighbor embedding (t-SNE). Because of it’s nonlinear characteristics, t-105 

SNE becomes less sensitive to noise and outperform PCA19 to discriminate biopsies based 106 

on shared expression patterns, rather than their absolute expression values.; 2) By visual 107 

assessment of clustering tendency (VAT) using dissimilarity matrices20; 3) By using the 108 

Hartigan’s dip test21,22, which tests whether the gene distribution are different to an unimodal 109 

distribution. Values close to 1 indicate that the data is unlikely to present cluster 110 

substructures. We performed bootstrapping 100 times on 90% of the samples to calculate 111 

Hartigan’s dip test p-value. The comparison between bootstrapping with human highly 112 

variable genes and mouse PCs (see below) was done using paired Mann-Whitney test; 4) By 113 

dividing patients into subgroups using hierarchical agglomerative clustering. Cluster stability 114 

was determined by bootstrapping 300 times on 90% or the samples, resulting in the 115 

approximate unbiased (AU) statistics23. Clusters with AU closer to 100 present higher 116 

stability. 117 

Instead of using the top variable genes as above, we alternatively used the top genes 118 

identified in the mouse RNA-seq DSS colitis dataset (see above). To this end, the top 100 119 

genes identified in PC1 and PC2 were selected for identification of the respective human 120 

homologs. Together, 175 genes were found in top genes in both PC1 and PC2 and from 121 

these, 148 genes had a homolog in humans. In total, 57 homolog genes were found between 122 

our mouse PCs and the human dataset. Dimensionality reduction was performed with tSNE. 123 

Assessment of clustering tendency was done as described above. Agglomerative clustering 124 

on the Euclidean distance using complete linkage was used to discriminate patient subgroups 125 

UC1 and UC2. For the matter of definition used in this study, patients that present higher 126 

mean expression of the 57 mouse-human homologs were classified as UC1, while those with 127 

low expression were classified as UC2. Differences in expression between UC1 and UC2 128 

were calculated using eBayes method in limma package24. Probes with fold changes above 129 
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1.5 and FDR lower than 0.001 were considered significantly differentially expressed. 130 

Identification of enriched GO, KEGG and cell types was done using enrichR10. 131 

To identify which genes can discern UC1 from UC2, we trained a logistic regression classifier 132 

for each gene individually and comparing to the UC1 and UC2 classification mentioned 133 

above. The sensibility and sensitivity of the prediction was summarized using the area under 134 

the curve (AUC) method. Genes with AUC values closer to 1 (100%) have a better accuracy 135 

to distinguish UC1 and UC2 patients. 136 

 137 

1.5. Lamina propria cell isolation for analysis by flow cytometry 138 

Cell isolation from the colonic tissue was performed as previously described 26 with 139 

modifications. Briefly, tissues were open longitudinally, cut into 1cm pieces and washed with 140 

PBS. The epithelial cell fraction was obtained by incubating the tissue with Buffer-A (PBS, 5% 141 

FCS, 5  mM EDTA) at 37˚C for 20 minutes under agitation at 600 rpm. The supernatant was 142 

collected and kept on ice while the remaining tissue was washed 2 times with PBS. Tissue 143 

were digested with collagenase solution containing 0.15 mg/ml Liberase TL (Roche) and 144 

0.1 mg/ml DNase I (Roche) in HBSS and incubated at 37˚C for 60 minutes under agitation at 145 

1200 rpm. The digested and the epithelial cell fraction were mixed, filtered through a 100 um 146 

cell strainer, pelleted by centrifugation at 1750 rpm and re-suspended in Buffer-A. Cell 147 

suspensions were blocked with Fc-blocking solution (1:1000, eBioscience) and stained with 148 

the antibody mix (1:200), both at 4˚for 15 minutes. The following antibodies were purchased 149 

from BD Biosciences: CD45.2 (104), CD3 (500A2), CD90.2 (53-2.1), EPCAM (G8.8), CD11b 150 

(M1/70), CD11c (N418), Ly6G (1A8), B220 (RA3-6B2) and CD64 (54-5/7.1).  The following 151 

antibodies were purchased from eBiosciences: CD103 (2E7) and Ly6C (HK1.4). Counting 152 

beads (Spherotech) and DAPI (1:400, Sigma) were added to each sample to allow absolute 153 

cell quantification and exclusion of dead cells. Data acquisition was done using 5-laser LSR 154 

Fortessa flow cytometer (BD Biosciences) and analysis was carried out with FlowJo software 155 

(TreeStar). 156 

 157 
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1.6. Histological analyses 158 

The colonic tissue was rinsed and flushed with PBS and gently squeezed out to remove non-159 

adherent bacteria, fixed in 4% formaldehyde solution for 24 h and embedded in paraffin. 5 um 160 

sections were stained with H&E. Ki67 (1:100, Cat# MA5-14520, Thermo Scientific) staining 161 

was performed according to previously published protocol {26364605}. A pathologist 162 

accessed the tissue pathological score in a blind manner and score the sections as previously 163 

described27. 164 

 165 

1.7. FITC-dextran assay 166 

Assessment of epithelial barrier integrity was done as previously described. Mice were 167 

gavaged with 10 mg/mL FITC-dextran (Sigma) at different time points of DSS colitis, but on 168 

the same day of sacrifice. Four hours later, mice were killed and the blood collected for 169 

analysis. Sera were diluted 1:1 v/v in PBS and added to a 96-well plate for fluorescent-based 170 

assays (Invitrogen) and were quantified on a fluorescent plate reader using a 535/587nm 171 

ex/em filter. FITC-dextran concentration was calculated by interpolation to 12-dilution FITC-172 

dextran standard curve. 173 

 174 

1.8. Statistical analyses 175 

Statistical analyses were performed using Prism Software 6.0 (GraphPad). Two-sample 176 

comparisons were compared using two-tailed Student’s t-test. ANOVA with Dunnett’s post-177 

hoc was used for calculation of significance at multiple time points relative to the control (day 178 

0). Non-continuous data was compared using non-parametric Mann-Whitney U test. Results 179 

were considered significant when p < 0.05. 180 

 181 

1.9. Data availability  182 
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All the raw data generated in this study will be deposited in a suitable database (i.e., Gene 183 

Expression Omnibus) upon acceptance of this manuscript. 184 

 185 

 186 
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Figure S3
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Figure S6
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Figure S7
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