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Abstract
Evolutionary biologists have long sought to identify the links between micro and macroevolution to better
understand how biodiversity is created. Despite this pursuit, it remains a challenge to understand how
alele frequency changes correlate with the evolution of morphological diversity, and the build-up of
reproductive isolation amongst taxa. To connect mechanisms of microevolution with patterns of
diversification, we tested the adaptive importance of alleles underlying genetic incompatibilities, and the
consequences for predicting evolutionary trajectories of multiple ecotypes of an Australian wildflower.
Using a quantitative genetics crossing design, we produced an F4 generation Advanced Recombinant
Form (ARF) between four contrasting ecotypes, which we phenotyped in the glasshouse (N=770) and
transplanted into the four natural habitats (N=14,265 seeds), alongside the parental ecotypes. F2 hybrid
breakdown was associated with the loss of extreme phenotypes and habitat-specific genetic variation in
field performance. Genetic trade-offs existed among habitats, but only in axes describing smaller anounts
of genetic variance for fitness. Habitats that showed stronger patterns of adaptive divergence for native
versus foreign ecotypes, also showed lower genetic variance in fitness of the ARF. Integrating data from
the field and glasshouse predicted patterns of selection on morphological traitsin asimilar direction to the
parental ecotypes. Overall, our results provide strong empirical evidence linking ecotype specific alleles
with phenotypic divergence, fitness trade-offs, rapid adaptation and the accumulation of genetic
incompatibilities among recently derived ecotypes. Our data connects microevolutionary change with
macroevolution through adaptive radiation, where selection for environment specific alleles creates rapid

adaptive divergence leading to speciation.
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I ntroduction

Historically, evolutionary biologists have long discussed the link between adaptation and speciation to
understand how natural selection can reconcile microevolutionary genetic changes with

macroevol utionary species diversification. We know that natural selection acts largely upon the additive
effects of genes (Hill et a. 2008), but we also widely accept that species form when interactions among
genes create intrinsic reproductive isolation between diverging lineages (Dobzhansky 1937; Muller
1942). Therefore, adaptation occurs when natural selection increases the frequency of beneficial aleles,
but the role of these same aleles in creating intrinsic reproductive isolation remains unresolved. This gap
in our understanding of evolution is largely due to the difficulty of estimating natural selection in the wild
(Pujol et a. 2018), and connecting it to the accumulation of intrinsic reproductive isolation (Baack et al.
2015). A more detailed understanding of natural selection can identify whether aleles underlying

adaptation are also those contributing to reproductive isolation, and how this leads to adaptive radiation.

Alleles can confer an adaptive advantage in one environment, but with deleterious effects in other
environments, leading to fitness tradeoffs (Anderson et al. 2011; Anderson et al. 2013). If environment
specific alleles evolve in the absence of gene flow, they will be novel in relation to genotypes from
aternative environments and could fail when tested in alternative genetic backgrounds, creating
reproductive isolation (Coyne and Orr 2004). Under this scenario, environment specific alleles can lead to
the evolution of Bateson-Dobzhansky-Muller genetic incompatibilities when incompatible with
aternative genetic backgrounds (Dobzhansky 1937; Muller 1942), meaning alleles underlying adaptive
traits in one ecotype can lead to hybrid breakdown when they are introgressed into an alternative ecotype
(Kondrashov 2003; Navarro and Barton 2003). Using artificial hybridization to simulate gene flow among
divergent ecotypes, we can assess the consequences for phenotypic and genetic variation before and after
genetic incompatibilities arise. If alleles underlying adaptation to contrasting environments concomitantly
create fitness trade-offs and reproductive isolation, we can use changes in environment specific allele

frequencies to connect micro and macroevolution.
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Natural selection is unlikely to affect singletraitsin isolation, favoring beneficial combinations of traits
and the evolution of multivariate phenotypes (Lande 1979; Cheverud 1982). Adaptation will be
constrained when traits share genetic variance and genetic architecture, rather than natural selection,
determines evolutionary trgjectories (Lande and Arnold 1983; Arnold 1992; Schluter 1996). In this way,
adaptive aleles will likely increase in frequency, but only if selection on genetically correlated traits
alow it. Genetic correlations are expected to remain stable, at least in the short term, which would make
rapid adaptive divergence leading to adaptive radiation difficult (Walsh and Blows 2009). However,
recent studies have shown that matrices that capture the genetic relationship among traits (G-matrices)
can potentially evolve rapidly (Doroszuk et al. 2008; Eroukhmanoff and Svensson 2011; Walter et al.
20184), questioning the role of constraints in adaptive radiation. If genetic correlations can evolvein
response to natural selection, then environment specific alele frequency changes can overcome genetic
constraints to promote rapid adaptive divergence, and the path to adaptive radiation will be more
straightforward. However, the consegquences of this evolutionary release might impact the ability of

populations to interbreed, incidentally leading to the evolution of intrinsic reproductive isolation.

We explore the evolutionary connection between adaptation and speciation using the adaptive radiation of
an Australian native wildflower, Senecio pinnatifolius. We focus on four ecotypes within this species
complex including two coastal types found on sandy dunes (Dune ecotype, Senecio pinnatifolius var.
pinnatifolius) and rocky headlands (Headland ecotype, S. pinnatifolius var. maritimus), and two inland
ecotypes that occur in moist sub-tropical rainforest (Tableland ecotype, S pinnatifolius var. serratus) and
dry sclerophyll woodland (Woodland ecotype, S. pinnatifolius var. dissectifolius) (Ali 1969; Radford et
a. 2004). Previous work has shown that these ecotypes arose as a result of adaptation to divergent natural
selection (Melo et a. 2014; Walter et a. 2016), resulting in habitat specific plant morphologies, fitness
trade-offs and immigrant inviability among contrasting habitats (Melo et al. 2014; Richards and Ortiz-
Barrientos 2016; Richards et al. 2016; Walter et al. 2016; Walter et al. 2018a; Walter et al. 2018b).
Artificial hybridization among ecotypes produced vigorous F1 offspring, with hybrid breakdown
observed at the F2 generation as a strong reduction in reproductive capacity, suggesting incompatible

aleles have arisen among ecotypes. Fitness recovery in the subsequent generation suggested genetic
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89  incompatibilities arose as abreakup of coadapted gene complexes (Walter et a. 2016). Combined with
90 evidence of arecent origin (Rodaet al. 2013a), patterns of morphological and reproductive divergence

91  suggest these ecotypes have recently undergone adaptive radiation.

92  Here, we employ a combination of glasshouse and field experiments to explore the implications of

93 artificia hybridization during adaptive radiation. Using a quantitative genetic crossing design among the
94  four ecotypes, we created an F4 generation advanced recombinant form (ARF). Alongside the parental
95  ecotypes, we phenotyped the ARF in the glasshouse and performed a large-scale field transplant across
96 thefour natural habitats. If ecotype specific aleles connect adaptation and speciation during adaptive
97  radiation, we hypothesized that following F2 hybrid breakdown we would observe: 1) Reductionsin

98  phenotypic variance compared to parental ecotypes, 2) Low genetic variance for fitnessin habitats

99  associated with stronger adaptive divergence in parental ecotypes, 3) Reduced genetic trade-offs among
.00 habitats compared to parental ecotypes, and 3) Habitat specific selection gradients that align with the
.01 direction of phenotypic divergencein the parental ecotypes. Testing these predictions, we demonstrate
.02  that adaptive radiation was produced by ecotype specific alleles that created phenotypic divergence,

.03 adaptive genetic variance, genetic incompatibilities and reduced genetic constraints to adaptation.

04 Methods

05  Crossing design

06  To create the ARF we first sampled seeds from one natural population from each of the four ecotypes,
.07  which we germinated and grew at the University of Queensland glasshouses. We sampled seeds for the
.08 Dune and Headland ecotypes at Lennox Head, NSW (-28.783005, 153.594018 and -28.813117,

09  153.605319, respectively), from the Tableland ecotype a O’ Reilley’ s Rainforest Retreat, Qld (-

10 28.230508, 153.135078) and the Woodland ecotype at Upper Brookfield, Qld (-27.479946, 152.824709).
11 At each location, we collected seeds from 24-49 plants separated from each other by at least 10 mto

12 minimize the likelihood of sampling close relatives. Two seeds from each individual sampled were

.13 germinated and grown in the University of Queensland glasshouses, which then formed the base

.14 population for our crossing design, outlined below. To grow plants, we first scarified each seed and
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placed them in glass petri dishes containing moist filter paper. After leaving them in the dark for two days
we transferred the germinated seeds to a 25°C constant temperature growth room with 12h:12h light:dark
photoperiod. After one week, we transferred the seedlings to the glasshouse and transplanted them into
85mm pots containing a mixture of 70% pine bark and 30% coco peat with slow release osmocote
fertilizer and 830g/m* of Suscon Maxi insecticide. We conducted controlled crosses on mature plants by
rubbing two mature flower heads together, labeling the flower heads and collecting the seeds as they

emerged.

We created the ARF ensuring each ecotype contributed equally and ensuring that at each generation (see
Figure 1C), al full-sibling families (hereafter, ‘families’) contributed equally to the next generation. First,
we grew plants for the base population from seeds sampled from the natural populations and performed
crosses among the ecotypes (n = 41-60 individuals/ecotype) to create all combinations of F1 hybrids (n =
12 crossing combinations; n = 20-25 families/cross type). We then mated among all combinations of
crossesin the F1 generation such that all F2 families (n = 24 crossing combinations; n = 17-22 families
/cross type) possessed a grandparent from each of the original parental ecotypes (e.9., FlouneHeadiand X
Fltaieand woodiand)- Given strong reductions in intrinsic fitness was observed in a previous Dune x
Headland F2 hybrid (Walter et al. 2016), we maximized the number of F1 crosses to produce 458 F2
familiesin total. We grew oneindividual from each family. Reductions in fitness were observed as F2
hybrid sterility (42% of F2 individuals were successfully mated compared to >90% in F1 hybrids) and
reduced fertility (49% reduction in seed set compared to F1 hybrids) (Walter et al. 2016). Consequently,
we divided the F2 individuals that produced flowers into three replicate crossing lines to maintain
replicates of the construction of the ARF. We then randomly mated among all F2 individuals within each
line (n = 4-12 families/F2 cross type; total F2 families crossed N = 202) to produce the F3 generation (N
= 259 families), ensuring that each family contributed equally. We then produced the F4 generation by
first growing one individual from each F3 family and randomly designating each individual as asire or
dam. We then mated 115 siresto 114 dams in a full-sibling, half-sibling crossing design to produce 198
families for the F4 generation. The numbers of families and individuals used to create each generation of

the ARF arelisted in Table S1.
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In the following analyses we examine results from two experiments using the ARF. In experiment 1, we
grew the ARF in the glasshouse to estimate genetic variance underlying morphological traits. In
experiment 2, we transplanted seeds of the ARF into the four habitats to compare the fitness of the ARF
with the parental ecotypes. We then used the field fitness of the ARF (experiment 2) to quantify the
genetic covariance in performance among transplant habitats and identify genotype-by-environment
interactions that would indicate genetic trade-offs among habitats. Finally, to quantify differencesin
natural selection among habitats, we combined the data from both experiments and estimated the genetic
covariance between morphological traits in the glasshouse (experiment 1) and field fitness in each habitat

(experiment 2).

Experiment 1. Glasshouse phenotypes

To estimate genetic variance underlying morphological traits we grew four individuals from each full
sibling family of the ARF (n = 198 full-sibling families, total N = 770 individuals) in 30 cell growth trays
containing the same potting media described above. Alongside the ARF we grew four individuals from
~25 full sibling families for each of the parental ecotypes (N = 366 individuals). Plants were grown in a
25°C controlled temperature room with a 12h:12h day:night photoperiod. After eight weeks of growth we
measured plant height and sampled one fully mature leaf for each plant. We used the software ‘Lamina
to analyse the scanned leaf and quantify six variables relating to leaf size and leaf shape (Bylesjo et al.
2008). Using the outputs of Lamina, we quantified leaf morphology using leaf area, leaf area’ / leaf
perimeter? as a measure of leaf complexity, leaf circularity, number of indents standardized by leaf

perimeter, leaf indent width and leaf indent depth.

Experiment 2: Field transplant

Seeds from the F4 generation of the ARF were transplanted into each of the habitats. At each transplant
habitat, we planted 18 seeds from each full-sibling family (n = 198) divided equally amongst six
experimental blocks (habitat n ~ 3,500 seeds, total N = 14,265 seeds). Alongside the ARF we
transplanted seeds from the populations of parental ecotypes used to create the ARF (for each population

n = 180 seedg/habitat) (analysed previously in Walter et al. 2016). See Walter et al. (2016); Walter et al.
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(2018b) for a detailed description of the field experiment. Briefly, we glued each seed to a toothpick
using non-drip glue and planted them in 25mm x 25mm plastic grids in March 2014. Field observations
suggested that seeds in the natural populations can germinate year-round given sufficient rain. Given we
wanted to standardise germination time to estimate post-germination development and survival, to
replicate natural germination conditions we suspended shadecloth (50%) 15cm above each experimental
block and watered them daily for three weeks. During the initial three-week period we measured
emergence and mortality daily. Following the initial three weeks we measured survival and development
at weeks 4, 5, 7 and 9, and then monthly until 20 months at which time there were fewer than 20% of
germinated plants remained, and we ceased the experiment. The measures of fitness we recorded were:
whether each seedling emerged, whether each seedling reached 10 leaves (as a measure of seedling
establishment) and produced a bud (reached maturity). All measures of fitness were collected as binary

data

Implementation of Bayesian models

In the subsequent analyses we implemented Bayesian models to 1) compare field performance
(experiment 2) of the ARF with the parental ecotypes, 2) identify whether genotype-by-environment
interactions create genetic trade-offs among transplant habitats (experiment 2), 3) estimate genetic
(co)variance of morphological traits for the ARF (experiment 1), and 4) estimate the genetic covariance
between morphological traits (experiment 1) and field performance (experiment 2), to identify differences

in natural selection on morphological traits, anong habitats.

All Bayesian models were implemented using R (R Core Team 2016) within the package ‘MCM Cglmm’
(Hadfield 2010). From each model we extracted 1,000 Markov chain Monte Carlo (MCMC) samples,
which provided the posterior distribution for the parameters we were estimating. For each analysis, we
implemented Markov chains of different lengths (listed in Table S2), while ensuring that we included a
sufficient burn-in period and thinning interval to sample the parameters with autocorrelation values of
less than 0.05 and effective sample sizes exceeding 85% of the total number of samples, for al

parameters. We used uninformative parameter expanded priors and checked their sensitivity by re-
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94  implementing all models while adjusting the parameters and ensuring the posterior distribution did not

95  change.

96  For the analyses estimating genetic variance, comparing estimates of genetic variance with zero provides
97  anuninformative test of significance because estimates are restricted to be greater than zero (positive-

98  definite). To create an informative significance test, we re-implemented each model with randomized

99  data, created by shuffling the parental information. For each model implemented on the observed data, we
'00  re-implemented the same model on 1,000 randomizations of the data, and extracted the posterior mean for
'01  each randomization. We then compared the distribution of means from models conducted on the

'02  randomizations, to the mean of the observed posterior distribution. If the mean of the observed

'03  distribution occurred outside the 95% Highest Posterior Density (HPD) interval for the random

'04  digtribution, we took this as evidence that we captured biologically important information for the

'05  comparison of interest. As we were only interested in estimating the posterior mean of models

'06  implemented on each randomization of the data, we could reduce computing time by reducing the total
'07  number of sampling iterations. To do so, we maintained the same burn-in period and sampling interval to
'08 ensurean identical mixing of MCMC chains, reducing only the total number of sampling iterationsto the
!09  number required to obtain a stable estimate of the mean. We calculated the number of sampling iterations
10 required using the models implemented on the observed data, which was different for each of the analyses

'11  outlined below (Table S2).

12 Comparing ARF and ecotype mor phology

13 To compare differences in multivariate phenotype between the ARF and parental ecotypes, we

14  implemented a multivariate analysis of variance (MANOVA) on the seven morphological traits measured
15  inexperiment 1. We first standardized all seven morphological traits to a mean of zero, and standard

16  deviation of one before including them as a multivariate response variable. To test whether the ARF was
17  phenotypically different to each ecotype we conducted a separate MANOV A for each pairwise

18  comparison between the parental ecotypes, and the ARF. We used a bonferroni corrected a-value of

'19  0.0125 (a = 0.05/ n, where n represents the number of tests). To visualize differences among al ecotypes
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20 and the ARF we estimate D, the variance-covariance matrix representing multivariate phenotypic

'21  divergence. To do so, we first conducted another MANOVA that included al ecotypes (but not the ARF).
22 From this, we extracted the sums of squares and cross-product matrices for the ecotypes (SSCPy) and

123 error terms (SSCPe) to calculate their mean-square matrices by dividing by the appropriate degrees of

24 freedom (MSy = SSCP4 / 3; MSE = SSCP: / 365). Using the mean-square matrices we calculated D =
25 (MS4—MS) / nf, where nf represents the number of measured individuals per genotype in an unbalanced
126 design, calculated using equation 9 in Martin et a. (2008). Our D-matrix then represents divergencein
'27  multivariate mean phenotype, among the parental ecotypes, after removing the residual phenotypic

'28  variation. To visualize the phenotypic space occupied by the ARF relative to the parental ecotypes, we
'29  decomposed D into orthogonal axes (eigenvectors) and cal culated the phenotype scores for the first two

'30  eigenvectors for al ecotypes, and the ARF.

'31  Comparing ARF and ecotype field performance
32 Weestimated fitness at early life history stages for the ARF and parental ecotypes transplanted into all
'33  four habitats. To do so, we created adummy variable that represented the ARF and native versus foreign

'34  ecotypesin each habitat. We then used MCM Cglmm to implement the model,
:35 Yijkim = H;i + P; + H; X Pj + Byjy + Lijy + emijiry » (1)

36 wheretransplant habitat (H;), ARF/ecotype (P;) and their interaction (H; X P;) were included as fixed
:37  effects. Blocks within transplant habitat (B ;) and replicate genetic lines within the ARF (L) were
:38  included as random effects, and e,;,; i1y represented the mode! error. We implemented equation 1 with
'39  emergence, seedling establishment and maturity as a multivariate response variable (¥, i ). As such, for

‘40  all ecotypes and the ARF, equation 1 calculated the probability of reaching maturity, conditional on the

'41  previouslife history stages.

‘42 Quantifying divergent natural selection
43 Weused the ARF to investigate differences in natural selection among contrasting natural habitats. To do

'44  so, we conducted two further analyses. First, to identify whether natural selection created genetic trade-

10
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'45  offs among habitats, indicated by a negative genetic covariance among habitats, we analysed field

'46  performance using a genotype-by-environment covariance framework described below. Next, we

'47  examined whether genetic selection on traits occurred in the direction of the native ecotypes. To do so,
48  we combined the morphology datafrom experiment 1, with field performance datain experiment 2 and
'49  used the Robertson-Price Identity to estimate the genetic covariance between morphological traits and
'50 field performance for each transplant habitat. We predicted that if natural selection on morphology

'51  occurred in the direction of the original ecotypes, differences in selection gradients (among habitats)

52 would align with divergence in phenotype mean of the parental ecotypes.

'53  Genetic trade-offs among contrasting habitats
54  Weinvestigated genotype-by-environment (GxE) interactions in the ARF using a character state
'55  approach, where different environments represent different traits (Robinson and Beckerman 2013). To do

'56  so, we used the field performance of the ARF and implemented
\57 Yijkimn = Li + Hj + Siry + Digiy + By + €ngijkimy » (2

'58  wherereplicate genetic line of the ARF (L;) and transplant habitat (H;) were included as fixed effects.
'59  Weincluded sire (Sy ), dam (D) and block within habitat (B, (j)) as random effects, with

60 enjkim) representing the residual error variance. For each term in the random component, we estimated
61  random intercepts for each habitat and the covariance among habitats. As such, for the sire and dam

62 components we estimated a 4x4 covariance matrix representing variance in each habitat, and covariance
'63  among habitats. Information for estimating covariance among habitats is taken from individuals of the
'64  same full-sibling families transplanted in each habitat. Consequently, we implemented equation 2 with a
65  heterogeneous residual covariance matrix. This allowed for different variancesin each habitat, but fixed
66 residual covariances at zero because individuals (seeds) could not be planted in two habitats

'67  simultaneously. We used three separate implementations of equation 2 for emergence, seedling

68  establishment and maturity included as binary univariate response variables (Vijkmn)-

11
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69  From equation 2, Sim represents one quarter of the additive genetic variance in each habitat, and one
'70  quarter of the additive genetic covariance between habitats. We multiplied the sire variance component
71 (Sam) by four and used the posterior mean as our observed estimate of additive genetic (co)variance for
172 field performance among the four habitats. The diagonal of the resulting G-matrices represents additive
73  genetic variance within atransplant habitat, with the off diagonal representing the genetic covariance

'74  between habitats.

75  Divergent natural selection on morphological traits

76 By linking genetic variance underlying morphological traitsin the laboratory, with genetic variance

77 underlying field performance, we sought to quantify differencesin natural selection among the transplant
78  habitats using the Robertson-Price Identity. A requirement for natural selection is genetic variance in both
'79  morphological traits and field performance. The analysis of genetic variance underlying field

'80  performance (described in the previous section) identified significant genetic variance for the ability to
81  reach maturity, in all four transplant habitats (see results). To identify the morphological traits with

'82  genetic variation we used the morphology data from experiment 1 and implemented
83 Yijiimn = Li + Sjry + Digijy + Sy X Drqijy + €ngijiv) » ©)

84  wherereplicate genetic line of the ARF (L;) was included as a fixed effect and sire (S ), dam (D ;)
:85  andtheir interaction (S ) X Dy(j,) Were random effects, with e,, ;) astheresidual variance. We

'86  implemented equation 3 with plant height and six leaf morphology traits as a multivariate response

87  variable (yjj). To prevent traits on different scales affecting the analysis, we centered all traits to a mean
'88  of zero and standardized to a standard deviation of one prior to analysis. We then calculated the additive
'!89  genetic (co)variance matrix as four times the sire variance component. As traits were standardized prior to
'90  analysis, genetic variances represent heritabilities. We found only four traits with heritabilities greater

'91  than 0.1 (plant height, leaf area, leaf perimeter” / area® and leaf indent width; see Table S3), which we

'92  then combined with field performance to study natural selection in the subsequent analyses, described

'93  below.

12
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'94  We egtimated the genetic covariance between the morphological traits and field performance by

'95  implementing the Robertson-Price Identity

196 R=s, =cov(w,z), (4)

197 where the response to selection (R) is analogous to the selection differential (Sg), calculated as the genetic
98  covariance between atrait (2) and fitness (W). Equation 4 then generalizes to multivariate form by

99 including more phenotypic traits and estimating a genetic variance-covariance matrix (G), with fitness as
00 thefinal trait. In this framework, sy generalizes to the vector of selection gradients (sy) representing the
01 multivariate response to selection. Estimating the response to selection in this way includes both direct
02 andindirect selection. To isolate the effect of direct selection on phenotypic responses, we can calculate

303 the genetic selection gradient by combining G and sy with
304 By = G'sg, (5)

305 where Bz now represents a vector of genetic selection gradients (Lande and Arnold 1983; Rausher 1992),

106 after removing the effect of genetic correlations among traits.

07 To estimate the predicted response to selection (sy) in the ARF we estimated the (co)variance between the

08  four morphology traits and field performance by implementing
309 Yijkim = Li + Sjax) + Dreijy + Sjan) X Diqijy + Bi + €mgijiry » (6)

310 wherereplicate genetic line (L;) was the only fixed effect. Sire (S;x)), dam (Dy;;y) and their interaction
11 (Sjan) X Dy(ijy) wereincluded as random effects along with block within habitat (B;). The multivariate
312 response variable (¥;xim) included four phenotypic traits as well as ability to reach maturity in each

313 habitat. Fitness and morphology was measured on separate individuals (field versus glasshouse

114 experiments), and so similar to equation 2, we estimated a heterogeneous residual covariance matrix.

315 Multiplying the sire variance component (S;x)) by four (from equation 6) gave the additive genetic
16 variance-covariance matrix (G). Elements in the first four rows and columns represented G among

17 morphological traits. Covariance elements in the fifth column (and row) denote the genetic covariance
13


https://doi.org/10.1101/520809

bioRxiv preprint doi: https://doi.org/10.1101/520809; this version posted February 7, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

between each trait and fitness (Sy), with genetic variance in fitness in the final element (fifth row, fifth
column); see Stinchcombe et a. (2014) for details. We used four separate implementations of equation 6
for field performance as the ability to reach maturity in each of the four transplant habitats. We calculated
the additive genetic (co)variance matrix as four times the sire variance component and extracted sy as the
vector of covariances between morphological traits and field performance (rows oneto four of the fifth

column).

To identify whether we captured biologically meaningful differences in selection among habitats, we
conducted two analyses. First, s; and B, being vectors, we calculated the dot product (representing vector
length) of the observed and random matrices. If the observed length was greater than the length calculated
from the random distribution, we took this as evidence we detected biologically meaningful estimates of
selection for a given habitat (Stinchcombe et al. 2014; Walsh and Lynch 2018). Second, to quantify the

differences in sy among the four transplant habitats we estimated variance is selection gradients using

0%(Sg1) O0(S51,Sg2) - O(Sg1, Sgn)
7 = 0%(sg2) ™ : ) (7)
0% (Sgn)
where Z then represents the among-habitat variance in sy for the nth trait along the diagonal. The off-
diagonal then contains the covariance in sy among habitats, for each bivariate trait combination
(Chenoweth et al. 2010). In the same way, we used equation 7 to calculate B, the among-habitat
(co)variancein B,. Comparing the eigenval ues of observed and random (for both B and Z) provided tests
of significance. Observed eigenvalues with values greater than the random distribution of eigenvalues

suggested we captured greater among-habitat differences in selection than expected by random sampling.
Results

Comparing ARF and ecotype mor phology
Ecotypes showed strong differencesin leaf morphology (Figure 1A), with the ARF exhibiting large
variation, intermediate to the parental ecotypes (Figure 1B). Pairwise MANOV As showed the ARF was

significantly different to al ecotypes (Dune: Wilks' % =0.71, F; g5; = 50.782, P = <0.001; Headland:
14
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Wilks A = 0.64, F1gs3 = 69.747, P =<0.001; Tableland: Wilks' A = 0.38, F1 g = 192.36, P = <0.001;
Woodland: Wilks' A = 0.22, F; gs4 = 445.1, P = <0.001). The MANOVA conducted on only the parental
ecotypes described a significant difference among ecotypes in multivariate mean phenotype (Wilks' A =
0.03, F3 362 = 117.86, P = <0.001), where differences among ecotypes captured 64% of the total variance.
The first eigenvector of D (dmax) described 84% of phenotypic divergence mostly created by phenotypic
differences between the Tableland and Headland ecotypes (Figure 1D). The second eigenvector (d,)
described 14% of variation in multivariate phenotype, describing differences between the Woodland and
Tableland ecotypes (Figure 1D). The ARF occupied an areain phenotypic space close to the Dune
ecotype, and intermediate between the Headland, Tableland and Woodland ecotypes. However, the ARF
mean was not similar to that of the overall mean of all ecotypes, but exhibited high phenotypic variance
that appeared to be missing some of the extreme phenotypes, especially from the Tableland and

Woodland ecotypes (Figure 1D).

15
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Figure 1: A) Ecotypes vary dramatically in leaf morphology. B) The ARF exhibited large variation in leaf morphology,
visually intermediate among the original ecotypes. C) The ARF was created by equally mating among all ecotypes. D) The
distribution of ecotype and ARF scores for the first two axes of D showing the ARF (grey) occupying an areain phenotypic
space similar to the mean of all ecotypes (black), but lacking extreme phenotypes, especially of the Tableland and Woodland

ecotypes.
Comparing ARF and ecotype field performance

Given ecotypes have shown adaptation to their contrasting habitats (Walter et al. 2016; Walter et al.
2018b), we expected that as an intermediate form, the ARF would show intermediate performance
between native and foreign populations. We found the performance of the ARF was similar to the native
ecotypes for seedling establishment and maturity (Figure 2), suggesting hybrid vigor despite several

generations of recombination.
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Figure 2: Field performance of the ARF compared to foreign (F) and native (N) ecotypesin each transplant habitat. Fitness

measured as the probability of reaching A) seedling establishment, and B) maturity. Credible intervals represent 95% HPD

intervals.
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Genetic trade-offs among contrasting habitats

If habitat-specific natural selection creates genetic trade-offs between contrasting habitats, we expected
the ARF to show genetic variance for field fitness, and negative genetic covariance between contrasting
habitats. However, given the ARF lacked the extreme phenotypes of the Headland, Tableland and
Woodland ecotypes (Figure 1), and exhibited relatively high field performance (Figure 2), we might
expect low genetic variance associated with either zero genetic covariance or a positive genetic
covariance between habitats. We found that across the four habitats, additive genetic variance increased
aslife history stages progressed (Figure 3). Observed estimates of genetic variance in field performance
were within the random distribution at emergence, but were greater than the random distribution for
maturity (Figure 3). In the headland and tableland habitats we detected lower genetic variance than

expected by chance for seedling establishment.

17
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Figure 3: Genetic variance for field performancein the ARF for each habitat (coloured circles and lines) and at each life
history stage. Filled circles represent the observed estimates of genetic variance, with dashed lines and unfilled circles
representing the random distribution. Additive genetic variance in fitness increased through life history. Credible intervals
represent 95% HPD intervals.

Decomposing the genetic covariance matrix described orthogonal axes of genetic variation underlying
field fitness. Decomposing the matrix for each life history stage, we found the first three eigenvectors for
maturity described more genetic variance than expected under random sampling (Figure 4). Interpreting
the loadings of each eigenvector reveal how each habitat contributes to describing the genetic variance in
fitness quantified by that eigenvector. Habitats with loadings of the same sign describe shared genetic
variance for fitness, whereas loadings of different signs describe differencesin genetic variance and
provide evidence of fitness trade-offs. We found all habitats contributed equally to describing genetic
variance underlying the first eigenvector, suggesting it described heterosis or shared genetic variation
needed to function in stressful environments (Table 1). However, eigenvectors two and three provided
evidence of genetic tradeoffs, describing genetic variance in fitness that differed between the woodland
and dune ecotypes (&;), and between the tableland, and the dune and woodland transplant habitats (es;
Table 1). Eigenvector 4 did not describe biologically meaningful genetic variance (Figure 4), but

described differences in genetic variance between the headland, and dune and tableland habitats. The
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199  posterior mean G-matrices and genetic correlations for field performance are located in supplementary
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102 Figure 4: Comparing the amount of genetic variance described by eigenvectors representing the observed (filled circles)
103 versus random matrices (unfilled circles and dashed lines), for each life history stage. Gray bars represent the amount of
104 genetic variance in the randomized matrices described by the observed eigenvectors. Only the first three eigenvectors for
I

05 maturity described more genetic variance than expected by random sampling. Credible intervals represent 95% HPD intervals.

06  Table 1: Eigenanalysis of the additive genetic (co)variance matrix for field performance at maturity. Loadingsin bold are
l07  greater than 0.25 to aid interpretation. HPD represents the observed 95% HPD credible intervals.

Eigenvectors e & €; €
Eigenvalue 2492 0782 0248 0.116

0.837- 0.036- 0.037- 0.011-
4179 1984 0569 0.267

Proportion 0685 0215 0.068 0.032

HPD

Dune 056 061 045 -0.34
£ Headland 034 022 -004 091
® Tablland 054 -002 -081 -0.23

[Woodland ~ 053 -0.76 037  0.00

109  Overal, our results showed strong patterns of adaptive divergence (Figure 2), and although there appears

t10  to be acommon genetic basis to fitnessin all environments (e;; Table 1) we also detected genetic trade-
t11  offsfor fitness among certain habitats (Table 1). Despite strong adaptive divergencein Figure 2, the

12 headland and tableland habitats exhibited weaker additive genetic variance for fitness (Figure 5), and
t13  weaker genetic trade-offs with other environments (Table 1), when compared to the dune and woodland.

t14  Thissuggested alleles lost during F2 hybrid breakdown contributed to both genetic incompatibilities and
19
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adaptive genetic variation that was lost in the ARF, reducing genetic variance for field performancein
certain environments and producing weaker genetic trade-offs than expected. To test this, for each habitat
we compared the strength of adaptive divergence (Figure 2; native ecotype performance — foreign ecotype
performance) against the level of genetic variance exhibited by the ARF. As predicted, we found a strong
negative association for seedling establishment and a weaker negative association for maturity (Figure 5),
suggesting alleles associated with strong adaptive divergence were also responsible for genetic

incompatibilities.

Level of genetic variance in ARF fitness

14 -‘T\ J
; 1\\
| -
0 -
0.0 01 0.2 03 0.4
Strength of adaptive divergence

Habitat ® Dune ® Headland ® Tableland ® Woodland

Figure5: Stronger adaptive divergence was negatively associated with the level of genetic variance. The strength of adaptive
divergence measured as the difference in fitness between the native ecotype and foreign parental ecotypes, versus the level of
genetic variance in the ARF, for the same habitat. Solid circles and lines represent seedling establishment, triangles and dashed
lines represent the ability to reach maturity. Credible intervals represent 95% HPD intervals. Estimating a regression slope for
each MCMC iteration showed a significant negative association at 88% HPD for seedling establishment, but a non-significant
relationship for maturity.

Natural selection on morphological traits

To quantify selection in each habitat we calculated sy as the genetic covariance between morphological
traits measured in the glasshouse, and field performance measured in each of the four transplant habitats.
We then isolated direct selection by calculating B, the genetic selection gradient for each habitat.
Comparing the length of observed and random s; and 8, suggested we captured biologically meaningful
selection within each habitat (Figure S5A). To quantify differences in selection among habitats we
estimated B and Z as the among-habitat (co)variance in selection vectors. Comparison of observed and

random eigenvalues showed that both selection vectors exhibited greater differences among habitats than
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expected by random sampling (Figure S5B), suggesting differences in our observed selection vectors

described biologically meaningful differencesin natural selection among transplant habitats.

If differences in natural selection among the four habitats occurred in the direction of adaptive evolution,
we would expect differencesin s, but not g, to align with divergence in mean phenotype of the parental
ecotypes. Eigenanalyis of B and Z quantifies the axes that describe differences among the original
selection vectors, with the first axis for each matrix representing 83% (HPD 56-98%) and 81% (HPD 55-
98%) of the total variance, respectively. We tested whether the first axis from each selection vector
aigned with dmax, the axis describing the greatest difference in multivariate phenotype mean. To do so,
we calculated the angle between the first eigenvector of B and Z, and dmax. We found the alignment
between Z and D, but not B, was closer than expected with random sampling (Figure 6A). To
complement this analysis, we conducted a more extensive analysis using a covariance tensor approach,
which is provided in supplementary material. Results obtained from both analyses matched closely,
suggesting the response to selection, but not the direction of selection, aligned with divergence in parental

ecotype morphology.

A) 150- . B)

_____
125- ! |
, d2

N N
AN

max

=
Q
o

/

Angletod
3t
Red

504

'
1
ey

25

B z
Figure 6: Differencesin s;, but not £, aligned with dma, but differencesin gy aligned with d,. A) The angle between the first
eigenvector of Z, and dn. Was closer than expected by random sampling, but the first eigenvector of B did not show aclose
alignment with d..,. Credible intervals represent 90% HPD intervals. B) Two-dimensional schematic approximately
representing the orientation of B and Z in relation to D, and diax.

Discussion

Here, we have used ecotype-specific genetic variation to connect adaptation and speciation during
adaptive radiation. We found that an ARF exhibited a multivariate phenotype intermediate to the four
parental ecotypes, but was lacking in much of the phenotypic variation of the parental ecotypes. Genetic

variance for fitness in the ARF was lower when transplanted into habitats associated with stronger
21
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differences between native and foreign parental fitness. Genetic trade-offs in field performance among
habitats were only observed in axes describing smaller amounts of genetic variance underlying field
fitness. Despite only one generation of selection, among-habitat differencesin the response to selection
aigned with the direction of morphological divergence of the original ecotypes, but only when genetic
correlations were removed. Together, our results provide empirical evidence suggesting interactions
between genetic incompatibilities and divergent natural selection created adaptive radiation of an

Australian wildflower into four contrasting habitats.

While there is abundant evidence implicating divergent natural selection in the accumulation of extrinsic
reproductive barriers such asimmigrant inviability and ecologically dependent postzygotic isolation
(reviewed in Baack et al. 2015), the contribution of adaptation to the evolution of genetic
incompatibilities during population divergence remains unresolved (Baack et a. 2015). Many genes
underlying postzygotic isolation show the signature of past rapid evolution, but connecting genes
underlying both adaptation and reproductive isolation are rare (Presgraves 2010). In Mimulus guttatus, a
gene underlying copper tolerance was also associated with genetic incompatibilities (Macnair and
Christie 1983). Our results further clarify the connection between adaptation and the evolution of genetic
incompatibilities by showing that intrinsic reproductive isolation in F2 hybrids was associated with the
loss of extreme phenotypic variation, and the alleles underlying these incompatibilities were likely

adaptive.

We suggest that environment-specific dominant alleles link extreme phenotypes with natural selection
and reproductive isolation to create adaptive radiation in these contrasting ecotypes. Thisis because
heterozygotes (with alleles from different ecotypes) at one or more loci underlie F2 hybrid breakdown,
creating negative additive x dominant or dominant x dominant interactions (Demuth and Wade 2005;
Willett 2006), suggesting genetic incompatibilities at the F2 generation are largely produced by dominant
aleles (e.g., Sweigart et al. 2006; Latta et al. 2007). Our F2 hybrid was constructed by mating between
two completely unrelated F1 crosses (Figure 1C; e.9., Flpune Headiand X Fltableland woodiand), iNCreasing

heterozgosity compared to traditional F2 crosses between two populations, and reducing the likelihood of
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{87  homozygous recessive loci (detailed explanation of the crossing design is located in supplementary
88  material). Dominant alleles will be more visible to selection, allowing them to increasing in frequency
89  rapidly and create rapid adaptive divergence. Whether these alleles then contribute to the evolution of

‘90  stronger genetic incompatibilities (e.g., F1 hybrid breakdown) remains unexplored.

91  F2 hybrid breakdown indicates population divergence as a build-up of coadapted gene complexes, created
192 when selection assembles beneficial combinations of alleles (Cutter 2012; Corbett-Detig et al. 2013). In
193 thissystem, it islikely the evolution of coadapted gene complexes were responsible for the rise of

‘94 intrinsic reproductive isolation during the early stages of speciation (Corbett-Detig et al. 2013). We can
‘95  then view the evolution of these ecotypes from a perspective where selection acts upon additive genetic
196  variation by increasing allele frequencies at independent loci (Hill et al. 2008), but limited recombination
197  dueto small population size, maladaptive gene flow or strong selection creates coadapted gene complexes
98  (Mayr 1954; Carson and Templeton 1984; Ortiz-Barrientos et al. 2016). The strength of coadaptation

199  within apopulation will then determine how genetic incompatibilities arise among populations and lead

00  to speciation.

01  The strength of divergence (and consequently, reproductive isolation) among coadapted gene complexes
02 will be population and environment specific, and depend on the interaction between mutation, migration,
03 drift and selection. Previous studies of Dune-Headland parapatric pairs along the Australian coastline

04 have shown convergent evolution, suggesting multiple independent origins of these ecotypes (Roda et al.
05 2013b; Rodaet al. 2017). If the same dominant alleles important for adaptation to these contrasting

06 environments are repeatedly selected in the same environment, they may form coadapted gene complexes
07 within populations of each environment, with drift or local adaptation causing differences among

08  localities (Goodnight 2000). Whether locally adapted coadapted gene complexes between locations of the
09  same species will give rise to reproductive isolation remains unexplored, but could provide important

10 insightsinto the relationship between adaptation and divergence across a heterogeneous landscape.

11 Genetic variance for life history and fitness traits is often low (e.g., McFarlane et al. 2014), and often

12 decreases with ontogeny (e.g., Aguirre et al. 2014). In contrast, we showed increased genetic variance
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13 with development, results similar to recent studies in the laboratory (Styga et al. 2018). Changesin

14 genetic variance underlying fitness have profound implications for understanding adaptation and

15 responses to environmental change (Sgro and Hoffmann 2004). If genetic correlations among traits under
16 selection change during ontogeny, the effects of selection will not be linear as organisms develop and will
17  depend on changes in the combination of genetic variation and selection pressures over time. As different
18  trait combinations will be available to selection at different developmental points, patterns of adaptation
19  will be determined by the combination of traits visible when selection is strong (Bourret et a. 2017; Styga
20 et al. 2018). Consequently, it will be important to consider the relationship between changes in genetic

21 correlations and changes in natural selection, as development proceeds.

22 Thealignment of phenotypic divergence (D) with differences in the response to selection (sg), but not the
123 genetic selection gradients (f), suggests that constraints to adaptation would exist if the ARF was left to
24 evolveinthe natural environments. Thisis because after one generation of selection, the mean phenotype
25 was expected to follow divergence towards the parental ecotypes, but selection in the absence of genetic
26 correlations among traits was in a direction different to phenotypic divergence. We must be circumspect
27 inthisinterpretation because estimation of f, assumes we have included all traits under selection,

128  whereas sy does not suffer from the same limitation (Morrissey et al. 2012; Stinchcombe et al. 2014).

29 However, this caveat applies to predicting future natural selection, and is lessimportant for our analyses
30 because we are testing whether genetic architecture (sg) or the directions of selection (), predicts the

31 result of past evolutionary divergence (D).

32 Previously we showed that genetic variance has evolved, and diverged among these ecotypes, which

33 aligned with the direction of morphological evolution (Walter et a. 2018a). This suggested that genetic
34 constraints have limited capacity to constrain adaptation during adaptive radiation, or genetic variance
35  can evolve to reduce genetic constraints as evolution proceeds. Given we observed ecotypic divergence in
36 the genetic relationship among traits (Walter et al. 2018a), but also genetic constraints in the ARF after
37  ecotype-specific adaptive alleles were lost, we believe the loss of ecotype-specific adaptive alleles has re-

38  created the constraints present during the very early stages of adaptive divergence. During the early stages
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39  of adaptive radiation, adaptation will be constrained to follow gmax (Lande and Arnold 1983; Arnold

40 1992; Schluter 1996). As environment specific adaptive alleles increase in frequency, gmax atersto aign
41 with the phenotypic optimum and evolution is determined by the long-term correlated response to

42 selection (Zeng 1988). Thus, adaptive radiation occurs when environment-specific alelesincrease in
43 frequency, causing changes in the distribution of genetic variance and ameliorates genetic constraints as

44 adaptive divergence proceeds.

45 In conclusion, we identified patterns of phenotypic and adaptive divergence among recently derived

46 ecotypes, created by the accumulation of environment-specific allelesin response to natural selection. We
47 show that these alleles likely created ecotype-specific adaptive phenotypes and fitness trade-offs between
48  habitats that also lead to genetic incompatibilities between divergent ecotypes and reduced genetic

49 constraints to adaptation in response to divergent natural selection. Through these experiments we

50  identify the connection between microevolutionary genetic changes and macroevolutionary

51 diversification in the context of an adaptive radiation.
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