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ABSTRACT 
Cyclic and branch cyclic peptides (cyclopeptides) represent an important class of 

bioactive natural products that include many antibiotics and anti-tumor compounds. 

However, little is known about cyclopeptides in the human gut, despite the fact that 

humans are constantly exposed to them. To address this bottleneck, we developed the 

CycloNovo algorithm for de novo cyclopeptide sequencing that employs de Bruijn 

graphs, the workhorse of DNA sequencing algorithms. CycloNovo reconstructed many 

new cyclopeptides that we validated with transcriptome, metagenome, and genome 

mining analyses. Our benchmarking revealed a vast hidden cyclopeptidome in the human 

gut and other environments and suggested that CycloNovo offers a much-needed step-

change for cyclopeptide discovery. Furthermore, CycloNovo revealed a wealth of anti-

microbial cyclopeptides from food that survive the complete human gastrointestinal tract, 

raising the question of how these cyclopeptides might affect the human microbiome. 

SIGNIFICANCE  

The golden age of antibiotics was followed by a decline in the pace of antibiotics 

discovery in the 1990s. The key prerequisite for the resurgence of antibiotics research is 

the development of a computational discovery pipeline for antibiotics sequencing. We 

describe such pipeline for cyclic and branch cyclic peptides (cyclopeptides) that represent 

an important class of bioactive natural products such as antibiotics and anti-tumor 

compounds. Our CycloNovo algorithm for cyclopeptide sequencing reconstructed many 

new cyclopeptides that we validated with transcriptome, metagenome, and genome 

mining analyses. CycloNovo revealed a wealth of anti-microbial cyclopeptides from food 

that survive the complete human gastrointestinal tract, raising the question of how these 

cyclopeptides might affect the human microbiome. 
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INTRODUCTION 

The golden age of antibiotics was followed by a decline in the pace of antibiotics 

discovery in the 1990s. However, antibiotics and other natural products are again at the 

center of attention as exemplified by the recent discovery of teixobactin1. The key 

prerequisite for the resurgence of antibiotics research is the development of 

computational discovery pipelines2 such as the Global Natural Products Social (GNPS) 

molecular networking3, Dereplicator4, and VarQuest5. The GNPS project already 

accumulated over a billion mass spectra, an untapped resource for discovery of new 

antibiotics. However, new algorithms are needed for the GNPS project to realize its 

promise for antibiotics discovery. Currently, the GNPS network is mainly used for 

identification of previously discovered natural products and their analogs, emphasizing 

the need for algorithms for discovery of novel natural products. 

This study focuses on cyclopeptides, an important class of bioactive natural products with 

an unparalleled track record in pharmacology: many antibiotics as well as anti-tumor 

agents, immunosuppressors, and toxins are cyclopeptides. Cyclopeptide sequencing from 

tandem mass spectra is challenging as their propensity to break at all pairs of points in 

their cyclic backbone gives a far more complex series of ions than in linear peptides. 

Cyclopeptides are divided into cyclic Non-Ribosomal Peptides (NRPs) and cyclic 

Ribosomally synthesized and Posttranslationally modified Peptides (RiPPs). NRPs are 

built from 300 different naturally occurring amino acids according to the complex non-

ribosomal code6 rather than the genetic code. RiPPs are encoded using the genetic code 

and so built from the twenty proteinogenic amino acids, which however are subjected to 

numerous post-translational modifications. 

The discovery of the cyclopeptide gramicidin S in 1942 (first antibiotic used for treating 

soldiers during the World War II) led to two Nobel prizes and has been followed by the 

discovery of ≈400 families of cyclopeptides (cyclofamilies) in the last 75 years5. A 

relatively small number of known cyclofamilies reflects the experimental and 

computational challenges in cyclopeptide discovery. Moreover, the question of how many 

cyclofamilies remained below the radar of previous studies (even though their spectra 

have already been deposited to public databases!) remains open.   

To answer this question, we consider the problem of recognizing cyclospectra (tandem 

mass spectra that originated from cyclopeptides) that can be matched against biosynthetic 

genes using various genome mining and peptidogenomics tools7,8. These tools typically 

generate a huge database of putative cyclopeptides, making it prohibitively time-

consuming to search large spectral datasets against such databases. Fast algorithms for 

recognizing cyclospectra are critical for genome mining as they greatly reduce the set of 

spectra that need to be matched against databases of putative cyclopeptides. 

Bandeira et al.9 introduced the concept of spectral networks that reveal the spectra of 

related peptides without knowing their amino acid sequences. Nodes in a spectral network 

correspond to spectra while edges connect spectral pairs, i.e. spectra of peptides differing 

by a single modification or a mutation (see Supplementary Note “Surugamide spectral 

network.”) Ideally, each connected component of a spectral network corresponds to a 

cyclofamily10 representing a set of similar cyclopeptides.  Although spectral networks of 

various GNPS datasets have become the workhorse of the cyclopeptide studies, they 

typically contain false positive edges that make analysis of cyclofamilies challenging3. 

Moreover, constructing the spectral network of all GNPS spectra remains an open 

algorithmic problem.   
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Recognition of cyclospectra creates a possibility to construct a small cyclospectral sub-

network of the entire GNPS network and to evaluate the number of cyclofamilies in the 

GNPS network as the number of connected components in this sub-network. This 

analysis revealed that many cyclopeptides evaded detection in previous studies and that 

the known cyclopeptides represent the tip of the iceberg of cyclopeptides that are waiting 

to be decoded from the GNPS network. 

We distinguish between cyclopeptide identification (identifying cyclopeptides by 

matching their spectra against databases of known cyclopeptides11) and de novo 

cyclopeptide sequencing (determining the cyclopeptide sequence from a spectrum alone). 

Although recent studies have made progress towards cyclopeptide identification4,5,12,13, 

the previously developed cyclopeptide sequencing algorithms14–17 are rarely used11 

because they are rather inaccurate, too slow for analyzing high-throughput spectral 

datasets, and cannot distinguish cyclopeptides from other compounds. 

Here we describe CycloNovo, a fast cyclopeptide sequencing algorithm based on the 

concept of the de Bruijn graph of a spectrum, a compact representation of putative k-mers 

(strings formed by k consecutive amino acids) in an unknown cyclopeptide (see 

Supplementary Note “An example of the de Bruijn graph.”) Although de Bruijn graphs 

represent the workhorse of DNA sequencing18, they have not previously been applied to 

cyclopeptide sequencing. We demonstrate that CycloNovo enables high-throughput 

analysis of cyclopeptides in large spectral datasets and sequence many cyclopeptides in 

diverse samples that include marine, soil, and human gut bacterial communities.  

RESULTS 

To illustrate how CycloNovo works, we used a spectrum of the cyclopeptide 

surugamide A19 (referred to as surugamide hereon) with the amino acid sequence 

AIIKIFLI (Figure 1). 

 
TheoreticalSpectrum 

(Surugamide) 

 71 113 128 147 184 226 241 260 297 354 373 388 410 425 444 

467 486 501 523 538 557 614 651 670 685 727 764 783 798 840 

911 

SpectrumSurugamide  55  61  85  85  85 101 114 126 128 128 154 156 173 184 196 

205 211 218 224 241 260 294 294 297 297 308 312 321 323 325 

373 373 373 388 388 425 444 445 445 455 473 477 486 486 501 

520 521 541 541 559 572 573 578 578 614 627 629 633 642 654 

669 675 685 687 712 726 727 756 756 763 783 799 800 809 812 

825 828 849 866 869 911 

Figure 1. Theoretical and experimental spectra of surugamide. (Top left) Diagram of the 

surugamide from a marine Streptomyces CNQ329 (mass 911.62 Da). Each color represents an 

amino acid (the numbers on the outer edge are the nominal masses of amino acids in Daltons). 
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Each chord corresponds to a fragment of surugamide. The solid chords represent the fragments in 

TheoreticalSpectrum(Surugamide) whose masses match masses in the experimental spectrum 

SpectrumSurugamide. The numbers on solid chords show the nominal masses of the corresponding 

fragment, e.g., the chord labeled 297 corresponds to the fragment Ile-Ile-Ala of mass 297 Da. 

Each chord corresponds either to a single mass x or two masses x and mass(Spectrum)-x (in the 

latter case the chord is shown in bold). Given a set of fragments with the same mass, we show one 

of them (arbitrarily chosen) by a solid chord and the others by dashed chords. For example, one of 

two fragments with the same integer mass 241 (Ile-Lys and Lys-Ile in clockwise order), is shown 

by a solid chord and another by a dashed chord. (Top right) The experimental spectrum of 

surugamide (SpectrumSurugamide) with 82 peaks (GNPS ID MSV000078839). The y-axis in the 

SpectrumSurugamide shows the ion intensities as the percentage of the intensity of the highest 

intensity peak. Blue peaks represent masses shared with TheoreticalSpectrum(Surugamide) for 

the error threshold ε =0.015 Da. (Bottom) The theoretical and (pre-processed) experimental 

spectra for surugamide rounded to the nearest integer (this rounding results in the repetitive 

integers in the list). Masses in the pre-processed experimental spectrum are reduced by the mass 

of hydrogen mH≈1.0078 Da. A mass in the theoretical spectrum is shared with a mass in the 

experimental spectrum if they are within the error threshold. The numbers in bold represent 13 

shared masses. 

 

Theoretical and experimental spectra. Given an amino acid string, its mass is defined 

as the sum of masses of its amino acids. Given a cyclopeptide Peptide, its theoretical 

spectrum TheoreticalSpectrum(Peptide) is the set of masses of all substrings of Peptide 

(Figure 1). For example, TheoreticalSpectrum(AGCD) contains masses of A, G, C, D, 

AG, GC, CD, DA, AGC, GCD, CDA, DAG, and AGCD. Note that if multiple fragments 

have the same mass, they contribute a single mass to the theoretical spectrum.  

An experimental spectrum is a list of peaks, where each peak is characterized by its 

intensity and m/z (m and z represent the mass and the charge of the ion corresponding to 

the peak). For simplicity, we will represent a pre-processed spectrum as an increasing 

sequence of numbers Spectrum={s1, …, sn}, assuming that all peaks in the spectrum have 

charge 1 and ignoring intensities (see Supplementary Note: “Preprocessing spectra.”) We 

estimate the PeptideMass of the cyclopeptide that generated Spectrum based on the 

precursor mass and the charge of Spectrum. We define the symmetric version of Spectrum 

(denoted Spectrum*) as a spectrum that, in addition to all masses in Spectrum, contains 

PeptideMass-s for each mass s in Spectrum. 

Scoring Peptide-Spectrum Matches. A mass s in a (pre-processed) experimental 

spectrum Spectrum matches a mass s’ in TheoreticalSpectrum(Peptide) if s is “equal” to 

s’. By “equal” we mean “approximately equal” with error below the error threshold 𝜀 (all 

default values are specified in the Supplementary Note “CycloNovo parameters.”) The 

score between Peptide and Spectrum (denoted score(Peptide, Spectrum)  is defined as the 

number of matches between masses in Spectrum and masses in 

TheoreticalSpectrum(Peptide). Although CycloNovo uses accurate masses, examples 

below use nominal masses for simplicity. 

Figure 1 illustrates that score(Surugamide, SpectrumSurugamide)=13. For a linear peptide 

Peptide, score(Peptide, Spectrum) is the number of matches between masses of all linear 

substrings of Peptide and all masses in Spectrum. For example, score(ILFIK, 

SpectrumSurugamide)=7 because the theoretical spectrum of the linear peptide ILFIK has 7 

shared masses with SpectrumSurugamide corresponding to 7 chords within the ILFIK 

segment in Figure 1. These chords correspond to the following substrings: K (nominal 

mass 128), IL (226), IK (241), LF (260), LFI (373), LFIK (501), and ILFIK (614).  
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Cyclopeptidic amino acids. Gurevich et al.5 combined all currently known peptidic 

natural products into a single PNPDatabase. This database contains 1,257 cyclopeptides 

(387 cyclofamilies) that we refer to as CyclopeptideDatabase. We formed the set of 

cyclopeptidic amino acids (i.e., amino acids that occur in many cyclopeptides) by 

considering 25 most frequent amino acids in cyclopeptides from CyclopeptideDatabase 

and extending this list to include all proteinogenic amino acids and some common amino 

acids in RiPPs (see Supplementary Note “Cyclopeptidic amino acids”). 255 out of 1,257 

cyclopeptides in the CyclopeptideDatabase include only cyclopeptidic amino acids. 

Spectral convolution. The convolution of a spectrum is the set of all pairwise differences 

between its masses15. Given a mass a, the convolution of Spectrum with offset a (denoted 

convolution(Spectrum, a)) is defined as the number of masses in the convolution equal to 

a (with error up to ε). As shown by Ng et al.15, the value convolution(Spectrum, a) is 

expected to be high if a is the mass of an amino acid in a cyclopeptide that gave rise to 

Spectrum. Thus, offsets with high convolutions reveal the masses of amino acids in an 

unknown cyclopeptide that gave rise to an experimental spectrum.  

To account for measurement errors, we cluster the masses in the convolution using single 

linkage clustering by combining pairs of masses in a cluster if they are less than 𝜀 apart.  

We define the cluster mass as the median mass of its members, and cluster multiplicity as 

the number of elements in the cluster. We call a cluster cyclopeptidic if one of its 

elements is within 𝜀 of the mass of a cyclopeptidic amino acid. Since high-multiplicity 

clusters reveal amino acids in the unknown cyclopeptide that gave rise to an experimental 

spectrum, we use them to generate the set of putative amino acids in an unknown 

cyclopeptide15. See Supplementary Note “Analyzing spectral convolution” for more 

details. 

CycloNovo outline. Given an experimental spectrum Spectrum, the Cyclopeptide 

Sequencing Problem refers to finding a cyclopeptide Peptide that maximizes 

score(Peptide, Spectrum). Figure 2 illustrates the CycloNovo pipeline for solving this 

problem: 

• Recognizing cyclospectra. Natural product researchers use Marfey’s analysis for 

inferring the amino acid composition of an unknown peptide. However, since 

Marfey’s analysis requires a purified peptide and has a number of limitations20, 

we describe its in silico alternative for deriving an approximate amino acid 

composition of a cyclopeptide that gave rise to a given spectrum (see Methods 

section). If applying this approach reveals that a spectrum originated from a 

cyclopepeptide, we classify it as a cyclospectrum. 

• Predicting amino acids in a cyclopeptide. For each cyclospectrum, CycloNovo 

predicts the set of putative amino acids in a cyclopeptide that gave rise to this 

spectrum. CycloNovo considers each cyclopeptidic cluster with multiplicity 

exceeding the cyclopeptidic aa threshold and classifies the cyclopeptidic amino 

acids corresponding to this cluster as a putative amino acid of the cyclopeptide 

that generated the cyclospectrum. Figure 2 illustrates that CycloNovo classifies 

amino acids A, I/L, F, K, T, W, R, and G as putative amino acids for 

SpectrumSurugamide (amino acids occurring in suragamide are shown in bold).   

• Predicting amino acid composition of a cyclopeptide. For each cyclospectrum, 

CycloNovo uses dynamic programming to find all combinations of putative amino 

acids with total mass matching the precursor mass of the spectrum. We refer to 
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each such combination as putative composition Composition(Spectrum), which 

may include the same amino acid multiple times. Figure 2 illustrates that 

CycloNovo predicts the following putative compositions for SpectrumSurugamide: 

A1I/L5K1F1 (711113512811471), I/L4F1R2 (113414711562), A2T1K4R1 

(712101112841561), and G1T1I/L1K5 (571101111311285). The putative composition 

of surugamide with one A, five I/L, one K, and one F is represented as 

A1I/L5K1F1 and is shown in bold. 

• Predicting k-mers in a cyclopeptide. For each Composition(Spectrum), it analyzes 

all linear k-mers formed by amino acids in this composition (the default value 

k=5) and scores them against Spectrum* using linear scoring. It assumes that if a 

Peptide-Spectrum Match has a high score score(Peptide,Spectrum) (a condition 

that usually holds for well-fragmented spectra), then each linear k-mer in Peptide 

also has high score (for an appropriately chosen k).  High-scoring k-mers (defined 

as k-mers with scores exceeding the k-mer score threshold) represent putative k-

mers in an unknown cyclopeptide. For example, for 

Composition=711113512811471, there exist 45=1024 5-mers and CycloNovo 

identifies 524 of them as high-scoring 5-mers. We refer to the set of high-scoring 

k-mers as KmersComposition,k(Spectrum). Figure 2 illustrates that three out of six 

highest scoring 5-mers for SpectrumSurugamide are correct, i.e., represent 5-mers 

from surugamide. CycloNovo computes the k-merScore, the score of the highest-

scoring k-mer. 

• Constructing the de Bruijn graph of a spectrum. Given a set Kmers= 

KmersComposition,k(Spectrum), CycloNovo constructs the de Bruijn graph 

DBKmers(Spectrum)18. Nodes in DBKmers(Spectrum) correspond to all (k-1)-mers 

from Kmers and each directed edge corresponds to a k-mer from Kmers and 

connects its first (k-1)-mer with its last (k-1)-mer. Each cycle in 

DBKmers(Spectrum) spells out a cyclic amino acid sequence. Figure 2 presents the 

pruned de Bruijn graph for the putative composition 711113512811471 that is 

obtained by iterative removal of tips (nodes without outgoing or incoming edges), 

and single isolated edges from the de Bruijn graph. The composition 

113512817111471 results in a de Bruijn graph with 202 vertices and 524 edges and 

the pruned de Bruijn graph with 126 vertices and 392 edges (Figure 2). 

• Generating cyclopeptide reconstructions. A cycle in the de Bruijn graph of a 

spectrum is feasible if it spells a cyclopeptide with the mass matching the 

precursor mass of the spectrum. Using the breadth-first search algorithm, 

CycloNovo finds all feasible cycles in the de Bruijn graph with length equal to the 

number of amino acids in Composition (a cycle may traverse the same edge 

multiple times). Each such cycle spells a putative cyclopeptide and CycloNovo 

scores each of them against Spectrum. Finally, it reports the highest scoring 

cyclopeptides along with the P-values of their Peptide-Spectrum Matches (PSMs) 

computed using MS-DPR21.  
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Figure 2. CycloNovo outline illustrated using SpectrumSurugamide. CycloNovo includes six steps: 

(1) recognizing cyclospectra, (2) predicting amino acids in a cyclopeptide, (3) predicting amino 

acid composition of a cyclopeptide, (4), predicting k-mers in a cyclopeptide, (5) constructing the 

de Bruijn graph of a spectrum, and (6) generating cyclopeptide reconstructions. Only six top-

scoring putative k-mers for each putative amino acid composition are shown. Masses of amino 

acids occurring in surugamide are shown in red and k-mers occurring in surugamide are 

underlined. To simplify the de Bruijn graph (corresponding to the composition 711113512811471), 

all tips and isolated edges in the graph were removed. Red, blue and green feasible cycles in the 

graph spell out three cyclopeptides shown in the bottom table along with their P-values. The red 

cycle spells out surugamide.  

In the case of SpectrumSurugamide, CycloNovo found three similar cyclopeptides (Figure 2) 

spelled by feasible cycles in the de Bruijn graph with a putative composition 

✓
X

X
putative

amino            

acids

113 

(I/L)

128

(K)

186

(W)

71

(A)

147 

(F)

156

(R)

57

(G)

101

(T)

putative 

compositions
top-scoring putative k-mers

#putative

k-mers

113415621471
(156 156 113 113 147) (156 113 147 113 113)

(156 113 147 113 156) (113 113 147 156 113)

(113 147 113 113 113)  (113 147 113 156 113)

57

128471215611011
(101 128 128 128 156) (128 128 128 101 71) 

(128 128 101 128 71) (128 113 71 113 113)

(128 128 128 128 71)  (127 101 128  71 128)

76

113512817111471
(113 113 128 113 113)  (113 147 113 128 113)

(113 147 113 113 128)  (113 113  71 113 113)

(147 113 128 113 71)  (128 113  71 113 113)

524

128511311011571
( 57 128 113 128 128) (128 128 128 113 57)

(101 128 113 128 128)  (128 128 101 128 113)

(128 113 128 101 57) (128  57 128 113 128)

180

sequence of masses of amino acids in a cyclopeptide P-value

128 113 147 113 113 71 113 113 3.9×10-23

128 113 113 147 113 113 71 113 3.9×10-23

128 113 113 147 113 71 113 113 7.1×10-21
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113512817111471 (the highest-scoring one corresponds to surugamide).  The remaining 

three putative compositions do not yield feasible cycles in their de Bruijn graphs 

(Supplementary Note “De Bruijn Graphs for SpectrumSurugamide.”) CycloNovo sequenced 

SpectrumSurugamide in ≈3 seconds on a laptop with a single 2.5GHz processor (see 

Supplementary Note “CycloNovo running time”). 

Datasets. We analyzed various spectral datasets obtained from diverse bacterial 

communities (Table 1 and Supplementary Note “Information about spectral datasets”). To 

benchmark CycloNovo, we also analyzed a plant spectral dataset that had a paired RNA-

seq dataset, thus enabling us to validate the CycloNovo reconstructions by matching them 

against the transcriptome.    

The CYCLOLIBRARY dataset contains 81 spectra from 81 distinct cyclopeptides 

(forming 41 cyclofamilies) that were identified by Dereplicator4 after searching the GNPS 

network against CyclopeptideDatabase5. 

The S.VULGARIS dataset is generated from a single sample collected from seeds of the 

plant Senecio vulgaris (both medicinal and poisonous)22 from the Asteraceae family. We 

also analyzed the RNA-Seq reads from the same sample (~74 million 100 bp long 

Illumina reads)22, assembled them using rnaSPAdes23, and used the assembled transcripts 

(61.9 Mb total length) and prior knowledge of cyclopeptide processing24–26 to validate the 

reconstructed cyclopeptides.  

The HUMANSTOOL dataset is generated from 65 stool samples of a single person (L.S., 

co-author of this paper and a contributor to the “Quantified self” initiative) collected over 

a course of four years. This dataset is accompanied by the detailed medical and food 

metadata27 as well as metagenomics reads generated from the same samples  (project 

ID PRJEB24161). 

 

The GNPS dataset is formed by combining forty datasets from GNPS3. The GNPSCYANO, 

GNPSPSEUDO, and GNPSACTI datasets represent sub-datasets of the GNPS dataset 

corresponding to three phyla with extensively analyzed cyclopeptides (Cyanobacteria, 

Pseudomonas and Actinomyces). 

dataset #spectra 
#spectra after 

preprocessing 
#cyclospectra 

#distinct 

cyclopeptides/ 

cyclofamilies 

#known 

cyclopeptides/ 

cyclofamilies  

CYCLOLIBRARY 81 81 45 45/27 45/27 

S.VULGARIS 667 212 23 12/9 4/4 

HUMANSTOOL 1,242,178 451,962 703 79/69 7/5 

GNPS 51,220,679 27,883,895 12,004 512/213 67/37 

GNPSACTI 5,903,921 4,435,893 1,478 116/56 38/24 

GNPSCYANO 23,582,408 12,118,482 317 74/35 5/4 

GNPSPSEUDO 697,812 581,012 2,076 120/39 5/2 

Table 1. Information about various high-resolution spectral datasets analyzed by 

CycloNovo. The number of distinct cyclopeptides and cyclofamilies was estimated using MS-

Cluster28 and SpecNets3, respectively. The last column shows the number of known 

cyclopeptides/cyclofamilies (identified by Dereplicator) in each dataset. For each identified 

cyclopeptide in the CYCLOLIBRARY dataset, we selected the PSM with the minimum P-value 

(among all PSMs for that cyclopeptide), resulting in a spectral dataset CYCLOLIBRARY with 81 

spectra.  
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Analyzing the CYCLOLIBRARY dataset. As the cyclopeptides that gave rise to the 

spectra in the CYCLOLIBRARY dataset are known, we used this dataset to benchmark 

CycloNovo. We considered a cyclopeptide/spectrum as correctly sequenced if the 

sequence of the cyclopeptide appeared among reconstructions with three highest-scores. 

CycloNovo recognized 45 spectra in the CYCLOLIBRARY dataset as cyclospectra and 

correctly sequenced 38 of these cyclospectra (see Supplementary Note “CycloNovo 

analysis of the CYCLOLIBRARY dataset”).  

Analyzing the S.VULGARIS dataset. 23 recognized cyclospectra in this dataset 

correspond to twelve distinct cyclopeptides. CycloNovo sequenced ten of them with P-

values below 10-15 (Table 2). Nine of ten reconstructed cyclopeptides match the 

assembled transcriptome. One reconstructed cyclopeptide (with the highest-scoring 

reconstruction AFLLADV and score 22), does not match the assembled transcriptome but 

a suboptimal ALFLGLD reconstruction with score 20 does (see Supplementary Note 

“Cyclopeptide-encoding transcripts in the S.VULGARIS dataset”). 

The ten reconstructed cyclopeptides (nine highest-scoring reconstruction and one 

suboptimal reconstruction) match 11 transcripts (some transcripts encode multiple 

cyclopeptides and some cyclopeptides are encoded by multiple transcripts) that belong to 

cyclopeptide-encoding PawS1-Like genes in various Asteraceae species22,24. While three 

out of eleven identified PawL1 ORFs and the four cyclopeptides encoded by them (PLP-

12 through PLP-15) have been extensively analyzed in recent studies22,24, the remaining 

eight ORFs represent previously unknown cyclopeptide-encoding genes in S. vulgaris. 

See Supplementary Note “Cyclopeptide-encoding transcripts in the S.VULGARIS 

dataset.”  

precursor 

mass 

sequence matching 

transcripts  

PSM 

score 

highest 

score 

#reconstructions 

with score ≥             

PSM score 

P-value 
peptide   

ID 
gene 

899.36 DNFVDTTGYDRLSDN 24 24 1 1.4×10-47 PLP-14 Sv_PawL1c 

811.37 DNFVGGTSFDRLSDN 14 14 2 2.4×10-24 PLP-12 Sv_PawL1c 

803.42 DNTFGVVIADRLSEN 30 30 1 1.2×10-61 PLP-13 Sv_PawL1b 

762.32 DNGFHGTFDGLDN 13 13 1 3.2×10-23 PLP-47 Sv_PawL1e 

730.41 DNALFLGLDGLDN 20 22 12 2.2×10-39 PLP-48 Sv_PawL1f 

702.38 DNAIFGVVDGLDN 20 20 1  5.6×10-36 PLP-49 Sv_PawL1j 

688.36 DNFVGGVIDGLDN 21 21 1  1.0×10-40 PLP-50 Sv_PawL1g 

674.35 DNGVVVGFDGLDN 14 14 5  1.1×10-25 PLP-51 Sv_PawL1l 

668.40 DNALVVGLDGLDN 14 14 1  1.9×10-27 PLP-15 
Sv_PawL1d 

Sv_PawL1g 

654.39 DNALLGIADGLDN 18 18 5 6.9×10-34 PLP-52 Sv_PawL1i 

Table 2. Cyclopeptides reconstructed in the S.VULGARIS dataset. Ten reconstructed 

cyclopeptides (highlighted in yellow) along with their flanking sequences in transcripts translated 

into amino acids. For each of these cyclopeptides (reconstructed with P-values below 10-15), we 

selected one representative spectrum with the highest score. The conserved flanking amino acids 

in the transcripts on the left and right sides of the highlighted cyclopeptides (preceding and 

succeeding motifs) are shown in red and green, respectively. For nine out of ten cyclopeptides, the 

reconstruction with the highest score matches one of the transcripts. For the cyclopeptide with 

mass 730.41 (highlighted in pink), the highest scoring reconstruction AFLLADV (score 22), does 

not match the assembled transcriptome but a suboptimal ALFLGLD reconstruction (score 20) 
does. The novel cyclopeptides discovered by CycloNovo are shown with bold IDs and named 

PLP-47 through PLP-52. For this dataset we used the error threshold ε=0.015 Da as recommended 

in Fisher et al 24. 
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Analyzing the HUMANSTOOL dataset. A Dereplicator search of the HUMANSTOOL 

dataset against CyclopeptideDatabase identified seven PSMs at 0% False Discovery Rate 

(FDR), namely an antimicrobial orbitide citrusin V found in various Citrus species29,30 

and cyclolinopeptides A31, B32, C33, D33, H33, and E33. Cyclolinopeptides are bioactive 

flaxseed orbitides from Linum usitatissimum. The individual who provided the 

HUMANSTOOL sample frequently ate flaxseeds because they contain α-linolenic acids. 

CycloNovo sequenced six flaxseed cyclopeptides from the CyclopeptideDatabase as well 

cyclolinopeptide P (a recently discovered cyclopeptide34 that has not been added to 

CyclopeptideDatabase yet) as the highest-scoring reconstructions (Supplementary Note 

“Cyclopeptides in the HUMANSTOOL dataset.”)  

In addition to the eight reconstructed orbitides, CycloNovo reconstructed 32 

cyclopeptides in the HUMANSTOOL dataset with P-values below 10-15 forming 26 

cyclofamilies (see Supplementary Notes “Cyclopeptides in the HUMANSTOOL 

dataset”). Figure 3 shows a connected component in the spectral network formed by four 

novel cyclopeptides in the HUMANSTOOL dataset and illustrates that CycloNovo 

reconstructions are consistent with the spectral network.  

 

 

precursor   

mass 
peptide    

PSM 

score 

#reconstructions      

with  

score ≥ PSM 

score  

P-value 
dates 

 

982.49 SVTFEAPLH 24 1 2.6×10-37 
07.14.2014  

07.19.2015 

1053.53 SVTFEAPLAH 25 1 8.6×10-38 
07.14.2014  

07.19.2015 

1081.56 SVVTFEAPLH 21 1 3.0×10-36 
07.14.2014  

07.19.2015 

1152.59 SVVTFEAPLAH 19 1 2.3×10-27 07.14.2014   

 

 

 
 

SVTFEAPLH SVTFEAPLAH 

SVTFEAPLH SVVTFEAPLAH 
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Figure 3. A novel cyclofamily reconstructed by CycloNovo in the HUMANSTOOL dataset. (Top) 

Four cyclopeptides reconstructed by CycloNovo form a cyclofamily represented by a connected component 

in the spectral network of the HUMANSTOOL dataset (label “L” stands for one of amino acids L and I). 

Each node represents a spectrum and two nodes are connected by an edge if their spectral similarity3 

exceeds 0.8. The numbers on the edges show the mass shifts between the corresponding spectra.  (Middle) 

The de novo reconstructions corresponding to the four spectra forming the spectral network. For each 

cyclopeptide, the cyclic sequence of the highest-scoring reconstruction along with their scores, the number 

of reconstructions with scores larger or equal to the PSM score (column “#reconstructions with score ≥
PSM score”), and P-values are listed. The “dates” column shows the dates when the corresponding samples 

were taken. Note that the cyclopeptides in this cyclofamily appear on the same dates. (Bottom) The 

annotated spectra of the four cyclopeptides based on the CycloNovo reconstructions.  

 

The Dereplicator search of all 703 cyclospectra in the HUMANSTOOL dataset against 

PNPDatabase resulted in a single hit and identified a cyclic lipopeptide massetolide F35 

with P-value 7.5×10-22. As this compound includes lipid chains not included in the set of 

cyclopeptidic amino acids, CycloNovo was not able to generate its full-length 

reconstructions, but correctly reconstructed its partial amino acid sequence (see 

Supplementary Note “Cyclopeptides in the HUMANSTOOL dataset.”)  

Massetolides are non-ribosomal lipopeptides produced by Pseudomonas fluoresences, an 

indigenous member of human and plant microbiota36,37. Analysis of the metagenome 

assembly of reads paired with the HUMANSTOOL dataset confirmed that P. 

fluoresences is present in the stool samples where massetolide F was detected. Therefore,  

massetolide F most likely originated from P. fluoresences in the human microbiome (see 

Supplementary Note “Cyclopeptides in the HUMANSTOOL dataset” for information 

about the assemblies). 

Analyzing the GNPS dataset. We analyzed all cyclospectra in the GNPS dataset using 

MS-Cluster28 and SpecNets38 with the goal of estimating the number of still unknown 

cyclopeptides and cyclofamilies originating from spectra already deposited into GNPS. 

To provide a conservative estimate for the number of cyclopeptides and cyclofamilies, we 

limited the analysis to clusters with at least three spectra. 12,004 cyclospectra in the 

GNPS dataset originated from 512 cyclopeptides and 213 cyclofamilies. Dereplicator 

search of these cyclospectra against CyclopeptideDatabase identified only 67 

cyclopeptides from 37 cyclofamilies (see Supplementary Note “Cyclopeptides in the 

GNPS dataset”). For each putative cyclopeptide, we selected a representative spectrum 

with the highest k-merScore, resulting in 512 spectra corresponding to the 512 

cyclopeptides. CycloNovo de novo sequenced 94 cyclopeptides with P-values below 10-15 

in this set of 512 cyclospectra (see Supplementary File).  

Comparing CycloNovo and Dereplicator. Figure 4 compares the number of distinct 

cyclopeptides, including some branch-cyclic peptides, (see Supplementary Note 

“Cyclopeptides in the HUMANSTOOL dataset”) and cyclofamilies revealed by 

CycloNovo and identified by Dereplicator in searches against the PNPDatabase. As 

Figure 4 illustrates, even for the extensively studied phyla of Cyanobacteria and 

Pseudomonas, only a small fraction of cyclopeptides and cyclofamilies revealed by 

CycloNovo are currently known. Moreover, CycloNovo revealed many novel 

cyclopeptides in known cyclofamilies. For example, CycloNovo reconstructed six novel 

variants of surugamide by analyzing the GNPSACTI dataset and revealed the widespread 

proliferation of the recently described A-domain skipping phenomenon5,39, suggesting that 

it is more prevalent than was previously thought (each A-domain encodes a single amino 

acid in an NRP according to non-ribosomal code). Genome mining efforts typically rule 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted January 20, 2019. ; https://doi.org/10.1101/521872doi: bioRxiv preprint 

https://doi.org/10.1101/521872


 12 

out such events due to the consecutive arrangements of A-domains in NRP synthetases 

(see Supplementary Note “Surugamide spectral network.”). 

 
Figure 4. Number of cyclopeptides (blue bars) and cyclofamilies (green bars) predicted by 

CycloNovo and identified/missed by Dereplicator in various spectral datasets. Missed 

cyclopeptides/cyclofamilies are not present in PNPDatabase.  

DISCUSSION 

Although the advent of the GNPS molecular network has created a new resource for 

natural product discovery, there exists a large body of still unknown bioactive compounds 

represented by various spectra in the GNPS network4 (less than one percent of GNPS 

spectra have been identified so far). As the existing database search approaches are 

limited to identifying known cyclopeptides and their variants, de novo cyclopeptide 

sequencing is needed to reveal the “dark matter of cyclopeptidomics.”  

Charlop-Powers et al.40, recently demonstrated that New York urban parks (rather than 

exotic areas like rainforests or coral reefs) represent an untapped resource for discovery 

of clinically important non-ribosomal peptides. This surprising discovery illustrated the 

still unexplored biosynthetic potential of environmental metagenomes but has not 

revealed the chemical compounds that these metagenomes encode. As Nothias et al.41, 

wrote in the follow-up commentary Antibiotic discovery is a walk in the park, Charlop-

Powers et al., revealed the potential for discovering antibiotics in our backyards but did 

not answer the question what these molecules are and whether they are actually produced 

by the microbes. To address these questions, we analyzed the GNPS molecular network 

(our “digital version” of the New York Central Park that contains mass spectra from 

many environmental samples) and demonstrated that it contains spectra that originated 

from hundreds of still unknown cyclopeptides.  

 

Only 81 out of 1,257 known cyclopeptides (42 out of 387 known cyclofamilies) have 

been identified in the GNPS network5. CycloNovo revealed over 400 unknown 

cyclopeptides from 176 novel cyclofamilies by analyzing only ≈51 million GNPS spectra, 

illustrating that the currently known cyclopeptides represent just a small fraction of 

cyclopeptides whose spectra have been already deposited into the GNPS network. 

CycloNovo correctly sequenced many known cyclopeptides in a blind mode and 

reconstructed many novel cyclopeptides that were validated using transcriptomics data. 
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Our analysis of the HUMANSTOOL dataset demonstrates that numerous bioactive 

cyclopeptides from consumed plants remain stable throughout the proteolytic, absorptive 

and microbial ecosystem provided by the gastrointestinal system and thus interact with 

human microbiome. It also found cyclospectra originating from the branch cyclic peptide 

massetolide produced by an indigenous member of the human microbiota and confirmed 

by metagenomics analysis. In addition, it revealed a large number of still unknown 

cyclopeptides in the human gut that are either a part of the human diet or are products of 

the human gut microbiome.  

The cyclolinopeptides constitutes the largest identified component of the spectral network 

of all cyclospectra in the HUMANSTOOL dataset. Controlled diets have demonstrated 

beneficial effects of flaxseed consumption32 and revealed that flaxseed is an effective 

chemo-preventive agent42. However, it remains unknown how flaxseed cyclopeptides 

affect the human microbiome. Previous studies of flaxseed focused on α-linolenic acid43 

and other bioactive compounds44 affecting the digestive system. However, none of the 

flaxseed studies have identified what specific flaxseed ingredients are associated with the 

observed biological outcomes. As discussed in Shim et al.43, attributing a certain 

bioactivity to specific flaxseed compounds is a difficult task as multiple compounds are 

present in various flaxseed fractions.  

It is remarkable that cyclolinopeptides remain stable in a proteolytic environment of the 

human gut and are not degraded. Although the immunosuppressive potential of 

cyclolinopeptides was established two decades ago32, little was known about their 

antimicrobial potential. Recent studies demonstrated significant antimicrobial activities of 

flaxseed, but it remains unclear which specific compounds are responsible for these 

activities45. As our analysis revealed that cyclolinopeptides survive the human digestive 

tract, we propose that the antimicrobial activities of flaxseeds might be caused by 

cyclolinopeptides, complementing their known anti-fungal46 and anti-malarial47 activities. 

Finding antimicrobial cyclopeptides in human stool raises the question of how these 

bioactive antimicrobial cyclopeptides might affect the human microbiome. 

METHODS 

Spectral convolution. We represent each spectrum Spectrum={s1, …, sn} as its spectral 

diagram, the set of n×(n-1)/2 2-dimensional points (si, sj) for 1 ≤ i <j ≤ n. Given a mass 

a, the convolution of Spectrum with offset a (denoted convolution(Spectrum, a)) is 

equivalently defined as the number of points in the diagonal (45°) band y ≈ x+a in the 

spectral diagram. Figure 5 presents the spectral diagram of TheoreticalSpectrum(AGCD) 

and reveals that bands corresponding to its amino acids (71, 57, 103, and 115 Da) are the 

most populous (contain a large number of points as compared to other bands), i.e., 

convolution(Spectrum,a) is high when a is the mass of amino acids A, G, C, or D. For 

example, TheoreticalSpectrum(AGCD) includes five pairs of fragment masses ((G,AG), 

(D,AD), (AGC,GC), (CD,CDA), and (GCD,AGCD)) that are located on the “blue” 

diagonal y = x+mass(A) in Figure 5. 

The spectral diagrams for TheoreticalSpectrum(Surugamide) and experimental 

SpectrumSurugamide highlight four populous diagonal bands y ≈ x+a, where a is the mass of 

one of four amino acids in surugamide with integer masses 71, 113, 128, and 147 

(Supplementary Note “Analyzing spectral convolution.”) These populous bands in the 

spectral diagram reveal the masses of amino acids in an unknown cyclopeptide that gave 

rise to an experimental spectrum. 
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cluster 

mass 

cluster         

multiplicity 

cluster 

distance 

113.07 12 0.006 (I/L) 

128.08 7 0.006 (K) 

56.02 6 - 

186.10 6 0.029 (W) 

71.04 5 0.004 (A) 

147.07 4 0.001 (F) 

156.10 4 0.002 (R) 

184.11 4 - 

98.08 4 - 

169.11 4 - 

57.05 4 0.027 (G) 

Figure 5. The spectral diagram of TheoreticalSpectrum(AGCD) (left) and the list of 

clusters in the convolutions of SpectrumSurugamide (right). (Left) The highlighted lines with slope 

1 correspond to the masses of the amino acids, A, G, C, and D and contain 5, 9, 5, and 6 points, 

respectively. (Right) Clusters in the convolutions of SpectrumSurugamide in the decreasing order of 

their multiplicities. Only clusters with masses between 55 and 190 Da and multiplicity exceeding 

3 are shown. Cyclopeptidic clusters are shown in bold and cyclopeptidic clusters with masses 

similar to the masses of amino acids in surugamide are shown in red. Cluster distance is defined 

as the distance between the cluster mass and a closest mass of a cyclopeptidic amino acid.  

Figure 5 lists high-multiplicity clusters for SpectrumSurugamide (see Supplementary Note 

“Analyzing spectral convolution”) and shows that many of them have masses that are 

similar to the masses of amino acids in surugamide. Since populous diagonals (high-

multiplicity clusters) in the spectral diagram reveal amino acids in the unknown 

cyclopeptide that gave rise to an experimental spectrum, we use them to generate the set 

of putative amino acids18.  

Recognizing cyclospectra. A cluster in the spectral convolution is called frequent if its 

multiplicity exceeds the cluster multiplicity threshold (the default threshold for 

SpectrumSurugamide is 7). CycloNovo classifies a spectrum as a cyclospectrum if the number 

of frequent cyclopeptidic clusters in its spectral convolution is at least 

minNumberFrequentClusters (the default value minNumberFrequentClusters=2). Since 

there exist two frequent cyclopeptidic clusters for SpectrumSurugamide (corresponding to 

amino acids I/L and K), it is classified as cyclopeptidic (Figure 5). In addition to 

SpectrumSurugamide, out of 938 spectra passing the preprocessing step in the small spectral 

dataset for Streptomyces CNQ329 that contains SpectrumSurugamide, CycloNovo recognized 

only one cyclospectrum, also originated from surugamide. See Supplementary Note 

“Distinguishing cyclospectra from spectra of linear peptides and polymers” for selecting 

CycloNovo parameters.  

Estimating the number of distinct cyclopeptides and cyclofamilies. Spectral datasets 

often contain multiple spectra originating from the same compound. CycloNovo clusters 

similar cyclospectra using MS-Cluster28 and estimates for the number of distinct 

cyclopeptides as the number of constructed clusters. It further constructs the spectral 

network of cyclospectra using SpecNets3 and estimates for the number of distinct 

cyclofamilies as the number of connected components in this network.  
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Availability. CycloNovo is available as both a stand-alone tool 

(https://github.com/bbehsaz/cyclonovo) and a web application 

(http://gnps.ucsd.edu/ProteoSAFe/static/gnps-theoretical.jsp). All described datasets are 

available through the corresponding public repositories.  
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Supplementary Note: Surugamide spectral network 

 

Supplementary Figure S1 shows a connected component in the spectral network 

containing known and novel surugamide variants (spectral dataset GNPSACTI 

generated from samples collected from various Actinomyces species). 

 
 

Supplementary Figure S1. A connected component in the spectral network that contains various 

surugamide variants. Each node in the network is labeled by the precursor mass of a spectrum and each 

edge connects spectral pairs that reveal related cyclopeptides. The five green nodes are the known 

surugamide variants1. The pink nodes represent unknown cyclopeptides. The spectral network was 

constructed based on all cyclospectra in the GNPSACTI dataset.  

 

Supplementary Figure S2 shows a subgraph of the spectral network shown in 

Supplementary Figure S1 that includes only known surugamides and six novel variants 

reconstructed by CycloNovo. Supplementary Figure S3 illustrates that five of these novel 

variants differ from known surugamides by deletions of some amino acids.  
 

  
Supplementary Figure S2. A subgraph of the suragamide connected component in the spectral 

network of all cyclospectra from the GNPSACTI dataset showing only the known and novel 

surugamide variants sequenced by CycloNovo. The green nodes correspond to known surugamides and 

the blue nodes represent the novel surugamide variants reconstructed by CycloNovo. The numbers on 

edges represent the nominal mass shift between the corresponding spectra. The red edges highlight the 

mass shifts that suggest loss/addition of an amino acid in the peptide and the blue edges connects peptides 

that differ from each other by a single Ile ➔ Val or Val ➔ Ile substitution (resulting in a nominal offset 14 

Da). Although the 14 Da offset can also correspond to methylation, the substitutions represent the more 

likely explanations in this case. The grey edges show mass shifts that represent combinations of those mass 

shifts. Supplementary Figure S1 presents the entire connected component.   
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(a) 

 
(b) 

 
870.6 Ile Ala Val Val Lys Val Phe Leu 

884.6 Ile Ala Val Ile Lys Val Phe Leu 

898.6 Ile Ala Val Ile Lys Ile Phe Leu 

912.6 Ile Ala Ile Ile Lys Ile Phe Leu 

926.6 Ile Ala Ile Ile Lys+14 Ile Phe Leu 

799.5 Ile Ala - Ile Lys Ile Phe Leu 

785.5 Ile Ala Val Ile Lys - Phe Leu 

771.5 Ile Ala Val - Lys Val Phe Leu 

856.5 Val Ala Val Val Lys Val Phe Leu 

784.5 Ile Ala Ile Ile - Ile Phe Leu 

671.5 - Ala Ile Ile - Ile Phe Leu 

 
(c) 

 

(d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure S3. Known and novel surugamide variants. (a) Surugamide gene cluster in 

Streptomyces albus along with the three most likely amino acids for each A-domain and their scores 

predicted by NRPSpredictor22. See Mohimani et al, 20171 for more details on this representation. (b) Five 

known (first five rows) and six novel (last six rows) surugamide variants. Each column is color-coded 

based on the color of the A-domain they represent in the top figure. The dash symbols indicate a violation 

of the non-ribosomal code (A-domain skipping) when an A-domain in the surugamide gene cluster does not 
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add an amino acid to a cyclopeptide. (c) De novo reconstructions of the novel surugamide variants. The 

column ‘PSM score/highest score’ shows the score of the cyclopeptide and the highest score observed for 

that spectrum among all CycloNovo reconstructions. The “P-value” column presents the P-value of the 

PSM (for each cyclopeptide, the spectrum that yielded the lowest P-value is reflected). The column 

“#reconstructions with score ≥ PSM score” shows the number of reconstructions with score greater or 

equal to the PSM score. The column “reconstruction with the highest score” shows a highest-scoring 

reconstruction for the cases when the PSM score is below the highest score. The number of spectra 

corresponding to each novel surugamide variant in the five GNPS datasets are presented in the columns 

‘78604’, ‘78787’, ‘78936’, ‘78937’, and ‘79516’, representing the GNPS sub-datasets MSV000078604, 

MSV000078787, MSV000078936, MSV000078937, and MSV000079516, respectively. Finding the same 

surugamide variants in different studies makes it unlikely that they represent artifacts.  (d) Annotated 

spectra of six novel surugamide variants.  

 

Supplementary Note: An example of the de Bruijn graph 

 

Figure S4 presents an example of the de Bruijn graph. 

 

 
Supplementary Figure S4. The de Bruijn graph constructed from eight 3-mers of surugamide. The 

sequence of nominal masses of amino acids in surugamide is represented as 71-113-113-147-113-128-113-

113. Nodes (edges) in the de Bruijn graph correspond to seven 2-mers (eight 3-mers) in surugamide. Each 

edge (3-mer) connects the node corresponding to its initial 2-mer to the node corresponding to its final 2-

mer. A traversal of edges of the graph spells out the sequence of masses of amino acids in surugamide.  

Supplementary Note: Preprocessing spectra 

 

Similar to pre-processing practices in proteomics3, CycloNovo filters out low-intensity 

peaks in each spectrum by retaining at most 5 peaks with the highest intensities in each 50 

Da window. CycloNovo further filters out all peaks that are less than 0.05 Da apart from 

another peak with higher intensity. It further removes spectra with a small number of 

peaks (less than 20) and spectra with a small precursor mass (less than 500 Da). We 

subtract the mass of a hydrogen atom from all masses in the spectrum (for simplicity, we 

assume that each ion is protonated with a single proton). 

Supplementary Note: CycloNovo parameters 

 

Table S1 specifies the default values of CycloNovo parameters.  

 

Universal Parameter default value command line argument  

error threshold (Da) 0.02 --precursor_ion_thresh 

Parameters used for recognizing cyclospectra   
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𝛼 0.07 --alpha 

𝛽 -1 --beta 

cycloIntensity threshold 60% --cyclointensity 

k-merScore threshold 4 --kmer_score 

minNumberFrequentClusters threshold  2 --num_frequent_clusters 

Parameters used for de novo sequencing   

cyclopeptidic aa threshold 1 --aminoacid_multiplicity 

k-mer threshold 2 --kmer_threshold 

k-mer size 5 --kmer_size 

Supplementary Table S1. The default values of CycloNovo parameters along with the command-line 

arguments to specify their values. The parameters introduced in the main text are shown in green rows 

and the parameters introduced in the Supplementary Note “Distinguishing cyclospectra from spectra of 

linear peptides and polymers” are shown in pink rows. For all datasets in this paper, all cyclospectra were 

recognized with the default parameters 𝛼 = 0.007 and 𝛽 = −1 , except for cyclospectra in the GNPS 

datasets that were recognized with even more conservative parameters 𝛼 = 0.008 and 𝛽 = 0. 

Supplementary Note: Distinguishing cyclospectra from spectra of linear peptides 

and polymers 

 

The challenge of distinguishing cyclospectra from spectra of linear peptides and 

polymers. Fragmentation of linear peptides typically results in prefix (e.g., b-ions) and 

suffix (e.g., y-ions) ions and rarely generates internal ions. However, spectra of some 

linear peptides feature a substantial number of internal ions, leading to a possibility to 

erroneously classify them as cyclospectra. Another source of a potential misclassification 

of some spectra as cyclospectra are polymers that represent a common source of 

contamination in mass spectral datasets. Since polymers are made up of repeated units, 

the spectral convolution of a polymer spectrum typically has high-multiplicity clusters 

(for clusters corresponding to masses of the repeat units). In some cases, the adducts of 

these repeat units form high multiplicity clusters with masses equal to the masses of a 

cyclopeptidic amino acid, triggering a possibility to misclassify a polymer spectrum as a 

cyclospectrum.  

 

LINEARLIBRARY and POLYMERLIBRARY datasets. To ensure that CycloNovo 

does not misclassify spectra of linear peptides and polymers as cyclospectra,  

we analyzed two spectral datasets described below:  

 

• LINEARLIBRARY is a set of 105,871 Collision-Induced Dissociation (CID) 

tandem mass spectra of distinct linear peptides from the Massive Knowledge-

Based spectral library4 of linear peptides distilled from all human proteomics 

data in the MassIVE database. 

• POLYMERLIBARY is a set of 448 tandem spectra generated from 

polyethylene glycol (MSV000081544).  

 

These spectral datasets have spectra with the precursor masses varying between 500 Da 

and 2000 Da and the charges at most 2.  

 

Additional tests for recognizing cyclospectra. To distinguish cyclospectra from spectra 

of linear peptides and polymers, CycloNovo only classifies a spectrum as cyclopeptidic if 

it passes additional tests described below.  
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• High multiplicity cyclopeptidic clusters test (distinguishing cyclospectra from 

spectra of linear peptides). As described in the main text, CycloNovo first 

selects a spectrum for further analysis if its spectral convolution has at least 

minNumberFrequentClusters frequent cyclopeptidic clusters, i.e., clusters with 

multiplicities exceeding the cluster multiplicity threshold. Since the cluster 

multiplicities typically increase with the increase in the length of a peptide, this 

threshold increases with the increase in the peptide mass. We thus defined the 

cluster multiplicity threshold as α×precursorMass+β (see below for selecting 

parameters α and β).  

• Polymer test (distinguishing cyclospectra from polymer spectra). For each 

cyclospectrum Spectrum, CycloNovo analyzes clusters with masses of repeat units 

observed in background contamination from polyethylene glycol, NaCl, 

polypropylene glycol, and trimethylsiloxane (44.03, 57.96, 58.04, and 72.04 Da, 

respectively). We refer to these masses as polymeric units5 and refer to clusters 

with masses equal to polymeric units as polymer-clusters. CycloNovo classifies a 

spectrum as polymeric if there exist at least minNumberFrequentClusters 

polymer-clusters with multiplicities at least the cluster multiplicity threshold. 

Polymeric spectra are filtered out from the set of found cyclospectra. 

• cycloIntensity test. For each cyclospectrum, CycloNovo considers all frequent 

cyclopeptidic clusters. For each such cluster of mass a, we consider all pairs of 

masses x and y in the spectrum contributing to this cluster, i.e., satisfying the 

condition y≈x+a. The cyclointensity of the spectrum, referred to as cycloIntensity, 

is defined as the total intensity of all such peaks (across all frequent cyclopeptidic 

clusters) divided by the total intensity of all peaks in Spectrum. Spectra with 

cyclointensity below the cycloiIntensity threshold are filtered out.  

• k-merScore test. CycloNovo computes the k-merScore, the score of the highest-

scoring k-mer that contributes to the de Bruijn graph of the spectrum and filters 

out cyclospectra with k-merScore below the k-merScore threshold.  
 

Selecting thresholds for recognizing cyclospectra. To select the default value of cluster 

multiplicity threshold=α×precursorMass+β, we varied parameters α (from 0.005 to 0.02) 

and β (from -5 to +5) and analyzed all found cyclospectra in the CYCLOLIBRARY, 

LINEARLIBRARY, and POLYMERLIBARY datasets (Supplementary Figure S5). 

Despite its smaller size, CYCLOLIBRARY is the only dataset where CycloNovo 

recognizes cyclospectra for all analyzed values of α and β. Since α=0.07 and β=-1 yielded 

the largest number of recognized cyclospectra in CYCLOLIBRARY (46 out of 81) and 

no cyclospectra in the LINEARLIBRARY and POLYMERLIBRARY datasets 

(Supplementary Figure S5), we selected these values as the default parameters.  
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Supplementary Figure S5. Number of spectra passing both the “high multiplicity cyclopeptidic 

cluster” and the “polymer” tests in the CYCLOLIBRARY, LINERALIBRARY, and 

POLYMERLiBRARY datasets (for various values of parameters α and β).  

 

Supplementary Figure S6 presents the values of cycloIntensity and k-merScore for each 

spectrum in the CYCLOLIBRARY, LINEARLIBRARY, and POLYMERLIBRARY 

datasets and reveals a separation between the former and the two latter datasets with 

respect to these two parameters. CycloNovo thus classifies a spectrum as a cyclospectrum 

if its cycloIntensity exceeds the cycloIntensity threshold (60%) and its k-merScore 

exceeds the k-merScore threshold (5). 45 spectra in the CYCLOLIBRARY datasets, that 

pass all four tests described above, are classified as cyclospectra.  

 
Supplementary Figure S6. Values of cycloIntensity and k-merScore for all spectra in the 

CYCLOLIBRARY, POLYMERS, and LINEARLIBRARY datasets (for k=5).  

 

We also investigated how CycloNovo’s ability to recognize a cyclospectrum is affected 

by the fragmentation quality of the corresponding PSM (measured by the P-value of this 

PSM). For each spectrum in the CYCLOLIBRARY dataset, we identified the minimum 

value of the parameter α that leads to classifying this spectrum as cyclopeptidic (for β=-

1). Supplementary Figure S7 illustrates that well-fragmented spectra can be recognized 

even with more restrictive threshold values (larger values of α).  
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Supplementary Figure S7. Dependence between the P-value of each spectrum in the 

CYCLOLIBRARY dataset and the minimum value of the parameter α that leads to classifying this 

spectrum as a cyclospectrum (for 𝜷 = −𝟏). Each point represents a spectrum in the CYCLOLIBRARY 

dataset. The x-axis shows the P-value of the PSM for that spectrum and the y-axis shows the minimum 

value of the parameter α that leads to classifying this spectrum as a cyclospectrum. The points 

corresponding to cyclospectra recognized with the default parameter α=0.07 are shown in red.  

Supplementary Note: Cyclopeptidic amino acids  

 

Table S2 lists all cyclopeptidic amino acids.  

 

amino acid 
elemental 

composition 
monoisotopic  
mass (Da) 

% of cyclopeptides in 
CyclopeptideDatabase 

containing the amino acid 

isoleucine/leuscine C6H11ON 113.084 55.8 

valine C5H9ON 99.068 38.2 

proline C5H7ON 97.053 36.9 

alanine C3H5ON 71.037 36.4 

phenylalanine C9H9ON 147.068 24.6 

methyl-isoleucine/leucine C7H13ON 127.101 18.7 

glycine C2H3ON 57.022 17 

threonine C4H7O2N 101.048 16.5 

serine C3H5O2N 87.032 15.8 

ornithine  C5H10ON2 114.068 15 

methyl-alanine C4H7ON 85.054 14.6 

tyrosine C9H9O2N 163.063 10.9 

glutamine C5H7O3N 129.043 10.1 

asparagine C4H6O2N2 114.043 9.5 

methyl-phenylalanine C10H11ON 161.085 9.5 

aspartic acid C4H5O3N 115.027 7.6 

glutamic acid C5H8O2N2 128.059 7.6 

arginine C6H12ON4 156.101 7.2 

tryptophan C11H10ON2 186.079 7.2 

methyl-oxazoline C4H7NO 85.104 2.9 

lysine C6H12ON2 128.095 2.9 

oxazoline C3H5NO 71.078 2.5 

methionine C5H9ONS 131.040 2.4 

oxazole C3H3NO 69.062 1.3 

methionine-oxide C5H9O2NS  147.040 1.2 

histidine C6H7ON3 137.059 1 

methionine-dioxide C5H9O3NS 163.040 0.3 

methyl-oxazole C4H5NO 83.089 <0.1 

thiazole C3H3NS 85.128 <0.1 

thiazoline C3H5NS 87.143 <0.1 

cysteine C3H5ONS 103.009 <0.1 
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Supplementary Table S2. The list of 33 cyclopeptidic amino acids (corresponding to 31 unique amino 

acid masses). Proteinogenic amino acids are shown in blue, common amino acids in RiPPs6 are shown in 

black, and the remaining amino acids that appeared in the top 25 most frequent residues in 

CyclopeptideDatabase are shown in red.  

Supplementary Note: Analyzing spectral convolution  

 

Supplementary Figure S8 illustrates that each amino acid in surugamide results in a 

populous diagonal in the spectral diagram of SpectrumSurugamide. For each constructed 

cluster (diagonal band in the spectral diagram), we consider all pairs of masses in 

Spectrum that contributed to this cluster and form a band as the set of these k pairs.  

 

We define the cluster diameter as the difference between its maximum and minimum 

elements. Supplementary Figure S9 presents the band for the cluster with multiplicity 8 

and mass 128.09 (diameter 0.03) in the spectral convolution of SpectrumSurugamide and 

reveals that the 8 elements of this band can be partitioned into 7 groups of closely located 

points. We are interested in the number of such groups (rather than the raw cluster 

multiplicities) since experimental spectra often contain satellite masses resulting from 

neutral losses and isotopic peaks. For example, in addition to the integer mass 242 Da 

corresponding to the peptide IK, SpectrumSurugamide also contains the integer mass 225 Da 

corresponding to the loss of NH3 from this peptide.  

  
 

Supplementary Figure S8. The spectral diagrams of the TheoreticalSpectrum(Surugamide) (left) and 

SpectrumSurugamide (right). The highlighted lines with slope +1 have y-intercepts equal to the masses of the 

constituent amino acids of surugamide (A, L/I, K, and F). Amino acids A, L/I, K, and F correspond to 

populous diagonals containing 11, 23, 11, and 11 points (left figure) and 5, 14, 8, and 4 points (right figure), 

respectively. 

 

𝑦 ≈ 𝑥 + 128 
(185.13,313.22) (261.17,389.26) (298.21,426.28) (374.24,502.32) 

(446.30,574.38) (445.28,573.35) (487.35,615.42) (784.52,912.62) 
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Supplementary Figure S9. A band with multiplicity eight in SpectrumSurugamide (cluster with mass 

128.09 and diameter 0.03). (Top) Coordinates of the points in the band. Since the difference between the 

x-coordinates and y-coordinates of the two points shown in bold match the mass of hydrogen, these two 

points are clustered together in this band. (Bottom) The same band in the spectral diagram for 

SpectrumSurugamide. The points of the band can be partitioned into seven groups of closely located points: six 

singleton groups and one group with two elements. 

 

Since satellite masses artificially inflate cluster multiplicities, there is a need to reduce 

biases caused by these masses. We thus define the set of common satellite offsets (1 Da 

(H), 18 Da (H2O), 17 Da (NH3), and 28 Da (CO)) and perform additional single linkage 

clustering in each populous band by combining pairs of masses in a single cluster if both 

their x-coordinates and y-coordinates differ by a satellite offset. We redefine the concept 

of cluster multiplicity as the number of the resulting clusters in the band (Supplementary 

Table S3). 

  
cluster  

 mass 

 multiplicity 

after satellite removal 

multiplicity before 

satellite removal 

cluster  

diameter  
cluster distance  

113.078 12 14 0.106 0.006 (I/L) 

128.089 7 8 0.032 0.006 (K) 

56.025 6 6 0.033 - 

186.108 6 6 0.077 0.029 (W) 

71.041 5 5 0.022 0.004 (A) 

147.069 4 4 0.027 0.001 (F) 

156.099 4 5 0.036 0.002 (R) 

184.106 4 5 0.032 - 

98.079 4 4 0.031 - 

169.11 4 5 0.01 - 

57.049 4 4 0.02 - 

70.042 3 3 0.01 - 

132.058 3 3 0.006 - 

133.584 3 3 0.013 - 

183.116 3 3 0.024 - 

168.159 3 3 0.023 - 

52.049 3 3 0.005 - 

96.035 3 3 0.017 - 

165.115 3 3 0.004 - 

76.041 3 4 0.013 - 

73.08 3 3 0.017 - 

101.053 3 3 0.011 0.005 (T) 

167.886 3 4 0.024 - 

189.105 2 3 0.009 - 

57.018 2 2 0.006 0.004 (G) 
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114.09 2 2 0.01 - 

45.041 2 2 0.012 - 

 

Supplementary Table S3. List of clusters in the spectral convolution of SpectrumSurugamide. Clusters are 

shown in the decreasing order of their multiplicities (only clusters with multiplicity at least 2 are shown). 

Cyclopeptidic clusters are shown in bold and cyclopeptidic clusters with masses similar to masses of amino 

acids in surugamide are shown in red. 

 

Supplementary Note: De Bruijn graphs for SpectrumSurugamide  

 

Supplementary Figure S10 shows the pruned de Bruijn graphs of three compositions of 

SpectrumSurugamide that do not contain feasible cycles. 

 
Supplementary Figure S10. The pruned de Bruijn graphs of the compositions of SpectrumSurugamide 

that do not contain feasible cycles. (Left) The composition 113415621471 results in a de Bruijn graph with 

40 vertices and 57 edges and a pruned de Bruijn graph with 18 vertices and 40 edges. (Middle) The 

composition 128471215611011 results in a de Bruijn graph with 52 vertices and 76 edges and a pruned de 

Bruijn graph with 20 vertices and 42 edges. (Right) The composition 128511311011571 results in a de 

Bruijn graph with 94 vertices and 180 edges and a pruned de Bruijn graph with 40 vertices and 92 edges.   

 

Supplementary Note: CycloNovo running time 

 

CycloNovo recognizes cyclospectra by constructing their spectral convolutions (O(n2) 

running time for a spectrum with n peaks) and further sequences all found cyclospectra. 

Using a single 2.5GHz processor, CycloNovo recognized all cyclospectra in the 

HUMANSTOOL and GNPS datasets in ≈35 minutes and ≈31 hours, respectively.  

 

The sequencing step is only applied to a small fraction of all spectra in spectral datasets, 

e.g., CycloNovo recognizes only ≈0.05% of all spectra in the GNPS dataset as 

cyclospectra. The running time for the sequencing step varies widely between spectra and 

depends on the number of putative amino acid compositions, the number of putative k-

mers, and the number feasible cycles in the de Bruijn graphs.  

 

We were not able to benchmark CycloNovo against CYCLONE7 since CYCLONE failed 

to reconstruct most spectra in the CYCLOLIBRARY dataset. For example, CycloNovo 

took ≈3 seconds to sequence SpectrumSurugamide. In contrast, CYCLONE7 failed to 

sequence SpectrumSurugamide and was not even able to infer alanine and lysine as amino 

acids in suragamide.  
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We thus compared CycloNovo with a brute force sequencing algorithm by generating and 

scoring all possible permutations of all amino acid compositions resulting from the 

putative amino acids for SpectrumSurugamide. The brute-force approach took ≈27 seconds to 

sequence SpectrumSurugamide as the highest scoring reconstruction among all 113 generated 

cyclopeptides. In a more difficult example, we analyzed the spectrum with precursor mass 

899.36 and reconstructed the orbitide FVDTTGYD in the S.VULGARIS dataset (Table 

2). CycloNovo sequenced this spectrum in 56 seconds while the brute force approach 

took 58 minutes. For this spectrum, there exist 321 putative amino acid compositions 

yielding over 400,000 candidate sequences. Since the majority of those ~400,000 

sequences do not produce high-scoring 5-mers, they yield the relatively small de Bruijn 

graphs and hence small numbers of feasible cycles and candidate cyclopeptides. By only 

exploring the feasible cycles in the de Bruijn graphs, CycloNovo reduced the number of 

candidate sequences to 2,491. 

 

These examples illustrate that the running time of CycloNovo varies by orders of 

magnitude depending on analyzed cyclospectra. By only exploring the sequences spelled 

by the feasible cycles in the de Bruijn graphs, CycloNovo greatly reduces the search 

space compared to the brute force approach. For example, the brute force approach failed 

after 1000 hours on just two cyclospectra from the CYCLOLIBRARY dataset, while the 

de Bruijn graph approach finished analysis of all spectra in this library in ≈48 hours. 

Supplementary Note “CycloNovo analysis of the CYCLOLIBRARY dataset” lists all 

CycloNovo reconstructions for this dataset. CycloNovo analysis of the HUMANSTOOL  

and GNPS datasets took ~34 and ~149 hours, respectively.  

Supplementary Note: Information about spectral datasets 

 

Information about CyclopeptideDatabase. The PNPDatabase8 combines all known 

peptidic natural products from various databases. Many peptides in this database are 

lipopeptides containing a lipid chain, e.g., surfactin is a cyclopeptide containing a fatty 

acid side chain connected to a fully peptidic part via a peptide bond.  

 

We classify a peptide in the PNPdatabase as a cyclopeptide if its backbone could be 

represented as a circular graph (cycle) with nodes corresponding to either a single amino 

acid or a single lipid tail (i.e. monomers) and edges corresponding to the amide bonds in 

the peptide structure. 1,257 out of 5,021 peptides in the PNPDatabase represent 

cyclopeptides and form CyclopeptideDatabase (note that the CyclopeptideDatabase 

database contains lipopeptides).  

 

Information about the CYCLOLIBRARY dataset. We searched ~130 million GNPS 

spectra against the CyclopeptideDatabase using Dereplicator1 and identified 81 distinct 

cyclopeptides (41 cyclofamilies) corresponding to PSMs with FDR=0% and P-value 

below 10-15. For each identified cyclopeptide, we selected the PSM with the minimum P-

value (among all PSMs identified for this cyclopeptide), resulting in a set of 81 PSMs and 

hence created a spectral dataset CYCLOLIBRARY with 81 spectra (Table S4). 

CYCLOLIBRARY includes only 13 cyclopeptides (6 cyclofamilies) that are made up 

entirely of cyclopeptidic amino acids (Table S4). 34 peptides (25 cyclofamilies) in the 

CYCLOLIBRARY dataset contain lipid tails and 34 peptides (14 cyclofamilies) contain 

non-cyclopeptidic amino acids.  
 

peptide ID 
peptide 

mass 

compound 

type 
P-value GNPS ID k-merScore cycloIntensity 

Antibiotic_FR_901459 609.9 peptide 1.8×10-24 MSV000079098 10 0.59 
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Arthrofactin 1354.8 lipopeptide 1.2 ×10-16 MSV000079772 8 0.96 

Bacillomycin_D2 1031.5 lipopeptide 6.0×10-24 MSV000078635 4 0.95 

Bacillomycin_D3 1045.6 peptide 3.9×10-31 MSV000079450 4 0.94 

Bacillomycin_D5 1059.6 peptide 2.5×10-21 MSV000078635 5 0.85 

Bacillopeptin_B 1035.5 peptide 1.2×10-19 MSV000079054 4 0.88 

Bacillus_amyloliquefaciens_Surfactin_1 1036.7 lipopeptide 1.3×10-18 MSV000080116 6 0.98 

Bacillus_amyloliquefaciens_Surfactin_22 1022.7 lipopeptide 3.0×10-26 MSV000078936 6 0.87 

BK_10 _101A-form 1021.7 lipopeptide 2.5×10-22 MSV000078688 6 0.78 

BK_10 _101C 1035.7 lipopeptide 2.6×10-21 MSV000078937 6 0.96 

Champacyclin 898.6 peptide 5.8×10-26 MSV000078936 6 0.98 

Cyclolinopeptide_A 1040.7 peptide 4.0×10-31 MSV000080050 6 0.93 

Cyclolinopeptide_B 1058.6 peptide 1.8×10-29 MSV000080050 8 0.87 

Cyclolinopeptide_B_S-Oxide 1074.6 peptide 4.6×10-26 MSV000080050 6 0.81 

Cyclolinopeptide_D 1064.6 peptide 9.2×10-20 MSV000080050 6 0.86 

Cyclolinopeptide_E 977.6 peptide 2.6×10-26 MSV000079777 4 0.73 

Cyclolinopeptide_H 1082.5 peptide 5.1×10-20 MSV000080050 6 0.80 

Cyclosporin_B 1188.8 peptide 3.8×10-29 MSV000079098 8 0.65 

Cyclosporin_C 1218.8 peptide 1.4×10-32 MSV000079581 6 0.81 

Cyclosporin_E 1188.8 peptide 4.7×10-27 MSV000079098 8 0.93 

Cyclosporin_L 1188.7 peptide 1.7×10-30 MSV000079098 8 0.81 

Cyclosporin_P 1204.8 peptide 4.6×10-16 MSV000079777 6 0.74 

Cyclosporin_U 594.9 peptide 3.5×10-26 MSV000079098 9 0.66 

Cyclosporin_Y 601.9 peptide 2.0×10-24 MSV000079098 10 0.45 

Cyclosporin,_9CI_4 1188.8 peptide 1.5×10-27 MSV000079098 8 0.61 

Cyclosporin,_9CI_9 1202.8 peptide 1.8×10-43 MSV000079098 8 0.95 

Cyclosporin,_9CI_Deoxy 1186.9 peptide 1.6×10-35 MSV000079098 8 0.85 

Cyclosporin,_9CI_N9-De-Me 1188.8 peptide 3.8×10-32 MSV000079098 9 0.74 

[8'-Hydroxy-MeBmf]1-cyclosporin 1218.8 peptide 3.0×10-37 MSV000079581 8 0.97 

Daitocidin_B2 1064.7 lipopeptide 1.4×10-22 MSV000078937 6 0.90 

Daitocidin_Pumilacidin_F 1050.7 lipopeptide 7.5×10-27 MSV000078936 6 0.76 

Dolastatin_1_11-N-Me 999.6 lipopeptide 9.6×10-18 MSV000078568 3 0.58 

Dolastatin_1_15-Epimer,_31-methyl,_11-

N-Me 
1013.6 lipopeptide 3.5×10-16 MSV000079050 0 0.18 

Dolastatin_1_31 492.3 lipopeptide 1.4×10-19 MSV000078568 4 0.42 

Dolastatin_12 969.6 lipopeptide 4.2×10-16 MSV000078568 5 0.65 

Dolastatin_14_Dolastatin_14 1089.7 lipopeptide 1.5×10-20 MSV000078568 7 0.47 

g-Hydroxy-Meleu4-cyclosporin 609.9 peptide 3.6×10-26 MSV000079581 9 0.56 

Ilamycin_B1 1012.6 peptide 7.7×10-25 MSV000078937 5 0.73 

Ilamycin_B2 1028.6 peptide 1.6×10-19 MSV000078936 3 0.67 

Isocyclosporin_D 1216.9 peptide 5.0×10-27 MSV000079098 7 0.40 

Laxaphycin_A 1196.7 peptide 2.7×10-48 MSV000079050 6 0.95 

Laxaphycin_B 1395.9 peptide 3.9×10-33 MSV000079050 5 0.97 

Laxaphycin_B_32-Epimer,_53-deoxy 690.4 peptide 1.1×10-27 MSV000079050 7 0.18 

Laxaphycin_D 1367.8 peptide 7.1×10-28 MSV000079050 3 0.86 

Laxaphycin_E 1224.8 peptide 7.9×10-39 MSV000079050 6 0.89 

Lichenysin_A 1007.7 lipopeptide 1.2×10-20 MSV000079481 3 0.95 

Lichenysin-G1a 993.7 lipopeptide 1.8×10-19 MSV000078936 5 0.70 

Lichenysin-G3 1007.7 lipopeptide 8.1×10-22 MSV000078936 6 0.93 

Lichenysin-G5b 1021.7 lipopeptide 9.7×10-20 MSV000078936 6 0.99 

Lipodepsipeptides_KMM_A 1036.7 lipopeptide 9.2×10-25 MSV000078635 5 0.98 

Lipodepsipeptides_KMM_E 1064.7 lipopeptide 6.2×10-16 MSV000078937 6 0.96 

Lipodepsipeptides_KMM_F 1078.8 lipopeptide 2.4×10-19 MSV000078936 6 0.97 

Lipopeptide_NO 994.6 lipopeptide 4.1×10-17 MSV000078688 6 0.98 

Majusculamide_C 985.6 lipopeptide 1.1×10-23 MSV000078892 5 0.91 

Majusculamide_C_Demethoxy 955.6 lipopeptide 7.3×10-17 MSV000078568 6 0.95 

Nocardiamide_A 687.5 peptide 8.0×10-24 MSV000078936 6 0.97 

NVA2-g-hydroxy-Meleu4-cyclosporin 1232.9 peptide 5.5×10-17 MSV000079777 9 0.90 

Peptidolipin_NA 964.7 lipopeptide 1.6×10-17 MSV000078937 4 0.64 

Pitipeptolide_E 794.5 peptide 9.3×10-19 MSV000078568 5 0.90 

Pitiprolamide 905.5 peptide 7.3×10-17 MSV000078568 4 0.95 

Precarriebowmide 865.5 lipopeptide 2.1×10-24 MSV000079050 7 0.75 

Precarriebowmide_S-Oxide 881.5 lipopeptide 9.3×10-21 MSV000079050 6 0.70 

Puwainaphycin_A 1235.7 peptide 7.1×10-26 MSV000078982 4 0.97 

Puwainaphycin_B 1233.7 peptide 6.4×10-34 MSV000078982 5 0.91 

Puwainaphycin_C 1227.7 peptide 7.9×10-28 MSV000078982 4 0.91 

Sch_378167_5'-Amide 569.3 peptide 3.5×10-31 MSV000079098 7 0.61 

SCH-378161 1123.6 peptide 2.5×10-27 MSV000079098 6 0.99 

Streptocidin_C 649.9 peptide 8.6×10-24 MSV000079598 7 0.60 
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Surfactin_ A1 1008.7 lipopeptide 1.1×10-26 MSV000078936 6 0.83 

Surfactin_7-L-Valine_analogue 1022.7 lipopeptide 1.9×10-26 MSV000078936 5 0.93 

Surfactin_B1 1022.7 lipopeptide 5.2×10-23 MSV000078937 3 0.68 

Surfactin_C1 1036.7 lipopeptide 1.2×10-25 MSV000078688 6 0.84 

[Ile2,Val7]-Surfactin_C14i 1008.7 lipopeptide 2.3×10-17 MSV000079450 4 0.82 

[Val7]-Surfactin_C13ai 994.7 lipopeptide 1.9×10-23 MSV000078936 6 0.80 

Surfactin_D 1050.7 lipopeptide 6.8×10-24 MSV000078937 6 0.96 

Surugamide_A 912.6 peptide 1.6×10-25 MSV000078936 6 0.91 

Surugamide_B 898.6 peptide 7.5×10-33 MSV000079519 7 0.90 

Surugamide_C 898.6 peptide 6.8×10-32 MSV000079519 6 1.00 

Surugamide_D 898.6 peptide 5.9×10-30 MSV000078937 6 0.98 

Viequeamide_B 808.5 lipopeptide 2.7×10-18 MSV000078568 5 0.96 

[Dihydro-MeBmt]1-[g-hydroxy-Meleu]4 1220.9 peptide 8.3×10-18 MSV000079777 8 0.87 

 

Supplementary Table S4. Cyclopeptides in the CYCLOLIBRARY dataset. The peptides that gave rise 

to 81 spectra in the CYCLOLIBRARY dataset with their corresponding peptide mass, P-value, the GNPS 

ID of the dataset a spectrum belongs to, k-merScore, and cycloIntensity. The column “compound type” 

specifies whether the compound is fully peptidic or represents a lipopeptide. The blue rows show the 13 

cyclopeptides that are made up entirely of cyclopeptidic amino acids.  

 

Information about the GNPS dataset. The GNPS dataset is formed by 40 MassIVE 

datasets that were selected from 120 datasets analyzed in Gurevich et al.8 to exclude 

potentially miscalibrated spectral datasets. Since miscalibrated datasets typically do not 

result in any cyclopeptide identifications, we searched each of these 120 datasets with 

Dereplicator and excluded datasets that did not result in any identifications (with 0% FDR 

and P-value below 10-15) from further analysis, leaving us with 40 datasets 

(Supplementary Table S5). 

 
GNPS ID #spectra #spectra 

after pre-

processing 

#cyclo

spectra 

  

#putative 

cyclo-

peptides/ 

cyclo-

families 

found 

 by 

CycloNovo   

#identified 

cyclo-

peptides/ 

cyclo-

families 

identified by 

Dereplicator 

(among 

cyclo-

spectra)  

#identified 

cyclo-

peptides/ 

cyclo-

families 

identified by 

Dereplicator 

(among all 

spectra) 

#identified 

branch-

cyclic . 

peptides/ 

branch-

cyclic 

families  

identified by 

Dereplicator 

 (among 

cyclo- 

spectra) 

MSV000078567 730582 316993 4 2/1 2/1 4/2 0/0 

MSV000078568 23582408 12118472 317 74/35 9/8 15/10 1/1 

MSV000078584 680906 263160 0 0/0 0/0 0/0 0/0 

MSV000078604 311617 281617 606 56/25 6/3 6/3 3/3 

MSV000078606 289170 237988 122 32/12 1/1 1/1 7/6 

MSV000078635 680168 569316 2388 124/40 9/4 12/5 10/7 

MSV000078656 2844 1023 88 14/1 10/5 11/6 3/3 

MSV000078710 1469076 689912 6 1/1 2/2 3/3 0/0 

MSV000078787 1767830 1281235 208 58/31 25/13 25/13 8/7 

MSV000078839 717600 504350 1 1/1 1/1 1/1 0/0 

MSV000078847 167917 115603 19 7/5 1/1 1/1 1/1 

MSV000078892 847114 461769 27 8/4 3/2 4/3 0/0 

MSV000078936 2059306 1538683 526 58/30 25/13 30/15 5/5 

MSV000078937 1694918 1303349 256 52/26 26/14 33/19 11/9 

MSV000078982 984 727 32 4/2 3/1 3/1 2/2 

MSV000079044 576282 270860 2 1/1 1/1 2/1 0/0 

MSV000079050 1241328 683124 207 24/8 3/1 7/3 3/3 

MSV000079054 702020 364382 112 16/7 13/6 13/6 3/3 

MSV000079069 847145 215229 1066 23/2 0/0 1/1 0/0 

MSV000079140 607488 443147 1118 25/7 14/6 15/7 0/0 

MSV000079274 5433248 3457806 14 2/2 1/1 1/1 0/0 

MSV000079312 54806 25354 1112 15/3 0/0 1/1 0/0 

MSV000079450 697812 581012 2245 120/39 6/2 6/2 9/6 
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MSV000079471 22379 16138 68 14/4 10/4 10/4 0/0 

MSV000079481 45742 7692 48 2/1 0/0 2/2 0/0 

MSV000079502 47450 3167 14 3/1 3/1 4/2 0/0 

MSV000079516 120154 19113 138 22/6 4/2 5/2 0/0 

MSV000079517 22516 2911 37 7/3 3/1 4/2 0/0 

MSV000079519 76289 13985 112 15/6 3/1 5/2 0/0 

MSV000079568 224645 10273 0 0/0 0/0 4/2 0/0 

MSV000079581 129012 41779 74 4/3 2/2 5/5 0/0 

MSV000079598 919494 286130 9 3/1 4/1 6/3 0/0 

MSV000079651 81818 5239 0 0/0 0/0 2/1 0/0 

MSV000079679 595244 300682 109 24/14 12/7 14/7 2/2 

MSV000079772 75916 13870 40 7/5 2/2 2/2 0/0 

MSV000079778 1242178 451962 265 50/44 6/1 7/2 0/0 

MSV000079813 578683 170990 23 6/4 2/2 3/2 0/0 

MSV000079888 238820 74317 170 17/7 8/4 9/5 1/1 

MSV000080115 1567520 709527 400 33/9 12/6 13/7 9/6 

MSV000080116 70250 31009 19 9/5 6/3 6/3 0/0 

TOTAL 51220679 27883895 12004 512/213 61/37 91/51 41/27 

Supplementary Table S5. Information about the GNPS dataset. The last row shows the total number of 

spectra and unique cyclopeptides/cyclofamiles across all datasets. The datasets marked in red, blue, and 

green form GNPSCYANO, GNPSPSEUDO, and GNPSACTI subsets of the GNPS dataset, respectively. 

Supplementary Note: CycloNovo analysis of the CYCLOLIBRARY dataset 

CycloNovo recognized 45 out of 81 spectra in the CYCLOLIBRARY dataset as 

cyclospectra. It classified 12 out of 13 cyclopeptides built from cyclopeptidic amino acids 

as cyclospectra and de novo sequenced them with one of the top three highest scores. 

CycloNovo is unable to sequence most spectra in the CYCLOLIBRARY dataset since 68 

of them originated from lipopeptides or peptides containing non-cyclopeptidic amino 

acids. To evaluate how CycloNovo performs on 45 cyclospectra in this dataset, we 

extended the set of cyclopeptidic amino acids to include the mass of the lipid chain and/or 

the masses of non-cyclopeptidic amino acids for each spectrum. Using this admittedly 

imperfect benchmarking approach, CycloNovo sequenced 22 of 45 cyclospectra as a 

highest-scoring de novo reconstructions and an additional 16 spectra with one of the three 

highest scores. Supplementary Table S6 lists the highest-scoring reconstruction for these 

spectra and illustrates that the highest-scoring reconstruction is similar to the correct 

amino acid sequence for all these spectra.  

 

peptide ID 

 sequence of aa masses in the peptide 

vs.  

sequence of aa masses in the                           

highest-scoring reconstruction 

 (if PSM score ≠ max score) 

PSM 

score 

max 

score 

# 

reconstructions 

with 

score  

≥ 𝐏𝐒𝐌 score 

BK 101C 113 113 115 99 113 113 128 240    21 21 6 

nocardiamide A 113 113 99 99 99 163      19 19 1 

cyclolinopeptide A 113 113 113 147 147 97 97 99 113   30 30 1 

cyclolinopeptide B 113 99 147 147 97 97 113 113 131   24 24 1 

bacillopeptin B 239 101 87 129 87 114 163 114    17 17 1 

daitocidin_Pumilacidin F 254 99 113 115 113 113 113 129    24 24 4 

BK 101A 113 113 115 99 113 113 128 226    19 19 6 

cyclolinopeptide H 113 186 147 147 97 131 113 147    16 16 1 

cyclosporin 9CI_Deoxy 167 113 127 127 71 71 127 99 127 71 85 29 29 6 

cyclosporin B 183 113 127 127 71 71 127 99 127 71 71 30 30 4 
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laxaphycin A 57 113 113 113 113 147 101 113 83 101 141 44 44 1 

surfactin 2  240 113 113 115 99 113 99 129    21 21 8 

cyclolinopeptide D 113 186 147 147 97 113 113 147    20 20 2 

cyclolinopeptide E 113 147 113 97 147 99 113 147    23 23 1 

lipodepsipeptide KMM 

1364A 
240 99 113 115 113 113 113 129    20 20 8 

Lipodepsipeptide KMM 

1364E 
268 99 113 115 113 113 113 129    20 20 2 

cyclolinopeptide C 113 99 147 147 97 97 113 113 147   24 24 1 

bacillomycin D2 97 114 163 114 225 101 87 129    22 22 1 

bacillomycin D3 97 114 163 114 239 101 87 129    21 21 2 

SCH-378161 113 57 97 147 114 143 99 97 113 142  29 29 2 

[Val7]-Surfactin C13ai 99 113 113 129 212 99 113 115    21 21 3 

lipopeptide_NO 99 113 113 129 198 113 113 115    17 17 15 

cyclosporin,9CI 9 
183 113 127 127 71 71 127 99 127 71 85 

183 113 127 127 71 71 127 113 99 85 85 
32 33 10 

surfactin C1 
240 113 113 115 99 113 113 129    

240 113 113 99 113 115 113 129 
20 21 15 

cyclosporin C 
183 113 127 127 71 71 127 99 127 71 101 

183 113 127  85  71 113 128 71 99 99 128  
33 34 49 

surfactin 1  
254 113 113 115 99 113 99 129    

254 113 113  99  99 129 99 129  
23 24 16 

puwainaphycin_B 
325 97 128 115 57 128 99 101 83 99  

325 97 99 128 57 115 128 101 83 99 
26 27 6 

surugamide A 
128 113 113 71 113 113 147 113 

128 113 113 71 113 113 113 147 
23 24 5 

surugamide B 
128 99 113 71 113 113 147 113    

128 99 113 71 113 147 113 113  
26 27 5 

surugamide D 
128 113 99 71 113 113 147 113    

128 113 113 71 99 113 147 113 
28 30 7 

lichenysin G5b 
99 113 115 99 113 113 128 240 

99 113 99 115 113 113 128 240    
20 21 6 

pitiprolamide 
100 97 99 142 97 175 97 97    

100 97 142 99 97 175 97 97 
17 18 6 

surfactin 7-L-Valine 240 99 113 115 99 113 113 129    

240 99 99 129 99 113 113 129 
22 24 15 

surfactin D 254 113 113 115 99 113 113 129    

254 113 113 113 115 113 99 129 
22 25 14 

majusculamide C 

Demethoxy 

57 114 113 71 141 161 113 57 127 

57 113 114 71 161 141 113 57 127   20 22 69 

cyclosporin E 183 99 127 127 71 71 127 99 127 71 85 

183 99 127 127 99 71 71 127 127 71 85 
24 26 53 

champacyclin 128 99 113 147 113 113 71 113 

128 99 71 113 147 113 113 113     
21 23 21 

surugamide C 128 113 113 71 113 113 147 99  

128 113 113 71 113 99 147 113 29 31 10 

Supplementary Table S6. 38 cyclopeptides reconstructed by CycloNovo from 45 cyclospectra in the 

CYCLOLIBRARY dataset. The PSM score represents the score of the PSM in the CYCLOLIBRARY 

dataset. The “max score” represents the score of the top-scoring reconstruction. For 22 cyclopeptides, the 

correct sequence of the cyclopeptide has the highest-scoring reconstruction. For the remaining 16 

cyclopeptides, a highest-scoring reconstruction is listed below the correct sequence of the cyclopeptide in 

blue (differently arranged amino acid masses in the reconstructed cyclopeptide are shown in bold blue). 

Only in one case (cyclosporin C), CycloNovo predicted the wrong amino acids (shown in red) for the top-

scoring reconstruction. CycloNovo failed to sequences 45-38=7 cyclospectra in the CYCLOLIBRARY 

dataset since it was not able to predict all their amino acids.  
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Supplementary Note: Cyclopeptide-encoding transcripts in the S.VULGARIS 

dataset 

Supplementary Table S7 lists ORFs (translated into amino acid sequences) in the orbitide-

encoding transcripts. The PawL1 proteins have dual fates; they encode an albumin as well 

as a cyclopeptide(s). An enzyme asparaginyl endopeptidase (targets Asp, Asn) matures 

both the albumin and the cyclopeptide. 

 

gene ORF sequence 

Sv_PawL1b 
AKLIVVVFAFAVIVAFAEVSAYKTTITTTTVEDNFVGGTSFDRLSENFMYGTPVDRL

SDNRGSQKQCHRQIP 

Sv_PawL1c 
AKLIVVVFAFAVIVAFAEVSAYKTTITTTTVEDNTFGVVIADRLSDNFVDTTGYDRL

SDNRGSQKQCHRQIP 

Sv_PawL1d 
ITTVEDNALVVGLDGLDNPITTTVEDNYFAGLIDGLDNPITTTVEDNGVFLGLDGLD

NPSGSTYQCRRQIQGQQLNHCQMHIIQQGRSLVE 

Sv_PawL1e 
FVAIVAFSEQVSAYKTTIPTTVEDNALLVALDGLDNGFHGTFDGLDNGFHGTFDGLD

NPSGSTYQCRRQIQ* 

Sv_PawL1f 
TTVEDNALFLGLDGLDNPSGSTYQCRRQIQGQQLNHCQMHITQQGRSLMENPRQQQL

LQMCCNQLRQVEEECQCE* 

Sv_PawL1g 
ITTTVEDNALVVGLDGLDNPITTTVEDNFVGGVIDGLDNFVGGVIDGLDNPSGSTYK

CRRQIQGQQLNHCQMHITQQGRSLVE 

Sv_PawL1h MTKVSAIVVLAFVAIVAFSEQVSAYKTTITTPVEDNAIFLGVDGLDNPI* 

Sv_PawL1i 
LDGLDNALLGIADGLDNPSGSTYQCRMQIQGQQLNHCQMHIIQQGRSLVENPRQQQQ

LQMCCNQLR* 

Sv_PawL1j SEQVSAYKTTITTTVEDNAIFGVVDGLDNPSGSTYQCRKQIQGQQ* 

Sv_PawL1k 
AIVAFSEQVSAYKTTITTTVEDNAIFLGVDGLDNPITTTVEDNGVSDFFDDGLDKPS

GSTYQCRRQIQGQQLNHCQMHISQQGRSLVENPRQQQQLQM* 

Sv_PawL1l FVAIVAFSEQVSAYKTTITTPVEDNGVVVGFDGLDNPSGSTYQCRKQIQGQQ* 

 

Supplementary Table S7. ORFs in the cyclopeptide-encoding transcripts. All identified ORFs originate 

from various PawS1-Like genes. The sequences are color-coded based on the subunits they belong to: 

endoplasmic reticulum signal sequence (pink), the reconstructed cyclopeptide (blue), 2S albumin small 

subunit (lime green), and 2S albumin large subunit (orange). While the first three sequences (Sv_PawL1b, 

Sv_PawL1c, and Sv_PawL1d) are known PawS1-Like genes in S. vulgaris, the other eight sequences 

(named Sv_PawL1e through Sv_PawL1l) are novel PawS1-Like genes that were identified by searching for 

novel cyclopeptides.  

 

Supplementary Figure S11 shows cyclospectra in the S.VULGARIS dataset, annotated 

using their CycloNovo reconstructions. 
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Supplementary Figure S11. Annotated cyclospectra of the ten reconstructed cyclopeptides in the 

S.VULGARIS dataset. The x-axis shows the m/z ratios and the y-axis shows the percentage of the peak 

intensity compared to the intensity of the largest peak in that spectrum.  

Supplementary Note: Cyclopeptides in the HUMANSTOOL dataset 

 

Identification (Dereplicator) and de novo reconstruction (CycloNovo) of peptides in 

the HUMANSTOOL dataset. Supplementary Table S8 lists cyclopeptides identified by 

Dereplicator in the HUMANSTOOL datasets. Supplementary Table S9 lists CycloNovo  

reconstructions of 31 cyclopeptides in the HUMANSTOOL dataset. 
 

precursor   

mass 
peptide    

PSM 

score 

#reconstructions      

with score ≥ PSM 

score  

P-value peptide ID 

1040.66 ILVPPFFLI 31 1 1.2×10-54 cyclolinopeptide A 

1058.61 MLIPPFFVI 24 1 2.3×10-42 cyclolinopeptide B 

1074.62 M+16LIPPFFVI 16 1 9.7×10-18 cyclolinopeptide C 

1064.57 M+16LLPFFWI 20 2 1.5×10-33 cyclolinopeptide D 

1082.52 M+16LMPFFWI 19 1 1.2×10-31 cyclolinopeptide H 

FVDTTGYD FVGGTSFD 

TFGVVIAD GFHGTFD 

AIFGVVD FVGGVID 

ALVVGLD 

ALLGIAD 

GVVVGFD 

ALVGGLD 
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977.56 M+16LVFPLFI 25 1 1.6×10-43 cyclolinopeptide E 

961.55 MLVFPLFI 25 10 3.1×10-42 cyclolinopeptide P 

567.36 GIVIPS 11 1 2.1×10-17 citrusin V 

 
Supplementary Table S8. Cyclopeptides identified by Dereplicator in the HUMANSTOOL dataset.  

The correct sequence of all reconstructed cyclopeptides has the highest score among all reconstructions. 

For each cyclopeptide, the score of the correct cyclopeptide (column “PSM score”), the number of 

reconstructions with scores larger or equal to the PSM score (column “#reconstructions score ≥ PSM 

score”), and P-values are listed. 

 
peptide 

mass 

precursor 

mass 

sequence of amino acid masses score P-value 

1151.52 1152.53 87 99 99 101 147 129 71 97 113 71 137 19 2.3×10-27 

1098.49 549.75 147 71 87 137 57 99 71 129 163 137 23 6.6×10-24 

1085.53 543.27 99 99 137 57 113 115 186 71 137 71 20 6.2×10-30 

1081.51 1082.52 147 113 131 97 147 147 186 113 19 1.2×10-31 

1080.55 1081.56 87 99 99 101 147 129 71 97 113 137 22 3.0×10-36 

1073.61 1074.62 147 113 113 97 97 147 147 99 113 16 9.7×10-18 

1063.56 1064.57 147 113 113 97 147 147 186 113 20 1.5×10-33 

1060.75 530.74 147 163 57 99 57 137 71 129 71 129 22 2.7×10-29 

1057.61 1058.62 131 113 113 97 97 147 147 99 113 24 2.3×10-42 

1052.52 1053.53 87 99 101 147 129 71 97 113 71 137 25 8.6×10-38 

1039.65 1040.66 113 113 99 97 97 147 147 113 113 31 1.2×10-54 

1003.54 1004.55 71 97 147 99 147 97 147 99 99 13 4.0×10-17 

981.493 982.50 101 147 129 71 97 137 113 186 24 2.6×10-37 

978.543 979.55 128 113 147 87 113 57 99 87 147 18 6.1 ×10-25 

976.553 977.56 147 113 99 147 97 113 147 113 25 1.6×10-43 

960.553 961.56 131 113 99 147 97 113 147 113 25 3.1×10-42 

948.493 949.50 147 128 99 87 71 147 57 99 113 17 2.3 ×10-23 

891.463 892.47 113 147 101 71 57 57 99 99 147 15 3.4×10-19 

889.453 890.46 128 101 103 71 113 147 129 97 14 2.0×10-20 

888.493 889.50 57 97 147 113 113 99 99 163 15 9.7×10-21 

877.453 878.46 113 99 57 71 147 163 113 57 57 20 1.1×10-27 

873.403 874.41 71 97 115 71 97 101 87 97 137 17 2.7×10-23 

872.453 873.46 57 71 87 113 71 99 186 101 87 18 1.7×10-24 

871.453 872.46 147 101 71 57 99 114 97 57 128 19 2.5×10-26 

856.463 857.47 99 99 147 97 147 71 97 99 21 3.2×10-37 

841.433 842.44 97 147 101 57 97 113 128 101 20 2.2×10-29 

829.433 830.44 57 113 57 97 71 147 101 99 87 13 3.7×10-17 

826.393 827.40 147 99 137 71 71 99 115 87 17 5.8×10-23 

812.493 813.50 87 99 57 99 99 71 128 71 101 15 6.6×10-19 

811.413 812.42 147 113 57 57 57 97 99 97 87 16 2.0×10-20 

801.383 802.39 97 87 57 129 99 57 71 57 147 17 1.9×10-23 

695.273 696.28 71 57 163 129 57 71 147 18 6.1×10-27 
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Supplementary Table S9. De novo reconstructions of 31 cyclopeptides in the HUMANSTOOL 

dataset. For each spectrum, its precursor mass, the de novo reconstruction (shown as a sequence of 

nominal masses of amino acids), the score, and the P-value are shown. De novo reconstructions are ordered 

in the decreasing order of their precursor masses. Precursor masses of spectra identified by Dereplicator are 

highlighted in blue. Cyclopeptides highlighted in green represent a novel cyclofamily described in the 

Supplementary Note “Novel cyclofamily in the HUMANSTOOL dataset.”  

 

Cyclospectra of branch-cyclic peptides in the HUMANSTOOL dataset. We classify a 

peptide as branch-cyclic if its backbone includes a cycle (with all monomers connected 

via amide bonds) and a side chain that includes at least one additional amide bond not 

included in the cycle. Although CycloNovo classify spectra of some branch cyclic 

peptides as cyclospectra (see Supplementary Note “Information about spectral datasets”), 

it is unable to de novo sequence them. Nevertheless, CycloNovo provides information 

about substrings of branch-cyclic peptides made of cyclopeptidic amino acids. For 

example, CycloNovo classified the spectrum of massetolide F in the HUMANSTOOL 

dataset as a cyclospectrum. The lipopetide massetolide F consists of the cycle TILSLSLV 

and a branch EL (along with a fatty acid chain tail with nominal mass 171 Da) connected 

to the cycle via an amide bond between T and E. We represent this branch cyclic peptides 

as a concatenate between the sequence of nominal masses of the cyclic and branch region 

separated by “*” sign, i.e., massetolide F is represented as 100, 113, 87, 113, 87, 113, 99 

* 129, 113, 171. CycloNovo found five cyclopeptidic amino acids in massetolide F (S, I, 

L, V, T, and E) and missed the lipid chain (171 Da).  

 

Assembly of the human stool sample where massetolide F was detected. We used 

metaSPAdes10 to assemble the metagenomic dataset, generated from the stool sample 

(dated by 6/16/2014) where massetolide F was detected, This dataset includes 34.5 

million paired reads which are assembled into 81 thousand scaffolds of lengths longer 

than 500 bp amounting to 407 Mb total assembly length. 

Supplementary Note: Cyclopeptides in the GNPS dataset  

 

Supplementary Figure S13 shows the number of identified cyclopeptides across all GNPS 

sub-datasets. Supplementary Figure S14 shows the number of cyclopeptides and 

cyclofamilies that gave rise to cyclospectra found by CycloNovo across all GNPS sub-

datasets. 

 

 
Supplementary Figure S13. Number of cyclopeptides identified by Dereplicator across all GNPS sub-

dataset. Dereplicator identified 81 cyclopeptides in the GNPS dataset. Since some cyclopeptides are 

identified in multiple sub-datasets, the total numbers of identified cyclopeptides across all GNPS sub-

datasets (180) exceeds 81. The green (blue) part of each bar represent spectra that were (were not) 

classified by CycloNovo as cyclospectra. 
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Supplementary Figure S14. Number of cyclopeptides (yellow) and cyclofamilies (pink) found by 

CycloNovo across all GNPS dataset.  
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