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SUMMARY 

Transient receptor potential vanilloid 2 (TRPV2) plays a critical role in neuronal development, cardiac 

function, immunity, and cancer. Cannabidiol (CBD), the non-psychotropic therapeutically active ingredient of 

Cannabis sativa, is a potent activator of TRPV2 and also modulates other transient receptor potential (TRP) 

channels. Here, we determined structures of the full-length TRPV2 channel in a CBD-bound state in detergent 

and in PI(4,5)P2 enriched nanodiscs by cryo-electron microscopy. CBD interacts with TRPV2 through a 

hydrophobic pocket located between S5 and S6 helices of adjacent subunits, which differs from known ligand 

and lipid binding sites in other TRP channels. Comparison between apo- and two CBD-bound TRPV2 structures 

reveals that the S4-S5 linker plays a critical role in channel gating upon CBD binding. The TRPV2 “vanilloid” 

pocket, which is critical for ligand-dependent gating in other TRPV channels, stays unoccupied by annular lipids, 

PI(4,5)P2, or CBD. Together these results provide a foundation to further understand TRPV channel gating 

properties and their divergent physiological functions and to accelerate structure-based drug design. 
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INTRODUCTION 

Transient receptor potential (TRP) channels play significant roles in human physiology and facilitate 

permeation of essential ions (Na+, Ca2+) through the plasma membrane1,2. Transient receptor potential vanilloid 

2 (TRPV2) belongs to the thermoTRPV subfamily of TRP channels (TRPV1-TRPV4), yet TRPV2 is insensitive 

to both vanilloids and heat3. It has been the least studied among TRPVs due to the lack of specific 

pharmacological agonists or antagonists4. Cannabidiol (CBD), a natural product of the Cannabis sativa plant, is 

a potent TRPV2 agonist4 which has been recently used to demonstrate the important role of TRPV2 in the 

inhibition of glioblastoma multiforme cell proliferation5-9. These findings place TRPV2 on the list of important anti-

tumor drug targets5-9.   

Cannabinoids and cannabinoid analogs have been reported to activate a variety of TRP channels, including 

TRPV1-44,10,11 and TRPA112. CBD activates TRPV2 most potently, with an EC50 of 3.7 µM for rat TRPV24, making 

it an excellent candidate for the investigation of TRP channel modulation by CBD using cryo-electron microscopy 

(cryo-EM). Additionally, the modest activation of other TRP channels by CBD suggests that a cannabinoid 

binding site could be conserved within this family of channels4,10-12. Understanding the molecular mechanism of 

CBD activation of functionally diverse TRP channels could allow us to gain insight into the gating mechanisms 

of these channels and develop novel modulators.  

The TRPV channel subfamily members (TRPV1-TRPV6) have strong structural homology13, yet the effects 

of lipids on these channels are widely divergent14-18. Structural studies of members of this family have shown 

that both modulating and structural lipids can bind the “vanilloid” pocket located in the transmembrane domain 

(TMD) between the S3 and S4 helices and the helical S4-S5 linker of each monomer15-17. This pocket has also 

been shown to be a drug binding site in some TRPV channels and different occupants of this pocket can transmit 

conformational changes into the pore which affect gating15,16. This “vanilloid” pocket does not have very strong 

lipid density in currently available structures of TRPV218-20, TRPV321,22 and TRPV423 channels, while annular or 

modulating lipids have strong density in this pocket in TRPV115, TRPV516 and TRPV617 channels. One lipid of 

interest for this study is phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2), which is a known modulator of all 

TRPV channels14, but it is uncertain whether the mechanisms of modulation are conserved among these closely 

related channels14.  PI(4,5)P2 has been shown to both activate24 and inhibit TRPV218, but the exact molecular 

mechanism is poorly understood14. On the other hand, the PI(4,5)P2 activation mechanism of TRPV5 and TRPV6 

is conserved25 and a novel PI(4,5)P2 binding site has recently been revealed using cryo-EM16. 

To investigate the effect of CBD and lipid binding on TRPV2 channel gating, we determined the cryo-EM 

structure of the full-length TRPV2 channel in a CBD-bound state at 4.3 Å resolution in detergent and at 3.5 Å 

resolution in PI(4,5)P2 enriched nanodiscs. The CBD-bound TRPV2 structure in nanodiscs clearly revealed that 

CBD interacts with the channel through a novel hydrophobic ligand binding pocket located between the S5 and 

S6 helices. CBD binding to the channel in nanodiscs induced an α- to π-helix transition in the S4-S5 linker, 

however this conformational change did not produce significant changes in the pore, suggesting that we may 

have captured TRPV2 in either an intermediate agonist-bound state or a desensitized state. The TRPV2 

“vanilloid” binding pocket remained unoccupied by either CBD or PI(4,5)P2, despite enrichment of the lipid bilayer 
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with soluble PI(4,5)P2. These results imply that TRPV2 physiological activity may not depend on tightly bound 

annular or modulating lipids in this pocket, which are essential for the function of some other TRPV channels. 

Despite lacking clear density for CBD, the CBD-bound TRPV2 structure in detergent revealed that CBD can 

induce conformational changes in the S4-S5 linker of the channel that allowed us to capture TRPV2 in a partially 

open state. Together these results provide new information on TRPV2 ligand-dependent gating and this 

knowledge could be further explored for the design of novel TRP channel therapeutics.  

 

RESULTS 

Detergent-solubilized TRPV2 in CBD-bound state 

To determine the structure of TRPV2 in a CBD-activated state, we first used detergent solubilized full-length 

rat TRPV2 protein19 and incubated it for 30 min with 30μM CBD before freezing it in vitreous ice. This corresponds 

to ten times the previously reported EC50
4 and the reported incubation time with various ligands for truncated 

TRPV115,26. The cryo-EM images revealed a monodisperse distribution of detergent-solubilized TRPV2 protein 

in vitreous ice in the presence of 30μM CBD (Supplementary Figure 1). After 2D classification, the best particles 

were subjected to 3D auto-refine and 3D classification in RELION27, which yielded one distinct 3D class with 

four-fold symmetry.  This class was further classified and refined to yield a final TRPV2 channel in a CBD-bound 

state at 4.3 Å resolution (Supplementary Figure 1, Supplementary Figure 2, Supplementary Table 1). The higher-

resolution features of this class in the transmembrane region of the channel (~4.0 Å) allowed us to build a model 

for this map and place sidechains in the transmembrane region of the channel (Supplementary Figure 1, 

Supplementary Figure 3). As in previous cryo-EM structures of TRPV218-20, it forms a homo-tetramer featuring 

six transmembrane helices (S1-S6) spanning the transmembrane domain (TMD) with six ankyrin repeat domains 

(ARDs) splayed out like a pinwheel on the cytoplasmic face of the protein, with the ARDs of adjacent monomers 

glued together through a β-sheet region (Supplementary Figure 2).  S1-S4 form a bundle, while S5, S6 and the 

pore helix extend outwards to domain swap with adjacent monomers and form the pore. Despite working with 

the full-length rat TRPV2 protein, our map lacks density for the ~30 residues that make up the pore turret between 

the top of S5 and the pore helix, suggesting that the pore turrets form a flexible loop. 

To have a better comparison than the currently available apo states of TRPV2 18-20, we processed the original 

movies for apo full-length rat TRPV2 in detergent from scratch using RELION 3.028, which we had collected for 

our previously published apo full-length rat TRPV2 structure19.  New algorithms for motion correction29, CTF 

correction30 and autopicking28 yielded an improved selection of particles from the original movies.  This new 

dataset, which cannot be compared to the previously published dataset19, yielded a map at 4.2 Å resolution 

(Supplementary Figure 4, Supplementary Figure 5).  We were able to build a model for this map and place 

sidechains in most of the transmembrane region of the channel, which had local resolution at ~4.0 Å 

(Supplementary Figure 4, Supplementary Figure 6).  

Comparison between TRPV2 in the apo state at 4.2 Å resolution and the CBD-bound state at 4.3 Å did not 

show obvious density for a drug but did reveal that the channel adopted a partially open conformation (Figure 

1A-C). It is occluded at the lower gate (Met645) (Figure 1C), which would prevent ion permeation through the 
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channel (Figure 1C). On the other hand, the application of 30μM CBD induced global rearrangements, subtly 

pulling the tops of S5, S6 and the pore helix outwards (Figure 1D).  

Beyond the changes at the pore, the addition of 30μM CBD also induced dramatic conformational changes 

to S1-S4, the TRP helix, and the ARDs, with an overall RMSD between apo and CBD-bound TRPV2 in detergent 

of 2.5 Å (Figure 1D, E). The S1-S4 bundle and TRP helix move together outwards by ~2.5 Å and upwards by 

~1.5 Å, for a total translation of ~3 Å (Figure 1D).  The larger outward shift of the S1-S4 bundle creates space 

for the upper parts of S5, S6 and the pore helix to move slightly outwards, which leads to the opening of the 

selectivity filter (Figure 1A, B). The outward shift of the TRP helix also shifts the C-terminal end of the ARD region 

outward while the N-terminal end of the ARDs is anchored by an interaction with the β-sheet region of an adjacent 

monomer, causing the ARDs to pivot.  This moves the most C-terminal portion of the ARDs outwards by ~2.5 Å 

in the same direction as the TRP helix, but with less than 0.5 Å upward movement, while the N-terminal portion 

of the ARDs move upwards by ~2.5 Å and outwards by ~2.5 Å perpendicular to the movement of the TRP helix 

(Figure 1D, E).  In the apo TRPV2 structure, the most C-terminal residues visible (Glu716-Pro729) wrap around 

the bottom of the β-sheet region, making contacts with ARDs 2-4 of the adjacent monomer.  Interestingly, in the 

CBD-bound structure, the most C-terminal residues move away from the tail and are only visible up to Leu719, 

but there is still density for ~16 residues in a V-shaped loop between the β-sheet region and ARDs 1-3 of the 

adjacent monomer (Figure 2A).  This density has no continuity with the rest of the map, but due to the distance 

from the C-terminus we predict that this density should be attributed to unknown residues from the N-terminus. 

The origin of these large movements seems to be the S4-S5 linker and S5 helix.  The bottom of the S5 helix 

of the CBD-bound structure bows outwards from the pore and the S4-S5 linker shifts away from S5 by 4.2 Å and 

rotates outwards by 15°, causing a break in the helix at residues Gln530, Lys531, and Val532 (Figure 2B).  In 

addition to pushing the S1-S4 and TRP helix outwards, this movement also rotates the N-terminal end of the 

TRP helix by 12° (Figure 2C).  The combined outward movement and rotation of the TRP helix unravels the first 

3 residues of helix adjacent to S6, which also allows for a slight change in the rotation of the bottom of the S6 

helix, bringing Val649 further into the pore (Figure 1B). This movement seems to be initiated by the large outward 

movement of S5.  In apo TRPV2 in detergent, Tyr525 on the S4-S5 linker fits into a pocket between S5 and S6 

of an adjacent monomer (Figure 2D).  In CBD-bound TRPV2 in detergent, the outward bowing of S5 moves 

Phe540 2 Å into this pocket, pushing Tyr525 out of the pocket so that it is partially exposed to solvent on the 

cytoplasmic face of the protein (Figure 2E).  Additionally, this puts Asn639 in a position to form a hydrogen bond 

with the backbone carbonyl of residue Ile529.  Based on all of these conformational changes, we suggest that 

this may represent a partially open state of the channel.  

 

CBD-bound TRPV2 in PI(4,5)P2 enriched nanodiscs 

To improve our structure and identify the CBD binding site, we reconstituted full-length rat TRPV2 into 

nanodiscs in the presence of 400μM PI(4,5)P2 dioctanoyl (diC8). 100μM diC8 PI(4,5)P2 was reported to mostly 

restore the activity of desensitized TRPV2 in PI(4,5)P2-depleted membranes24, so we used four times that 

amount to ensure saturation, a concentration which had also been sufficient to visualize diC8 PI(4,5)P2 in our 
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recently published TRPV5 structure16.  We also incubated our TRPV2 sample with 100μM CBD, which 

corresponds to thirty times the previously reported EC50
4 in order to saturate the protein with the ligand. We 

exposed TRPV2 to these modulators both during reconstitution into nanodiscs and during a final incubation 

before preparing grids. Cryo-EM images revealed a monodispersed distribution of TRPV2 protein in vitreous ice 

(Supplementary Figure 7).  After 2D classification, the best particles were subjected to 3D auto-refine and 3D 

classification in RELION28, which again yielded one distinct 3D class with four-fold symmetry. This class was 

further classified and refined to yield a final map with clear density for CBD at 3.5 Å resolution (Supplementary 

Figure 7, Supplementary Figure 8).  Due to the high quality of the map (Supplementary Figure 9), we were able 

to build an atomic model of TRPV2 and unambiguously position the CBD ligand and sidechains throughout the 

TMD, but found no density that could be attributed to PI(4,5)P2 and again did not observe any density for the 

TRPV2 pore turrets.  

The comparison between the CBD-bound TRPV2 pore in nanodiscs and the apo TRPV2 pore in detergent 

revealed that despite some differences in sidechain positions, both pores are still closed at both the selectivity 

filter and lower gate (Figure 3A, B). We were able to identify the CBD binding pocket and observe modest 

conformational changes in the S4-S5 linker, S1-S4 bundle, TRP helix, and ARDs, with an overall RMSD of 1 Å. 

In comparison to the ~3 Å outward expansion of the S1-S4 bundle in the CBD-bound structure in detergent 

(Figure 1D), the same region of the CBD-bound structure in nanodiscs expands outwards in a similar direction, 

but only by ~1 Å.  This suggests that we could have trapped TRPV2 in a CBD-bound intermediate state, or due 

to the timescale of CBD application before grid preparation and the CBD concentration above EC50, we could 

have trapped the channel in a desensitized state. 

The CBD binding site is located between the S5 and S6 helices (Supplementary Figure 10) of adjacent 

TRPV2 monomers and is lined with hydrophobic and aromatic residues, including Leu631, Tyr634, Val635 and 

Leu638 on the S6 helix of one monomer and Leu534, Leu537, Leu538, Phe540, Leu541, and Tyr544 on the S5 

helix of an adjacent monomer (Figure 3C).  The S6 of this adjacent monomer also contributes contacts at Leu637 

and Met640.  The pore helix of the adjacent monomer forms the cap of the pocket, blocking CBD from entering 

the pore with residues Phe601 and Thr604 (Figure 3C).  CBD is composed of a hydrophobic head group, a 

middle aromatic ring with two hydroxyl groups, and a 5-carbon tail (Supplementary Figure 10).  The hydrophobic 

head group enters furthest into the pocket, pushing Phe540, Tyr634 and Leu638 outwards from the CBD-binding 

pocket relative to their positions in the reprocessed apo TRPV2 model (Supplementary Figure 10). The hydroxyl 

groups of the middle region fit between turns of the alpha helices on either side, coordinating with the backbone 

hydrogen bonds between Leu631 and Val635 on the S6 of one monomer and Leu537 and Leu541 on the S5 of 

the adjacent monomer, and pushing Leu537 down and out of the way relative to its position in apo TRPV2 (Figure 

3C).  The 5-carbon tail has weaker density (Supplementary Figure 10, Supplementary Figure 11), indicating 

flexibility where the CBD tail meets lipids in the nanodisc bilayer. 

The density for CBD in this binding pocket in the CBD-bound TRPV2 in nanodiscs structure is prominent and 

clearly present in both half maps (Supplementary Figure 11).  As of the time of writing this manuscript, no other 

TRPV channel structures15-23 were reported to have lipid density in this pocket, so in combination with the good 

fit of the drug to the density, we are confident in assigning it to CBD. With the identification of the CBD binding 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted May 24, 2019. ; https://doi.org/10.1101/521880doi: bioRxiv preprint 

https://doi.org/10.1101/521880


pocket in the nanodisc structure, we re-examined the map of CBD-bound TRPV2 in detergent at the same pocket 

(Supplementary Figure 11).  In the half maps for CBD-bound TRPV2 in detergent there is some very weak extra 

density in this pocket, while none appears at the same level in the apo TRPV2 in detergent maps (Supplementary 

Figure 11).  More strikingly, the binding pocket in the CBD-bound TRPV2 in detergent map had expanded relative 

to the apo TRPV2 in detergent map to the size required to accommodate a molecule of CBD (Figure 4A). The 

distance between Tyr634 and Phe540 expanded by 1.5 Å between the apo and the CBD-bound TRPV2 in 

detergent models, from 5.7 Å to 7.2A, almost the same distance between these residues in the CBD-bound 

TRPV2 in nanodiscs structure (Figure 4A).  It’s interesting to note that the two CBD-bound structures expand 

the binding pocket in different ways (Figure 4A, B, C).  In the nanodisc structure, S5 bows out slightly, moving 

Phe540 outwards, but Tyr634 also turns away from the pocket (Figure 4B).  By contrast, in the detergent structure 

Tyr634 does not move, but S5 moves outwards more dramatically, moving Phe540 along with it (Figure 4C).  

This suggests that CBD is in fact present, if not resolved, in the CBD-bound TRPV2 in detergent structure.  The 

absence of clear density for CBD in the CBD-bound detergent structure is likely due to a combination of factors, 

including the lower resolution of this data and occupancy of the pocket (Supplementary Figure 11).  The highly 

hydrophobic nature of CBD would have caused it to accumulate in the nanodiscs, effectively increasing its local 

concentration even further in the CBD-bound TRPV2 in nanodiscs sample.  A recent paper from the Lee group22 

reported a similar situation for their structures of TRPV3 in the presence of 2-APB: although they were able to 

observe structural changes to the channel upon exposure to the activator, they were not able to identify density 

for the 2-APB22. 

The changes observed at the CBD binding pocket in both CBD-bound structures are transmitted to 

conformational changes at the S4-S5 linker, which acts as a hinge to move the S1-S4 bundle, TRP helix, and 

ARDs.  In the apo TRPV2 in detergent structure, the S4-S5 linker and S5 form a continuous, smoothly curved α-

helix (Figure 4D).  The slight outward movement of S5 in CBD-bound TRPV2 in nanodiscs induced a transition 

to a π-helix at residues Lys531-Ile533, forming a sharp bend between the S4-S5 linker and S5 (Figure 4E).  The 

larger outward bulge of S5 in CBD-bound TRPV2 in detergent caused a total break in the helix at residues 

Lys531-Ile533, allowing the remaining helix of the S4-S5 linker to rotate and move away from S5 by ~5.5 Å 

(Figure 4F).  Although the movement of S5 in the CBD-bound TRPV2 in nanodiscs structure pushed Phe540 

into the pocket between S5 and S6 above the S4-S5 linker, this did not expel Tyr525 from the pocket as in the 

CBD-bound structure in detergent (Supplementary Figure 12). Instead, Tyr525 forms a hydrogen bond with the 

backbone amide of Met640, as recently seen in the apo TRPV3 structure from the Lee group between the 

homologous residues Tyr575 and Met672 (PBD 6MHO) (Supplementary Figure 12). As these bonds are broken 

in their 2-APB sensitized TRPV3 structure featuring a π-helix in S6 (PDB 6MHS), the Lee group22 suggests that 

this interaction stabilizes the α-helix of S6 preventing it from forming a π-helix, which is implicated in channel 

opening17,21,22 (Supplementary Figure 12). 

In order to verify that this density is CBD and that these identified residues compose the CBD-binding pocket 

in TRPV2, we mutated key amino acids and performed Ca2+ imaging experiments. Due to the location of this 

pocket within the TMD, mutations to polar or charged residues were not feasible.  We predicted that mutating 

Leu541, Leu631 and Val635, residues at the edge of the binding pocket, to bulky hydrophobic residues like 
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phenylalanine may affect the entrance to the CBD binding pocket (Figure 3, Supplemental Figure 10). We found 

that in HEK293 cells transfected with the double mutant Leu541Phe- Leu631Phe, application of 20 and 50 μM 

CBD induced larger Ca2+ responses than in cells transfected with the wild type TRPV2 (Supplementary Figure 

13). The Val635Phe mutant had severely impaired function, it only showed responses to CBD in a small 

percentage of cells (<5%), which were similar to those in control cells not transfected with TRPV2 (data not 

shown).  Together, our results provide compelling evidence that this identified pocket is involved in CBD binding 

and channel modulation. 

 

TRPV2 lipid interactions 

Many previous TRPV cryo-EM maps have shown strong lipid densities in hydrophobic pockets in the TMD15-

17,21,22.  The “vanilloid” pocket of TRPV1 is occupied by phosphatidylinositol (PI) in the apo structure in 

nanodiscs15 (Figure 5A), and TRPV516 and TRPV617 both report obvious densities for annular lipids in this pocket 

in proteins prepared in both detergents and nanodiscs.  Both sets of recent TRPV3 structures have prominent 

lipid densities sitting above the “vanilloid” pocket between the tops of three helices: S5 and S6 of one monomer 

and S4 of an adjacent monomer21,22.  Most TRPV cryo-EM maps also have pronounced density for some lipid 

nestled in the pocket formed by the S1, S2 and TRP helices15-17,19-22.  The persistence of these lipids through 

purification processes suggests high affinity and potentially even a structural role, an idea supported by the 

alteration of pore structure after mutations to lipid binding pockets recently seen for TRPV321 and TRPV617. 

In contrast to these other TRPV cryo-EM maps15-17,21,22, previous cryo-EM maps of TRPV2 have consistently 

lacked obvious lipid density in the vanilloid pocket18-20.  The improved full-length TRPV2 maps in detergent and 

nanodiscs presented here continue this trend (Figure 5B, C, D) and the addition of PI(4,5)P2 to TRPV2 during 

nanodisc reconstitution did not reveal PI(4,5)P2 in the “vanilloid” binding site (Figure 5B). Nor could we identify 

PI(4,5)P2 density in the binding pocket observed in TRPV5 located between the N-linker, S4-S5 linker, and S6 

helix that has recently been revealed by cryo-EM16. In contrast, all three of these maps have pronounced density 

in the pocket formed by S1, S2 and the TRP helix, density which is the same shape and size as the lipid density 

in this pocket in the apo TRPV1 in nanodiscs structure15, identified as phosphatidylcholine (PC) (Supplementary 

Figure 14). We also observed two additional densities for lipids around the periphery of the TMD of the CBD-

bound TRPV2 structure in nanodiscs (Supplementary Figure 8). Together, this data suggests that while full-

length rat TRPV2 does have strong affinity for some lipids, it does not have strong interaction with PI(4,5)P2. 

 

DISCUSSION  

Here, we have presented an improved full-length apo TRPV2 structure and CBD-bound TRPV2 structures 

in detergent and in PI(4,5)P2 enriched nanodiscs. We were able to identify the novel CBD binding site in the 

TRPV2 channel and determine conformational changes in TRPV2 upon CBD binding. TRPV2 interacts with CBD 

through a hydrophobic pocket located between S5 and S6 helices of adjacent subunits, which is conserved 

among TRPV channels (Figure 6). CBD binding induces the outward movement of S5, which leads to the 

expulsion of Tyr525 from the binding pocket between S5 and S6. This combined with the transition at the S4-S5 
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linker from α- to π-helix and eventually to a total break in the S4-S5 linker helix at residues Lys531-Ile533 causes 

larger conformational changes in the ARDs, S1-S4 bundle and TRP helix and pore of the channel that may allow 

for TRPV2 to open (Figure 6). Although none of the structures reported here appear to be in the fully open 

conformation, comparison of our current structures to the recently published open state of rat TRPV2 (PDB 

6BO4) is not possible due to the quality of this open state map18. In spite of the resolution reported for the open 

state structure (PDB6BO4)18, the cryo-EM density is of poor quality and appears to be at a lower resolution than 

reported, which does not allow for precise identification of helical register or side chain placement 

(Supplementary Figure 15). As such comparing this structure to the ones presented in this manuscript would not 

be appropriate.  

TRPV channels share ~40% sequence homology13 and thermoTRPV channels (TRPV1-TRPV4) have all 

been shown to have varying levels of modulation by CBD4,10,11.  CBD has the largest positive effect on TRPV24, 

and the structures of TRPV2 presented in this paper, along with those of other TRPV channels may give some 

insight into that preference despite very high sequence homology among the residues of the CBD binding pocket 

(Supplementary Figure 16). Several structures of thermoTRPV channels TRPV115 and TRPV321,22 show a π-

helix near the top of S6, at the level of the CBD binding pocket.  The presence of this π-helix has been suggested 

to be dynamic and potentially involved in pore opening, and the recent TRPV3 structures from both the Lee and 

Sobolevsky groups21,22 show states both with the π-helix and with an α-helix in this region (Supplementary Figure 

12B, C).  In contrast, the TRPV2 structures presented in this paper as well as those of the minimal TRPV2 solved 

by both cryo-EM20 and x-ray crystallography31 only show α-helices for the whole S6 helix.  It’s unclear whether 

the presence of the π-helix would hinder or aid CBD binding and CBD-based opening of the channel. 

To our surprise, the presence of various lipids and PI(4,5)P2 during nanodisc reconstitution did not reveal the 

binding site for PI(4,5)P2 and did not allow us to determine the proposed18,24 role  PI(4,5)P2 plays in channel 

gating. Nevertheless, our new TRPV2 structures confirmed that the absence of obvious lipid density in the 

vanilloid pocket for any TRPV2 cryo-EM structure so far18-20 is a characteristic feature of the channel. Further 

investigation needs to be done on other endogenous membrane lipids that may modulate the channel.  

Overall, our structural studies have revealed a novel drug binding site in TRPV channels and provided 

molecular insights into TRPV2 modulation by CBD that could be used to guide therapeutic design to treat 

glioblastoma multiforme and other TRPV2 channel associated pathophysiological process. 

 

METHODS 

Protein expression and purification – The detergent solubilized full-length rat TRPV2 was expressed and 

purified as described previously20. Briefly, rat TRPV2 expressing plasma membranes from S. cerevisiae were 

solubilized in a buffer containing 20 mM HEPES pH 8.0, 150 mM NaCl, 5% glycerol, 0.087% LMNG (Anatrace), 

2 mM Tris (2-carboxyethyl) phosphinehydrochloride (TCEP), 1 mM Phenylmethylsulfonyl fluoride (PMSF) and 

supplemented with protease inhibitor cocktail tablet mini (Roche), for 1 hour. Detergent insoluble material was 

removed by ultra-centrifugation at 100,000 x g and the protein was purified from the supernatant by affinity 

chromatography by binding with 1D4 antibody coupled CnBr-activated Sepharose beads. A column was packed 
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with the Sepharose beads and washed with Wash Buffer (20 mM HEPES pH 8.0, 150 mM NaCl, 2 mM TCEP) 

containing 0.006% DMNG (Anatrace). TRPV2 was eluted with Wash Buffer containing 0.006% DMNG and 3 

mg/ml 1D4 peptide (GenScript USA) and subjected to size-exclusion chromatography using a Superose 6 

column (GE Healthcare) with Wash Buffer containing 0.006% DMNG. Fractions containing TRPV2 protein were 

concentrated to ~3 mg/mL and used for vitrification.  

The nanodisc reconstituted full-length rat TRPV2 was expressed and purified as previously published16, with 

minor modifications. The membranes expressing rat TRPV2 were solubilized in 20 mM HEPES pH 8.0, 150 mM 

NaCl, 5% glycerol, 0.087% LMNG, 2 mM TCEP, and 1 mM PMSF for 1 hour. Insoluble material was removed 

via ultra-centrifugation at 100,000 x g and the solubilized TRPV2 was purified by binding to 1D4 antibody coupled 

CnBr-activated Sepharose beads. The beads were washed with Wash Buffer containing 0.006% DMNG and the 

protein was eluted with Wash Buffer containing 0.006% DMNG and 3 mg/ml 1D4 peptide. The protein was 

incubated with 100 µM cannabidiol (CBD, Cayman Chemical Company) and 400 µM diC8 PI(4,5)P2 (Echelon 

Biosciences) for 1 hour. The liganded protein was then reconstituted into nanodiscs in a 1:1:200 ratio of 

TRPV2:MSP2N2:soy polar lipids (Avanti). MSP2N2 was expressed in BL21 (DE3) cells and purified via affinity 

chromatography as previously described16.  Lipids were dried under nitrogen flow for 3 hours prior to 

reconstitution and resuspended in Wash Buffer containing DMNG in a 1:2.5 ratio (soy polar lipids:DMNG). The 

nanodisc reconstitution mixture was incubated at 4˚C for 30 mins. Bio-Beads (Bio-Beads SM-2 Absorbent Media, 

Bio-Rad) were added to the reconstitution mixture for 1 hour then fresh Bio-Beads were added and the mixture 

was allowed to incubate overnight. Nanodisc reconstituted TRPV2 was further purified using size-exclusion 

chromatography (Superose 6, GE Healthcare) in Wash Buffer. Protein eluted from the column was concentrated 

to 1.9 mg/mL for use in vitrification.  

Cryo-EM data collection – For the detergent solubilized TRPV2, prior to preparing cryo-EM grids, purified 

TRPV2 was incubated with 30 µM CBD for 30 min. Fluorinated Fos-choline 8 was added to sample to a final 

concentration of 3 mM just before blotting. This sample was double blotted (3.5 µl per blot) onto 200 mesh 

Quantifoil 1.2/1.3 grids (Quantifoil Micro Tools) at 4°C and 100% humidity and plunge frozen in liquid ethane 

cooled to the temperature of liquid nitrogen (FEI Vitrobot). Cryo-EM images were collected using a 300kV FEI 

Titan Krios microscope equipped with a Gatan K2 Summit direct detector camera. Images were recorded using 

super resolution counting mode following the established protocol. Specifically, 38 frame movies were collected 

at 18,000x magnification with a physical pixel size of 0.69Å/pix and a dose rate of 6.85 e/pix/s. Total exposure 

time was 11.4 seconds with one frame recorded every 0.3 seconds using the automated imaging software, 

Leginon32. Defocus values of the images ranged from -1.4 to - 3.0 µm.  

For the nanodisc reconstituted TRPV2, prior to preparing cryo-EM grids, purified TRPV2 was incubated with 

100 µM CBD and 400 µM diC8 PI(4,5)P2 for 30 mins. Fluorinated Fos-choline 8 was added to the sample to a 

final concentration of 3 mM just before blotting. This sample was double blotted (3.5 µl per blot) onto 200 mesh 

Quantifoil 1.2/1.3 grids (Quantifoil Micro Tools) at 4°C and 100% humidity and plunge frozen in liquid ethane 

cooled to the temperature of liquid nitrogen (FEI Vitrobot). Cryo-EM images were collected using a 300kV FEI 

Titan Krios microscope equipped with a Gatan K2 Summit direct detector camera. 50 frame movies were 
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collected at with a dose rate of 8.0 e/pix/s with 5 frames per second and a super resolution pixel size of 0.535 

Å/pix. Defocus values of the images range from -0.8 to -3.0 µm.  

Image processing – For the detergent solubilized TRPV2 in the presence of CBD, the movie frames were 

aligned and binned using MotionCor229 to compensate for beam-induced motion. All subsequent data processing 

was conducted in RELION 2.127,33,34. Defocus values of the motion corrected micrographs were estimated using 

Gctf30. Initially, ~2,000 particles were manually picked from 3,779 micrographs and sorted into 2D classes to 

generate templates for auto-picking. Auto-picking with a loose threshold to ensure maximum picking resulted in 

~821,000 auto-picked particles. These were then subjected to 2D classification to remove suboptimal particles 

and false positive hits. The best ~258,000 particles were then auto-refined using the 3D auto-refinement option 

without masking or applied symmetry. The initial model for this refinement was created from the density map of 

the previously published full length TRPV219 (EMB-6580) filtered to 60 Å. The ~258,000 particles were then 3D 

classified into 8 classes with masking, but without aligning angles to the particles. This initial model used for this 

classification was the reconstruction of the ~258,000 particles described above. The mask used in this 

classification was created from the initial refinement of the ~258,000 particles adjusted to a threshold of 0.005, 

filtered to 15Å, extended by 5 pix and a soft edge of 5 pix was added. One distinct class with four-fold symmetry 

contained 49,496 particles and was refined with C4 symmetry using the mask and initial model described above. 

The map from this refinement was used as an initial model for further classification into 3 classes without applying 

angles. This classification was masked using the map refined from the 49,496 particles adjusted to a threshold 

of 0.005, filtered to 5Å, extended by 5 pix with a soft edge of 5 pix. The most stable class contained 26,322 

particles and was refined with the same initial model and mask to produce a 4.6 Å map with C4 symmetry. 

Postprocessing yielded a 4.3Å resolution map as estimated by Rmeasure35. Local resolutions were estimated 

using the RESMAP software36. 

For the nanodisc reconstituted TRPV2 in the presence of CBD and diC8 PI(4,5)P2, the movie frames were 

aligned and binned using MotionCor229 to compensate for beam-induced motion. All subsequent data processing 

was conducted in RELION 3.028,33,34. Defocus values of the motion corrected micrographs were estimated using 

Gctf30. Initially, ~3,000 particles were manually picked and sorted into 2D classes to generate templates for auto-

picking. Auto-picking of 7,061 micrographs resulted in ~685,000 auto-picked particles. These were then 

subjected to 2D classification to remove suboptimal particles and false positive hits. The best ~348,000 particles 

were refined without applied symmetry. The initial model for this refinement was created from the density map 

of the previously published full length TRPV219 (EMB-6580) filtered to 60 Å .These ~348,000 particles were then 

subjected to 3D classification into 8 classes with angular sampling and no applied symmetry, using a mask made 

from the initial 3D refinement.  The mask was made by lowpass filtering the map to 5 Å, with a threshold of 0.004, 

and the map extended by 10 pix with a soft edge of 10 pix. The best class had ~68,000 particles and was refined 

with C4 symmetry in a mask created from the 3D class.  This mask was made by lowpass filtering the 3D class 

to 5 Å, with a threshold of 0.006, and the map extended by 10 pix with a soft edge of 10 pix.  These particles 

were then subjected to CTF refinement and Bayesian polishing.  The particles were then 3D refined again using 

a mask made from the map of the ~68,000 unpolished particles, lowpass filtered to 10 Å, at a threshold of 0.005, 
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extended 7 pix with a soft edge of 7 pix.  These particles were then subjected to 3D classification into 3 classes, 

with no alignments.  The best class contained ~25,000 particles and was refined with C4 symmetry using the 

same mask as the previous refinement. Postprocessing yielded a map at 3.5 Å. Local resolutions were 

estimated using the RESMAP software36. 

The apo TRPV2 in detergent movie frames were aligned and binned using MotionCor229 to compensate for 

beam-induced motion. All subsequent data processing was conducted in RELION 3.028,33,34. Defocus values of 

the motion corrected micrographs were estimated using Gctf30. Approximately 26,000 particles were autopicked 

from a subset of 10 micrographs using template-free Laplacian-of-Gaussian autopicking. These particles were 

then subjected to 2D classification to create templates for autopicking. These templates were used to autopick 

from the full 988 micrograph dataset, yielding ~420,000 particles.  These particles were then subject to 2D 

classification.  The best ~278,000 particles were then auto-refined using the 3D auto-refinement option without 

masking or applied symmetry. The initial model for this refinement was created from the density map of the 

previously published full length TRPV219 (EMB-6580) filtered to 60 Å. The ~278,000 particles were then 3D 

classified into 8 classes with masking, but without aligning angles to the particles. The initial model used for this 

classification was the reconstruction of the ~278,000 particles described above. The mask used in this 

classification was created from the initial refinement of the ~278,000 particles adjusted to a threshold of 0.005, 

filtered to 15Å, extended by 5 pix and a with a soft edge of 5 pix added. The best class from this classification 

contained ~51,000 particles which were refined with C4 applied symmetry with the same initial model and mask 

described above. These particles were then subjected to CTF refinement and Bayesian polishing. The polished 

~51,000 particles were refined with applied C4 symmetry, with a mask made from the map of the previously 

refined ~51,000 particles at threshold 0.005, extended by 5 pix with a soft edge of 5 pix and using that same 

previous map as the reference model. Post-processing yielded a map at 4.2 Å. Local resolutions were estimated 

using the RESMAP software36. 

Model building – The previously determined full-length rat TRPV2 structure (PDB: 5HI9) was employed as 

our initial starting model and docked into the CBD-bound TRPV2 in nanodiscs and apo TRPV2 maps. This model 

was then manually adjusted to each map in COOT37 and then refined using phenix.real_space_refine from the 

PHENIX software package38 with four-fold NCS constraints. The models were subjected to iterative rounds of 

manual model fitting followed by real-space refinement and sidechains with insufficient density were 

removed. Due to the lower quality of the CBD-bound TRPV2 in detergent map, we started from the already 

refined CBD-bound TRPV2 in nanodiscs model. This model was adjusted manually and again refined using 

multiple rounds of manual model building in COOT and phenix.real_space_refine.  The disconnected 16 residue 

loop between the ARDs and the β-sheet region in the CBD-bound TRPV2 in detergent model was built as 

alanines and arbitrarily assigned as residues 1-16. 

The final models were randomized by 0.5 Å in PHENIX38 and refined against each half map.  These models 

were converted into volumes in Chimera39 and EMAN240 used to generate FSC curves between these models 

and their half maps as well as between each final model and their summed maps.  HOLE was used to generate 

the pore radii41. Pymol and Chimera39 were used to align models and maps and to make figures. 
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HEK293 cell culture, mutagenesis and transfection – Human Embryonic Kidney 293 (HEK293) cells were 

purchased from American Type Culture Collection (ATCC), Manassas, VA, (catalogue # CRL-1573), 

RRID:CVCL_0045. The cells were maintained in minimal essential medium (MEM) (Life Technologies, Carlsbad, 

CA, USA) supplemented with 10% (v/v) fetal bovine serum (FBS), 100 IU/ml penicillin and 100 μg/ml 

streptomycin (37°C in 5% CO2). The cells were transiently transfected with cDNA encoding the rat TRPV2 and 

its mutants using the Effectene reagent (Qiagen) 48-72 hours before experiments. Point mutations were 

introduced using the QuickChange Mutagenesis Kit (Agilent). 

Ca2+ imaging - Ca2+ imaging measurements were performed with an Olympus IX-51 inverted microscope 

equipped with a DeltaRAM excitation light source (Photon Technology International, Horiba), as described 

earlier42. Briefly, HEK cells were loaded with 1 μM fura-2 AM (Invitrogen) at 37°C for 40-50 min, fluorescence 

images were collected with a Roper Cool-Snap digital CCD camera at 510 nm emission wavelength, excitation 

light was provided by a DeltaRAM light source alternating between 340 and 380 nm. Measurements were 

conducted in an extracellular solution containing (in mM) 137 NaCl, 5 KCl, 1 MgCl2, 2 CaCl2, 10 HEPES and 10 

glucose, pH 7.4. Data analysis was performed using the Image Master software (PTI). 
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Figure 1. Global changes associated with CBD binding. (A-B) Cartoon dimer pore 
representation of (A) apo TRPV2 and (B) CBD-bound TRPV2 in detergent. Grey dots indicate the 
diameter of the ion conduction pore. Constriction residues are labeled and shown as sticks. (C) 
Graphical representation of the radius of the pore as a function of the distance along the ion 
conduction pathway. The radius for the pore of apo TRPV2 is shown in salmon and the CBD-
bound TRPV2 in detergent pore is shown in green. The dotted line indicates the radius of a 
dehydrated calcium ion. (D) Overlay of opposing dimers of apo (salmon) and CBD-bound TRPV2 
in detergent (green). Arrows indicate direction of movement and are labeled with the distance 
moved. (E) Bottom view of the overlaid tetramers of apo (salmon) and CBD-bound TRPV2 in 
detergent (green). Arrows indicate direction of movement and are labeled with the distance 
moved.  
 
Figure 2. Conformational changes associated with CBD binding. (A) An overlay of a single 
ARD from the apo (salmon) and CBD-bound TRPV2 in detergent (green) models. Arrows indicate 
loops that differ between the two models. (B) The S4-S5 linker, S5 helix and S6 helix of apo 
(salmon) and CBD-bound TRPV2 in detergent (green). Black lines indicate the trajectory of the 
S4-S5 linker. The measurements for the lateral movement and angle pivoted are labeled.  The 
area of helix breakage is indicated by a black arrow. (C) The TRP helix and lower S6 helix of apo 
(salmon) and CBD-bound TRPV2 in detergent (green). Black lines indicate the trajectory of the 
TRP helix. The measurement for the angle pivoted is labeled. (D-E) Area of helix breakage for 
(D) apo TRPV2 and (E) CBD-bound TRPV2 in detergent. Residues of interest are labeled and 
shown as sticks.  
 
Figure 3. CBD-bound TRPV2 in PI(4,5)P2 enriched nanodiscs . (A) Cartoon dimer pore 
representation of CBD-bound TRPV2 in nanodiscs. Grey dots indicate the diameter of the ion 
conduction pore. Constriction residues are labeled and shown as sticks. (B) Graphical 
representation of the radius of the pore as a function of the distance along the ion conduction 
pathway. The radius for the pore of CBD-bound TRPV2 in nanodiscs is shown in blue and the 
apo pore is shown in salmon. The dotted line indicates the radius of a dehydrated calcium ion. 
(C) Model representation of the CBD binding pocket in the CBD-bound TRPV2 in nanodiscs 
structure. The S5 and S6 helices of TRPV2 are shown as blue and grey cartoons, respectively. 
CBD is shown as pink sticks. Residues of interest are labeled and represented as sticks. 
 
Figure 4. Conformational changes in the CBD binding pocket. (A-C) Model representations 
of the CBD binding pockets in the (A) apo TRPV2 (B) CBD-bound TRPV2 in nanodiscs (C) CBD-
bound TRPV2 in detergent structures. Residues of interest are labeled and shown as sticks. The 
distance between Tyr634 and Phe540 for each model is indicated by the dotted black line and 
labeled. (D-F) S4-S6 helices of the (D) apo TRPV2 in detergent (E) CBD-bound TRPV2 in 
nanodiscs (F) CBD-bound TRPV2 in detergent structures. The arrow indicates the region in the 
S4-S5 linker that undergoes conformational rearrangement.  
 
Figure 5. Vanilloid binding pocket. The vanilloid pocket of (A) apo TRPV1 in nanodiscs (PDB 
5IRZ), (B) CBD-bound TRPV2 in nanodiscs, (C) apo TRPV2 in detergent and (D) CBD-bound 
TRPV2 in detergent. The models for the helices that constitute the pockets are shown as ribbons 
and overlaid with their respective cryo-EM densities shown as grey surfaces. Arrows indicate the 
location of densities in these pockets.  
 
Figure 6. TRPV2 modulation by CBD. Schematic summary of the conformational changes 
observed due to CBD binding. The pink diamond represents molecular CBD. Arrows indicated 
movement of the channel. Yellow circles represent ions.  
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