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Abstract

Single-cell RNA sequencing (scRNA-seq) has transformed biomedical research,
enabling decomposition of complex tissues into disaggregated, functionally distinct
cell types. For many applications, investigators wish to identify cell types with known
marker genes. Typically, such cell type assignments are performed through unsuper-
vised clustering followed by manual annotation based on these marker genes, or via
“mapping” procedures to existing data. However, the manual interpretation required in
the former case scales poorly to large datasets, which are also often prone to batch
effects, while existing data for purified cell types must be available for the latter. Fur-
thermore, unsupervised clustering can be error-prone, leading to under- and over-
clustering of the cell types of interest. To overcome these issues we present CellAs-
sign, a probabilistic model that leverages prior knowledge of cell type marker genes to
annotate scRNA-seq data into pre-defined and de novo cell types. CellAssign auto-
mates the process of assigning cells in a highly scalable manner across large datasets
while simultaneously controlling for batch and patient effects. We demonstrate the
analytical advantages of CellAssign through extensive simulations and exemplify real-
world utility to profile the spatial dynamics of high-grade serous ovarian cancer and the
temporal dynamics of follicular lymphoma. Our analysis reveals subclonal malignant
phenotypes and points towards an evolutionary interplay between immune and cancer
cell populations with cancer cells escaping immune recognition.
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1 Introduction

Gene expression observed at the single-cell resolution in human tissues enables studying
the cell type composition and dynamics of mixed cell populations in a variety of biologi-
cal contexts, including cancer progression. Cell types inferred from single-cell RNA-seq
(scRNA-seq) data are typically annotated in a two-step process, whereby cells are first
clustered using unsupervised algorithms and then clusters are labeled with cell types ac-
cording to aggregated cluster-level expression profiles [1]. A myriad of methods for un-
supervised clustering of scRNA-seq have been proposed, such as SC3 [2], Seurat [3],
PCAReduce [4], and PhenoGraph [5], along with studies evaluating their performance
across a range of settings [6, 7]. However, clustering of low-dimensional projections may
limit biological interpretability due to i) low-dimensional projections not encoding variation
present in high-dimensional inputs [8] and ii) overclustering of populations that are not
sufficiently variable.

Furthermore, even in the context of robust clustering which recapitulates biological cell
states or classes, few principled methods for annotating clusters of cells into known cell
types exist. In contrast to unsupervised statistical frameworks, this latter step is a super-
vised, or classification problem. Typical workflows employ differential expression analy-
sis between clusters to manually classify cells according to highly differentially expressed
markers, aided by recent databases linking cell types to canonical gene-based markers
[9]. In situations where investigators wish to identify and quantify specific cell types of in-
terest with known marker genes across multiple samples or replicates, such workflows can
be cumbersome, and differences in clustering strategies can affect downstream interpre-
tation [6]. Alternatively, cell types may be assigned by gating on marker gene expression,
but this strategy is difficult to implement in practice as (i) gating is difficult for more than
a few genes and relies on knowledge of marker gene expression levels and (ii) cells that
fall outside these gates will not be assigned to any type, rather than being probabilistically
assigned to the most likely cell type.

Another approach to cell type annotation is to leverage ground-truth single-cell transcrip-
tomic data from labeled and purified cell types to establish robust profiles against which
new data can be compared and classified. For example, scmap-cluster [10] calculates
the medioid expression profile for each cell type in the known transcriptomic data, and
then assigns input cells based on maximal correlation to those profiles. However, this ap-
proach requires existing scRNA-seq data for purified cell populations of interest. Given
the technical effects associated with differences in experimental design and processing,
expression profiles for reference populations may not be directly comparable to those for
other single-cell RNA-seq experiments [11].

We assert that statistical cell type classification approaches leveraging prior knowledge in
the literature (or from experiments) will be an effective complement to unsupervised ap-
proaches for quantitative decomposition of heterogeneous tissues from scRNA-seq data.
Therefore, to address the analytical challenges inherent in both clustering and mapping
approaches, we developed CellAssign, a scalable statistical framework that annotates and
quantifies both known and de novo cell types in scRNA-seq data. CellAssign automates
the process of annotation by encoding a set of a priori marker genes for each cell type.
The statistical model then classifies the most likely cell type for each cell in the input data,
using a marker gene matrix (cell type-by-gene). The model allows for flexible expression
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of marker genes, assuming that marker genes are more highly expressed in the cell types
they define relative to others. Implemented in Google’s Tensorflow framework, CellAs-
sign is highly scalable, capable of annotating thousands of cells in seconds while control-
ling for inter-batch, patient and site variability. We evaluated CellAssign across a range
of simulation contexts and on ground truth data for FACS-purified H7 human embryonic
stem cells (HSCs) at various differentiation stages [12], showing that CellAssign outper-
forms both clustering and correlation based methods—more readily discriminating closely
related cell types—and is robust to errors in marker gene specification. In addition, we
applied CellAssign to two novel datasets generated to profile spatiotemporal tumor mi-
croenvironment (TME) dynamics in human cancers. Using the CellAssign approach, we
demonstrated tumor ‘ecosystem’ spatial diversity in untreated high-grade serous ovarian
cancer through variable composition in stromal and immunologic cell types comprising the
TME and variation in key pathways across malignant cell populations including immune
evasion, epithelial-mesenchymal transition and hypoxia. Temporal dynamics were also ex-
emplified using the CellAssign approach. We generated scRNA-seq libraries from matched
diagnostic and relapsed pairs of follicular lymphoma samples, with one case having under-
gone histologic transformation to an aggressive lymphoma. We show compositional and
phenotypic changes, including T-cell activation and HLA downregulation in cancer cells
upon transformation, pointing towards an evolutionary interplay with cancer cells escaping
immune recognition following transformation. In aggregate we conclude the CellAssign
approach provides a robust new statistical framework through which disease dynamics in
tissues comprised of mixed cell populations can be quantified and interpreted to ultimately
uncover new properties and understanding of disease progression.

2 Results

2.1 CellAssign: probabilistic and automated cell type assignment

The CellAssign statistical framework (Figure 1) models observed gene expression for a
heterogeneous cell population as a composite of multiple factors including cell type, li-
brary size, and batch. The inputs consist of raw single cell RNA-seq read counts and a
marker gene set for each cell type of interest. Marker genes are assumed to be overex-
pressed in cell types where they are markers—not necessarily at similar levels—compared
to those where they are not. Other experimental and biological covariates such as batch
and patient-of-origin are optionally encoded in a standard design matrix. Using this in-
formation, CellAssign employs a hierarchical Bayesian statistical framework to determine
the probability that each cell belongs to each of the modeled cell types, and estimates
model parameters including the relative expression of marker genes in each cell type and
the systematic effects of other covariates on marker gene expression patterns using an
expectation-maximization inference algorithm. To prevent misclassification when unknown
cell types (unspecified in the marker matrix) are present, CellAssign designates cells that
do not belong to any provided cell type as ‘unassigned’. Detailed model specification,
implementation and runtime performance are described in Methods.
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2.2 Performance of CellAssign relative to unsupervised clustering and su-
pervised classification methods

We benchmarked CellAssign’s performance relative to standard workflows including un-
supervised clustering followed by manual curation and methods that map cells to existing
data from purified populations. Using an adapted version of the splatter model fitted to
data for peripheral blood naïve CD8+ and CD4+ T cells, we simulated scRNA-seq data for
multiple cell populations (Methods). Simulations were conducted across a wide range of
values for differentially expressed gene fraction (0.05 to 0.45), to represent cellular mix-
tures of similar and distinct cell types. We then evaluated the performance of unsuper-
vised (Seurat [3], SC3 [2], phenograph [13], densitycut [14], dynamicTreeCut [15]) and
supervised (scmap-cluster [10], correlation-based [16]) methods (Methods). Half of the
simulated cells (n=1000 training, n=1000 evaluation) were set aside exclusively for training
the supervised methods. Marker genes for CellAssign were selected based on simulated
log-fold change values and mean expression (Methods), and maximum a posteriori (MAP)
cell type probability estimates were treated as deterministic cell type assignments. For all
values of differentially expressed gene fraction, CellAssign performed better than alterna-
tive workflows in both accuracy and F1 score metrics (Figure 2A, Supplemental Table 1).
Supervised methods generally performed better than unsupervised methods (Figure 2A).
We then investigated the degree to which CellAssign’s performance was due to being pro-
vided with informative marker genes rather than transcriptome-wide data, repeating the
analysis by providing other methods with exactly the same data as CellAssign. In this
setting, CellAssign was still more accurate than the other methods (Figure 2B). Similar
results were obtained on data simulated from parameter estimates fitted to B cells and
CD8+ T cells (Supplemental Figure 1A,B, Supplemental Table 1). Moreover, CellAssign
accurately inferred the relative expression of marker genes in each cell type (all R > 0.958;
Figure 2C, Supplemental Figure 1C).

We next assessed the robustness of CellAssign to misspecification of marker gene infor-
mation, acknowledging the likely scenario where user-provided marker gene information
may be incomplete or incorrect. For example, a shared marker gene may be incorrectly
specified as a cell type-specific marker gene due to incomplete prior information. We ran-
domly flipped a proportion of entries in the binary marker gene matrix to introduce error.
When supplied with data for 5 marker genes per cell type, CellAssign maintained com-
parable performance in scenarios where up to 30% of matrix entries were misspecified
(Figure 2D, Supplemental Table 1). This robustness was maintained even when cells be-
longed to transcriptionally similar cell types containing fewer highly differentially expressed
genes. For example, when cells were simulated based on the degree of dissimilarity be-
tween naïve CD4+ and naïve CD8+ T cells, CellAssign prediction accuracy was maintained
in scenarios where 30% of marker gene matrix entries were misspecified (Supplemental
Figure 2A,B, Supplemental Table 1).

We then evaluated performance of CellAssign on real scRNA-seq data from experimentally
sorted populations. We applied CellAssign to data for FACS-purified H7 human embryonic
stem cells in various stages of differentiation (8 cell types) [12]. Using bulk RNA-seq data
from the same cell types, we defined a set of 84 marker genes for CellAssign based on dif-
ferential expression results (Supplemental Table 2; Methods). CellAssign outperformed
the most competitive unsupervised methods from systematic analysis (SC3, Seurat) [6]
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according to accuracy and cell type-level F1 score (Supplemental Figure 3A-D,F; Meth-
ods), with similar results obtained using only marker gene expression data (Supplemental
Figure 3E,G) (CellAssign F1: 0.947, accuracy: 0.948; best unsupervised F1: 0.841, accu-
racy: 0.93). As an example of CellAssign’s ability to discriminate highly related cell types,
anterior primitive streak (APS) and mid primitive streak (MPS) cells were accurately classi-
fied (83/84 correct), while no other method could reliably do so (all other methods assigned
APS and MPS cells to the same cluster, Supplemental Figure 3).

2.3 Profiling the tumour microenvironment composition of spatially sam-
pled HGSC

We next exemplified CellAssign in a real world setting where the aim was to decompose
cancer tissues from patients into constituent microenvironmental components and profile
variation across anatomic space and between malignant clones. We generated scRNA-
seq data for 5233 cells from 2 spatial sites from an untreated high-grade serous ovarian
cancer patient at the time of primary debulking surgery (left ovary: 2818 cells, right ovary:
2415 cells). From this data, we executed an analytic workflow consisting of dimensional-
ity reduction, assignment of cell types and differential expression between malignant cell
subpopulations.

We began analysis by dimensionality reduction with uniform manifold approximation and
projection (UMAP [17]) revealing four major site-specific populations and four mixed pop-
ulations with representation from both samples (Figure 3A). Using a panel of literature-
derived marker genes (Supplemental Table 2, Methods), we identified 8 major epithelial,
stromal, and immune cell types with CellAssign (Figure 3B,C), which were consistent with
well-known marker gene expression (Figure 3D, Supplemental Figure 4A, Methods).
Ovarian stromal cells and myofibroblasts were identified based on expression of MUM1L1,
ARX, and KLHDC8A, ovary-specific markers known to be expressed in stroma from bulk
RNA-seq and immunohistochemistry [18] (Figure 3D, Supplemental Figure 4A), with my-
ofibroblasts distinguished by higher expression of α-smooth muscle actin and various col-
lagen genes [19] (Figure 3D, Supplemental Figure 4A). Unlike other non-epithelial cell
types, ovarian stromal cells were largely restricted to the left ovary. A group of cells ex-
pressing vascular smooth muscle markers α-smooth muscle actin, MYH11, and MCAM
[20] was also identified with CellAssign (Supplemental Figure 4A). We note that for cell
types such as ovarian stromal cells, no scRNA-seq data from purified populations was
available. Thus, CellAssign can annotate TME cell types for which marker genes have
been orthogonally derived in the literature but scRNA-seq data for purified populations is
unavailable. Hematopoietic cells (B cells, T cells, and myeloid cells) were rare in both
samples (left ovary: 4%, right ovary: 1.5%; Figure 3C) and dominated by myeloid popula-
tions (65.7% and 87.9% of hematopoietic cells in left and right ovary, respectively). While
CellAssign resolved hematopoietic cell types in a manner consistent with the expression
patterns of canonical marker genes, unsupervised approaches did not resolve some of
these cell types, such as B cells, from other hematopoietic or non-hematopoietic cell types
(Supplemental Figure 5). Thus for TME decomposition and profiling, subtle differences
between constituent cell types may be better distinguished by CellAssign over standard
approaches [21].

We next characterized variation within the epithelial cells determined by CellAssign, all of
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which were determined to be malignant based on ubiquitous expression of epithelial ovar-
ian cancer markers [22, 23] (Supplemental Figure 4B). Within epithelial cells we identified
five clusters using Seurat (Figure 3F) with three (0, 2, 4) derived from the right ovary and
two (1, 3) from the left ovary. Differential expression between clusters revealed signifi-
cant upregulation of genes associated with epithelial-mesenchymal transition in the left
ovary (Q = 0.021), including N-cadherin (CDH2) and CD90 (THY1) (Figure 3E-G), and
downregulation of E-cadherin (CDH1; Q = 4.8e-19). Immune-associated pathways were
also significantly upregulated, primarily due to cluster 1, one of the two clusters from the
left ovary (Figure 3E,F,H, Supplemental Figure 6A, Supplemental Figure 7A-B, Meth-
ods). HLA class I genes were amongst the most differentially expressed genes associ-
ated with these pathways (Supplemental Figure 7B). While HLA expression in cluster 1
was comparable to levels in stromal cells and myofibroblasts, expression levels in other
clusters were lowest across all cell types (Supplemental Figure 6B), suggestive of sub-
clonal HLA downregulation. We next considered cluster-specific gene expression among
epithelial cells in the right ovary. Hypoxia response was significantly upregulated in clus-
ter 2 relative to the other right ovary clusters (all Q < 7e-04; Supplemental Figure 7C-
E). Accordingly, apoptosis and glycolysis pathways were also upregulated while cell cycle
and oxidative phosphorylation-associated pathways were downregulated, consistent with
hypoxia-induced cell cycle arrest and metabolic dependence on glycolysis (Supplemen-
tal Figure 7C,D). Together, TME and malignant cell profiling of multi-site HGSC samples
demonstrate on real data how CellAssign can be leveraged within analytical workflows, su-
perseding standard clustering approaches to decompose the TME without compromising
the ability to characterize variation within major cell types.

2.4 Temporal immune microenvironment dynamics accompanying follicular
lymphoma progression and transformation

To dissect microenvironmental changes in follicular lymphoma tracking with disease pro-
gression and transformation, we sequenced the transcriptomes of 9754 cells from tempo-
rally collected lymph node biopsies of 2 follicular lymphoma patients at two time points each
(4 samples total). Histopathological transformation to diffuse large B cell lymphoma (DL-
BCL) occurred in one patient (FL1018), while progression occurred in the other (FL2001)
2 years after rituximab treatment (4 years after diagnosis; Figure 4A). We then investi-
gated temporal phenotypic dynamics using CellAssign to establish cell type composition of
malignant and nonmalignant cells in the microenvironment.

We first applied UMAP which yielded three major patient-specific and two mixed popu-
lations comprised of cells from both patients (Figure 4B). Leveraging literature-derived
marker gene information (Supplemental Table 2), we applied CellAssign to identify 4 ma-
jor T and B cell types (Figure 4C,D, Supplemental Figure 8, Methods). In comparison,
most unsupervised approaches were unable to cleanly resolve T cell subpopulations in the
microenvironment (Supplemental Figure 9), thereby reducing the capacity to interpret a
crucial component of the lymphoma TME. We surmised the mixed B cell population likely
contained nonmalignant B cells (Figure 5A), and accordingly we examined immunoglobu-
lin light chain constant domain expression using CellAssign (Figure 5B) to confirm hetero-
geneous light chain expression (κ/IGKC or λ/IGLC) in the polyclonal nonmalignant B cell
population and homogeneous light chain restriction in the clonally identical malignant B cell
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population (’light chain restriction’) [24]. The three patient-specific B cell populations were
largely IGLC positive, consistent with malignant expansion of λ-chain expressing cells. Ap-
plying CellAssign to the mixed population (Supplemental Table 2) showed that 456/774
cells (58.9%) were IGKC+ (FL1018: 67/106 (63.2%), FL2001: 389/668 (58.2%)), consis-
tent with the expected polyclonal 60:40 ratio in normal lymphoid organs [25] (Supplemen-
tal Figure 10). In addition, scRNA-seq data of reactive lymph node (RLN) B cells from four
healthy donors mapped onto the mixed B cell population [26], (Figure 5C, Supplemental
Figure 11). This population also expressed significantly lower levels of follicular lymphoma
markers BCL2 and BCL6 [27, 28, 29, 24] than the other B cells (all Q < 1.8e-07; Supple-
mental Figure 12, Supplemental Table 3). Together these results demonstrate the ability
of CellAssign to distinguish malignant from nonmalignant B cells, thereby enhancing cell
decomposition capacity and cell type interpretation for lymphoid cancers.

We next investigated the temporal dynamics of these cell types in the two patients. The
relative proportion of nonmalignant B cells decreased dramatically over time in both cases
(FL1018: 12.2% to 1.4%; FL2001: 44.4% to 1.4%) (Figure 5D), consistent with clonal
expansion of malignant cells during disease progression. Among T cells, the relative pro-
portions of each cell type were comparable between patients in diagnostic samples, but
exhibited divergent trajectories following recurrence, with cytotoxic T cells dominating the
transformed sample while T follicular helper cells dominated the progressed sample (Fig-
ure 5E,F).

We examined whether these compositional changes were accompanied by cell type-specific
phenotypic changes. Differential expression analysis revealed significant upregulation of
immune-associated pathways such as cytokine signalling [30] and T-cell activation and ef-
fector molecules among cytotoxic T cells, T follicular helper cells, and CD4+ T cells after
transformation (CD69 in all T cells, IFNG, GZMA, and PRF1 in cytotoxic T cells [31]; Sup-
plemental Figure 13A, Figure 5G, Supplemental Figure 14, Supplemental Table 3).
Thus, transformation in this case appeared to be accompanied by T-cell activation.

Within malignant cells, upregulation of cell cycle-associated pathways (E2F targets, and
G2M checkpoint; all Q < 0.0016) and an increase in the proportion of cycling (S or
G2/M phase) malignant cells was observed upon transformation, suggesting an increase
in replicative potential [32] (Figure 6A,C,D, Supplemental Table 3). Several immune-
associated pathways, including complement and interferon gamma response, were sig-
nificantly downregulated upon transformation (Figure 6A, Supplemental Table 3). To
interpret these findings, we enumerated genes most downregulated upon transformation
based on log-fold change and significance (Supplemental Figure 15), which included sev-
eral HLA class I and II genes (Figure 6G). While HLA expression levels in nonmalignant
B cells were similar between timepoints (Figure 6G,H), malignant cells had significantly
lower HLA expression at transformation (all Q < 9.6e-24), and the HLA class I antigen pre-
sentation pathway was downregulated upon transformation in malignant cells (Q = 0.019;
Supplemental Figure 16). Coupled with the increase in cytotoxic T cell proportion and
upregulation of T-cell activation markers upon transformation, these results are consistent
with immune escape following transformation.

In FL2001 (progressed FL), fewer pathways were differentially expressed between time-
points in malignant cells, indicative of more stable dynamics (Figure 6B). The cell cycle-
associated mitotic spindle pathway was downregulated upon early progression (Q = 0.0043;
Figure 6B). Concordantly, cell cycle analysis [33] revealed an decrease in the proportion of
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cycling (S or G2/M phase) malignant cells after progression (Figure 6E,F). Together, these
results illustrate how CellAssign can be feasibly applied to study compositional and phe-
notypic changes in the tumour microenvironment at the level of individual cell types, and
the clonal dynamics of malignant populations using non-canonical marker genes tailored
to identifying specific populations of interest.

3 Discussion

We developed a computational method to automatically annotate single cell RNA sequenc-
ing data into cell types based on pre-defined marker gene information. Our approach sys-
tematically determines cell type expression patterns and assignment probabilities based
solely on the assumption that marker genes are highly expressed in their respective cell
types, eliminating the need for manual cluster annotation or existing training data for cell
type mapping methods. In simulations and on real scRNA-seq data from purified pop-
ulations, CellAssign’s accuracy was comparable or superior to state-of-the-art workflows
based on unsupervised clustering and mapping methods, and ran in a minute on datasets
of tens of thousands of cells. We additionally demonstrate how bulk RNA-seq data can
enable marker gene identification for accurate discrimination of phenotypically similar cell
types with CellAssign.

We subsequently applied CellAssign to dissect the microenvironment composition of spatially-
and temporally-collected samples from HGSC and follicular lymphoma. We show how
CellAssign can not only delineate multiple malignant and nonmalignant epithelial, stro-
mal, and immune cell types, but also identify subpopulations defined by arbitrary marker
genes, uncovering IGKC:IGLC ratios among nonmalignant B cells in follicular lymphoma
consistent with those for normal lymphoid structures [25]. While these analyses are con-
strained by restricted cohort size, they provide first-of-kind examples of spatiotemporal
dynamics and microenvironment interplay interpreted through leveraging prior knowledge
of cell types in a prinicipled statistical approach.

We note that CellAssign is intended for scenarios where well understood marker genes ex-
ist. Poorly characterized cell types (or unknown cell types or cell states) may be invisible to
the CellAssign approach. Furthermore, we make no a priori distinction between “medium”
or “high” expression of the same marker in two different cell types, though these could
be incorporated by extending the model to accommodate constraints between different δ
parameters. Nevertheless, we suggest a large proportion of clinical applications profiling
complex tissues start with hypotheses relating the composition of known cell types to dis-
ease states. As such, CellAssign fills an important role in the scRNA-seq analysis toolbox,
providing interpretable output from biologically motivated prior knowledge that is immune
to common issues plaguing unsupervised clustering approaches [8].

The volume of scRNA-seq data will increase over time in two important ways: (i) the num-
ber of cell types profiled will increase, thereby expanding databases of known marker
genes and (ii) scRNA-seq data will become more widely available in research and clinical
settings [34]. CellAssign is therefore poised to provide scalable, systematic and automated
classification of cells based on known parameters of interest, such as cell type, clone-
specific markers, or genes associated with drug response. Furthermore, by appropriately
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modifying the observation model CellAssign can easily be extended to annotate cell types
in data generated by other single-cell measurement technologies such as mass cytome-
try. We anticipate the CellAssign approach will help unlock the potential for large scale
population-wide studies of cell composition of human disease and other complex tissues
through encoding biological prior knowledge in a robust probabilistic framework.
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8 Methods

8.1 Ethics

Ethical approval for this study was obtained from the University of British Columbia (UBC)
Research Ethics Board (ethics numbers H08-01411, H14-02304, and H18-01090).

8.2 The CellAssign model

8.2.1 Model description

Let Y be a cell-by-gene expression matrix of raw counts for N cells and G genes. Suppose
among those cells we have C total cell types, each of which is defined by high expression
of several “marker” genes. We encode the relationship between cells and marker genes
through a binary matrix ρ, where ρgc = 1 if gene g is a marker for cell type c and 0 otherwise.
To relate cells to cell types, we introduce an indicator vector z = {zn} that encodes to which
of the C cell types each cell belongs:

zn = c if cell n of type c.

In order to assign cells to cell types we perform statistical inference of the probability that
each cell is of a given cell type for which we must compute the quantity p(zn = c|Y, Θ̂),
where Θ̂ are the MAP estimates of the model parameters.

Let sn be the size factor for cell n and X be a P ×N matrix of P covariates (such as patient
of origin). then our model is

E[yng|zn = c] = µngc

where

Mean log expression︷ ︸︸ ︷
logµngc = log sn︸ ︷︷ ︸

Cell size factor

+

Cell type︷ ︸︸ ︷
δgcρgc + βg0︸︷︷︸

Base expression

+

Other covariates (incl. batch)︷ ︸︸ ︷
P∑
p=1

βgpxpn

with the constraint that δgc > 0.

The intuition here is that if gene g is a marker for cell type c then we expect the expression
of g to be multiplied by the factor eδgc , where δgc is inferred. In this way we put no restriction
that marker genes can’t be expressed in other cell types and that they must be highly
expressed in their cell type, only that they exhibit higher expression in the cells of type for
which they are a marker. The quantity δgc corresponds to the average log fold change that
gene g is over-expressed in cell c, which only occurs for marker genes for cell types since
ρgc must equal 1 for this to contribute to the likelihood. By default we impose a lower bound
such that δ > log 2, making the interpretation that a marker gene must be over-expressed
by a factor of 2 relative to cells for which it is not a marker, but this is left as an option for
the user. We also control for technical or sample effects through the matrix X.

The user can specify whether or not to put a lognormal shrinkage prior over δgc values
δgc ∼ Lognormal(δ̄, σ), where the mean and variance parameters of the lognormal δ̄ and σ
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are initialized to 0 and 1, respectively. In plot labels, cellassign_shrinkage refers to the
version of CellAssign with this option turned on.

8.2.2 Inference

The likelihood is given by
yng|zn = c ∼ NB(µngc, φ̃ngc)

where NB is the negative binomial distribution parametrized by a mean µ and a µ-specific
dispersion φ̃ngc. We define φ̃ngc as a sum of radial basis functions dependent on the
modelled mean µngc as proposed by a recent publication [35]:

φ̃ngc =
B∑
i=1

ai × exp(−bi × (µngc − xi)2)

where ai and bi represent RBF parameters to be fitted, B is the total number of centers in
the RBF, and xi is center i. The centers are set to be equally spaced apart from 0 to the
maximum number of counts max yng.

Using EM for inference, the latent variables are z ≡ {zn} while the model parameters to be
maximized are δ = {δgc}, β = {βg0, βgp}, a = {ai}, and b = {bi}.

E-step Compute

γnc := p(zn = c|yn, δ(t−1),β(t−1),a(t−1),b(t−1)) =

∏
gNB(µngc, φ̃ngc)∑

c′
∏
g′ NB(µng′c′ , φ̃ng′c′)

,

where θ(t) is the value of some parameter θ at iteration t. We then form the Q func-
tion

Q(δ(t),β(t),a(t),b(t)|δ(t−1),β(t−1),a(t−1),b(t−1)) = Ez|Y,δ(t−1),β(t−1),φ(t−1)

[
log p(Y|π, δ(t),β(t),φ(t))

]
=

N∑
n=1

C∑
c=1

γnc

G∑
g=1

logNB(yng|µngc, φ̃ngc)

M-step During the M-step we optimize the above Q-function using the ADAM optimizer
[36] as implemented in Google’s Tensorflow [37]. By default we use a learning rate of 0.1,
allow a maximum of 105 ADAM iterations per M-step, and consider the M-step converged
when the relative change in the Q function value falls below 10−4. By default we consider
the EM algorithm converged when the relative change in the marginal log likelihood falls
below 10−4.
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Initialization The following initializations are used for model parameters:

• βgp is drawn from a N (0, 1) distribution

• log δgc is drawn from a N (0, 1) distribution truncated at [log(δmin), 2]

• a is initialized to 0

• b is initialized to twice the square difference between successive spline bases

8.2.3 Availability

CellAssign is available as an R package at github.com/irrationone/cellassign.

8.3 Simulation

8.3.1 Model description and rationale

Initially, we attempted to simulate multi-group data from the splatter model. We em-
ployed 10x Chromium data for peripheral blood mononuclear cells (PBMC) [16] with cell
type labels derived from [38] to determine realistic parameter estimates for the differen-
tial expression component of the model (see below). In order to do so, group-specific
log fold-change (logFC) values were drawn from a mixture distribution of a central, nar-
row Gaussian-Laplace mixture (representing non-differentially expressed genes) and two
flanking, absolute value-transformed Gaussians (representing downregulated/upregulated
genes). This mixture distribution was fitted to logFC values derived from differential ex-
pression analysis (see below).

However, inspection of posterior predictive samples for multiple fits, using labeled single-
cell RNA-seq data from [16] and FACS-purified data from Koh et al. [12] (Supplemen-
tal Figure 17A,B, Supplemental Figure 18A,B), revealed that this model systematically
underestimates extreme logFC values (Supplemental Figure 17C, Supplemental Fig-
ure 18C). Thus, to accommodate the heavier tails present in observed data, we augmented
the splatter model by replacing the flanking absolute value-transformed Gaussian com-
ponents with bounded Student’s t distributions. Posterior predictive logFC distributions
from this modified model better fit the observed data (Supplemental Figure 17D, Sup-
plemental Figure 18D). Consequently, we used this model to perform simulation analy-
sis.

8.3.2 Model fitting

The models described above were fit to logFC values derived from real data. Using the
labeled 10x Chromium data for 68k PBMCs [16], differential expression was performed
with the findMarkers function from the R package scran [39]. To generate corresponding
null distributions of logFC values for non-differentially expressed genes, we split data for
each cell type into equally sized halves 10 times, running findMarkers to compare the
resulting halves. A central Gaussian-Laplace mixture (µ = 0) was first fit to the null logFC
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values. The distribution of posterior predictive logFC values appeared to be consistent with
observed logFC values for this null component (Supplemental Figure 17D). Following this,
the entire mixture distribution was fitted to logFC values for pairs of distinct cell types, using
maximum a posteriori (MAP) estimates of parameters for the central Gaussian-Laplace
component. Posterior distributions of model parameters were inferred using the no U-turn
sampler (NUTS) in pymc3, using 4 independent chains, 1000 tuning iterations, and 2500
additional iterations per chain. Trace plots and the Gelman-Rubin diagnostic were used to
assess convergence.

8.3.3 Simulating multi-group data

Expression count matrices were simulated using a modified version of the splatter pack-
age. Log fold change values were simulated according to our model instead of the splat-
ter model. Other settings were kept identical. We used MAP estimates of µ+, µ−, σ+,
σ−, ν+, and ν−, determined by fitting our simulation model to (1) logFC values between
naïve CD4+ and naïve CD8+ T cells (Supplemental Figure 17A); and (2) logFC values
between B cells and CD8+ T cells (section 8.3.1) for the differential expression compo-
nent. The proportion of downregulated genes out of differentially expressed genes was
set to 0.5 (i.e. equally probable for a differentially expressed gene to be downregulated
vs. upregulated). Three “groups" (cell types) were simulated at equal proportions. Other
parameters for splatter were fitted from 10x Chromium data for 4,000 T cells available from
10x Genomics.

To assess the performance of CellAssign relative to other clustering methods across a
range of pd values (proportion of genes differentially expressed between each pair of cell
types), pd was chosen from {0.05, 0.15, 0.25, 0.35, 0.45, 0.55}. (The true MAP estimate of pd
was 0.0746 for naïve CD4+ vs. naïve CD8+ T cells, and 0.153 for B vs. CD8+ T cells.)
The number of simulated cells, n, was set to 2000, and 1000 were randomly set aside for
training (for scmap and correlation-based supervised clustering).

To assess the robustness of CellAssign to misspecification of the marker gene matrix ρ, pd
was set to 0.25 and the number of simulated cells n to 1500.

Simulations were run 9 times with unique random seeds for each combination of parameter
settings.

8.3.4 Clustering multi-group data

Count matrices were normalized with scater normalize and the top 50 principal compo-
nents were computed from the top 1000 most variable genes. For phenograph, Seurat
(resolution ∈ {0.4, 0.8, 1.2}), densitycut, and dynamicTreeCut, unsupervised clustering
was performed on the values of these top 50 PCs. For SC3, the entire normalized Sin-
gleCellExperiment object was passed as input instead. For supervised methods (scmap-
cluster [10] and correlation-based [16]), expression data for both training and evaluation
sets was provided. For CellAssign, the raw count matrix was provided as input, along with
a set of marker genes selected based on simulated log fold change and mean expression
values. Specifically, a gene was defined as a marker gene if it was in the top 5th percentile
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of differentially expressed genes according to logFC and the top 10th percentile of differ-
entially expressed genes according to mean expression. A maximum of 15 marker genes
were selected for each group. In simulations of robustness to marker gene misspecifica-
tion, a proportion of randomly selected entries in the marker gene matrix ρ were flipped
from 0 to 1 (or vice versa). All other parameters were set to the defaults.

8.3.5 Mapping clusters to true groups

For assignments derived from unsupervised clustering, clusters were mapped to simulated
groups by first performing differential expression between each cluster and the remaining
cells. Following this, we computed the Spearman correlation between these logFC values
and the simulated (true) logFC values for each simulated group. Each inferred cluster was
mapped to most highly correlated simulated group based on Spearman’s ρ where ρ > 0
and P ≤ 0.05. Clusters that could not be mapped based on these criteria were marked as
‘unassigned’.

8.3.6 Evaluation

Accuracy and cell-level F1 score were computed to evaluate clustering performance. The
cell-level F1 score considers each cell as an individual classification task with a true cell
type assignment (and potentially multiple incorrect cell type assignments) for the purposes
of calculating precision and recall.

8.3.7 Benchmarking

We generated synthetic datasets for benchmarking from the modified splatter model
(section 8.3.1) with Student’s t parameters µ = 0.1, σ = 0.1, ν = 1 and the proportion
of differentially expressed genes per cell type set to 20%. Synthetic datasets of various
sizes (number of cells N ∈ {1000, 2000, 4000, 8000, 10000, 20000, 40000, 80000} and number
of cell types C ∈ {2, 4, 6, 8}) with a balanced number of cells per type were generated.
Markers for CellAssign were selected from genes in the top 20th percentile in terms of log
fold change among differentially upregulated genes and the top 10th percentile in terms of
expression. CellAssign was run with 2, 4, 6, and 8 markers per cell type, with a maximum
minibatch size of 5000 cells. On simulated data for 80000 cells from 2 cell types, CellAssign
completed in under 2 minutes, appearing to scale at worst linearly in the number of cell
types and marker genes used per cell type (Supplemental Figure 19). Five separate
CellAssign runs were timed for each combination of parameters.

8.4 Koh et al. dataset

8.4.1 Preprocessing and normalization of single-cell RNA-seq data

Preprocessed data was obtained from the R package DuoClustering2018 [12, 6]. Cell-
types with both single-cell RNA-seq data and bulk RNA-seq data were used: hESC (day
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0 human embryonic stem cell), APS (day 1 anterior primitive streak), MPS (day 1 mid
primitive streak), DLL1pPXM (day 2 DLL1+ paraxial mesoderm), ESMT (day 3 somite),
Sclrtm (day 6 sclerotome), D5CntrlDrmmtm (day 5 dermomyotome), D2LtM (day 2 lateral
mesoderm). Normalization and dimensionality reduction was performed with scater nor-
malize, runPCA, runTSNE, and runUMAP. The top 500 most variable genes were used to
compute the top 50 principal components, and the top 50 PCs were used as input for
t-SNE.

8.4.2 Identification of marker genes from bulk RNA-seq data

Differential expression analysis results for bulk RNA-seq data for the same cell types was
used to compute the relative expression of each gene in each cell type. Briefly, bulk RNA-
seq log fold change values obtained from [12] were used to compute log-scale relative gene
expression levels. Next, we identified gene-specific thresholds for defining the cell types in
which each gene is a marker. For each gene, relative expression levels across cell types
were sorted in ascending order, denoted as E1, ..., EC , where C is the total number of cell
types. The maximum difference between sorted expression levels, max1≤i<C(Ei+1 − Ei),
was then computed. Denote the index i for gene g in which this difference is maximal
ig. For gene g, cell types in which relative expression values were equal to or greater
than Eig+1 were considered cell types with gene g as a marker. Genes with a maximum
difference value in the the top 20th percentile were used as marker genes.

8.4.3 CellAssign

CellAssign was run on count data using the marker gene matrix defined from bulk RNA-seq
data described above. Three random initializations of expectation-maximization were used
with shrinkage priors on δgc turned on (section 8.2.1). Results from the run that reached
the highest marginal log-likelihood at convergence were kept.

8.4.4 Unsupervised clustering

Unsupervised clustering was performed on the top 50 PCs with Seurat [3] (resolution
∈ {0.8, 1.2}; these represent low-moderate and high levels within the recommended range)
and on the SingleCellExperiment object of raw and normalized counts with SC3 [2]. We
also provided [3] with only the marker genes used by CellAssign (SC3 failed to run when
provided with this number of genes). Inferred clusters were mapped to true (FACS-purified)
cell types by computing the pairwise Spearman correlation between mean expression vec-
tors for each cluster and each true cell type. Each cluster was treated as the cell type it
was most strongly positively associated with by Spearman’s ρ.

8.4.5 Evaluation

Accuracy and cell type-level F1 score were computed to evaluate clustering performance.
The cell type-level F1 score is defined as the arithmetic mean of F1 scores computed for
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each cell type separately.

8.5 High-grade serous ovarian cancer

8.5.1 Sample preparation

Specimens were placed into cold media in the operating room and brought to the clinical
laboratory by messenger porter. Following this, each specimen was assigned a unique
research identifier and processed as per VGH/UBC Anatomical Pathology specimen han-
dling procedures. Tissues were dissociated at low temperature [40] using a modified proto-
col (O’Flanagan et al., manuscript in preparation). Briefly, after finely chopping and weigh-
ing in a cell culture dish, tissue was transferred into a gentleMACS C tube, and 1mL of
10 mg/mL Bacillus lichenformis protease (Creative Enzymes NATE-0633) was added to
each 25 mg of tissue. The resulting solution was incubated and mechanically disrupted
at 6◦C using the Miltenyi Biotec MACS Separator (programs h_tumour_01, h_tumour_02,
h_tumour_03) for 1 hour. Following dissociation, cells were assessed for viability using the
cell counter (5µL cells + 5µL trypan blue) under a microscope.

Samples were then diluted with cold HFN and washed with trypsin, dispase, and DNAse
while gently pipetting up and down. Cold ammonium chloride was added to bloody sam-
ples. Cells were assessed for viability using the cell counter (5µL cells + 5µL trypan blue)
under a microscope, and kept on ice. Cells were spun down and the pellet resuspended
in 100µL of Miltenyi Dead Cell Removal MicroBeads and incubated at room temperature
for 15 minutes. Viable cell enrichment was performed using the positive selection column
type MS with a MACS Separator.

8.5.2 Library preparation and sequencing

Single-cell RNA-seq libraries were prepared following the 10x Genomics User Guide for 5’
gene expression library construction. Single cell libraries were sequenced on an Illumina
NextSeq 500 (75bp paired end reads) using a modified 58bp R2 at the UBC Biomedical
Research Centre.

8.5.3 Processing and normalization of single-cell RNA-seq data

Raw sequence files were processed with CellRanger v2.1.0. The resulting filtered count
matrices were read into SingleCellExperiment objects. Outlier cells according to quality
control parameters (≥ 3 median absolute deviations from the median) were filtered out us-
ing the scater R package. Additionally, cells with ≥ 20% mitochondrial UMIs or ≥ 50% ri-
bosomal UMIs were removed (ovarian cancer cells can have higher mitochondrial percent-
ages than other cell types, as in [41]). Size factors were computed using quickCluster
and computeSumFactors from the scran R package. Following this, data normalization
was performed using scater normalize. Principal components analysis was performed
on the resultant normalized logcounts for the top 1000 most variable genes. The first 50
PCs were used as input for UMAP.
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For HGSC data, two UMAP parameters were changed from the defaults (umap R package)
due to the presence of an outlier in UMAP space along the first dimension. The number of
neighbours was set to 25, and the minimum distance was set to 0.2.

Cell cycle scores were computed with cyclone from the scran package [33, 39].

8.5.4 CellAssign

• B cells: VIMc, MS4A1c, CD79Ac, PTPRCc, CD19c, BANK1 [42]

• T cells: VIMc, CD2c, CD3Dc, CD3Ec, CD3Gc, CD28c, PTPRCc

• Monocyte/Macrophage: VIMc, CD14c, FCGR3Ac, CD33c, ITGAX c, ITGAMc, CD4c,
PTPRCc, LYZ c

• Epithelial cells: EPCAMc, CDH1c, KRT8 [19], WFDC2 [19]

• Ovarian stromal cells: VIMc, MUM1L1 [18], FOXL2 [18], ARX [18], DCN [19], TPT1
[19], RBP1 [19]

• Ovarian myofibroblast: VIMc, MUM1L1 [18], FOXL2 [18], ARX [18], ACTA2c, COL1A1c,
COL3A1c, SERPINH1 [19]

• Vascular smooth muscle cells: VIMc, ACTA2c, MYH11c, PLN [43], MYLK c, MCAM
[20], COL1A1c, COL3A1c, SERPINH1 [44]

• Endothelial cells: VIMc, EMCNc, CLEC14A [45], CDH5c, PECAM1c, VWF c, MCAM
[20], SERPINH1 [19]

c: canonical marker

The marker gene list described above and in Supplemental Table 2 was used for Cel-
lAssign [42, 18, 19]. DCN, TPT1, and RBP1 were selected as markers of ovarian stromal
cells based on differential expression results comparing normal fibroblasts (ovarian stro-
mal cells) and malignant fibroblasts from [19] (these were the top 3 genes upregulated in
normal fibroblasts by log fold change where Q < 0.05). CellAssign was run with default
parameters, the shrinkage prior on δgc values turned on, and 5 random initializations.

8.5.5 Unsupervised clustering

Unsupervised clustering of epithelial cells from CellAssign (probability ≥ 90%) was per-
formed with Seurat [3], using a resolution parameter of 0.2 (for fairly coarse resolution).
Unsupervised clustering of all cells was performed with Seurat and SC3 [2], using de-
fault parameters. For Seurat, resolutions of 0.8 and 1.2 were used (these represent low-
moderate and high levels within the recommended range). Additionally, Seurat clustering
was also performed using data for the same set of marker genes provided to CellAssign
(SC3 failed to run when provided with this number of genes).
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8.5.6 Differential expression

Log fold change values from the findMarkers function (filtering out ribosomal and mito-
chondrial genes) from scran were used as input for gene set enrichment analysis with the
fGSEA R package, using default parameters with 10,000 permutations, and the hallmark
pathway gene set [32]. Annotations for cell cycle-associated pathways (E2F targets, G2M
checkpoint, and mitotic spindle), and immune-associated pathways (including interferon
gamma response, interferon alpha response, coagulation, complement, IL6-JAK/STAT sig-
nalling, and allograft rejection) were taken from [32].

8.6 Follicular lymphoma

8.6.1 Sample preparation

Leftovers from clinical flowed samples were collected and frozen in fetal calf serum con-
taining 10% DMSO. Cells were thawed and washed according to the steps outlined in the
10X Genomics Sample Preparation Protocol. Cells were stained with PI for viability and
sorted in a BD FACSAria Fusion using a 85um nozzle. Sorted cells were collected in 0.5
ml of medium, centrifuged and diluted in 1X PBS with 0.04% bovine serum albumin.

8.6.2 Library preparation and sequencing

Cell concentration was determined by using a Countess II Automated Cell Counter and
approximately 3,500 cells were loaded per well in the Single Cell 3’ Chip. Single cell
libraries were prepared according to the Chromium Single Cell 3’Reagent Kits V2 User
Guide. Single cell libraries from two samples were pooled and sequenced on one HiSeq
2500 125 base PET lane.

8.6.3 Preprocessing and normalization of single-cell RNA-seq data

Preprocessing steps for the follicular lymphoma data were identical to those for HGSC
single-cell RNA-seq data, described in section 8.5.3, with the exception of different mi-
tochondrial and ribosomal thresholds (cells with ≥ 10% mitochondrial UMIs or ≥ 60%
ribosomal UMIs were removed).

8.6.4 scvis analysis

scvis train (v0.1.0) [26] was run with default settings on the top 50 PCs to produce a
2-dimensional embedding of the follicular lymphoma data. Early stopping was added to
scvis, so that the model would terminate after 3 successive iterations of no improvement
(relative improvement in ELBO < 10−5). The resultant model was saved and used for
mapping in section 8.7.4.
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8.6.5 CellAssign

• B cells: CD19c, MS4A1c, CD79Ac, CD79Bc, CD74c, CXCR5 [46]

• Cytotoxic T cells: CD2c, CD3Dc, CD3Ec, CD3Gc, TRACc, CD8Ac, CD8Bc, GZMAc,
NKG7 c, CCL5c, EOMESc

• Follicular helper T cells: CD2c, CD3Dc, CD3Ec, CD3Gc, TRACc, CD4c, CXCR5c,
PDCD1c, TNFRSF4 [42], ST8SIA1 [42], ICA1 [42], ICOS [42]

• Other CD4+ T cells: CD2c, CD3Dc, CD3Ec, CD3Gc, TRACc, CD4c, IL7R [42]
c: canonical marker

The marker gene list described above and in Supplemental Table 2 was used for CellAs-
sign [42, 47]. CellAssign was run with default parameters, the shrinkage prior on δgc values
turned on, and 5 random initializations.

Patient was added as an additional covariate into the design matrix X (section 8.2.1). The
best result according to marginal log-likelihood at convergence was kept. Optimization
was considered converged after 3 consecutive rounds of no improvement (relative change
in log-likelihood < 10−5). MAP assignments from CellAssign were used for downstream
analysis.

No evidence of regulatory T cells (FOXP3 and IL2RA expression), NK cells (NCAM1 ex-
pression), and myeloid cells (CD14/CD16 and LYZ expression) was detected.

8.6.6 Unsupervised clustering

Unsupervised clustering of all cells was performed with Seurat and SC3 [2], using de-
fault parameters. For Seurat, resolutions of 0.8 and 1.2 were used (these represent low-
moderate and high levels within the recommended range). Additionally, Seurat clustering
was also performed using data for the same set of marker genes provided to CellAssign
(SC3 failed to run when provided with this number of genes).

8.6.7 Classifying B cells

B cells from CellAssign were further subclassified into ‘malignant’ or ‘nonmalignant’ groups
according to expression of the constant region of the immunoglobulin light chain (kappa or
lambda type) and the results of PCA. Seurat [3] (resolution = 0.8) was used to separate
B cells into clusters, based on the top 50 PCs. Following this, the sole cluster associ-
ated with IGKC (immunoglobulin light chain kappa-type constant region) expression was
designated as nonmalignant. We further reasoned this was the case based on the clus-
ter containing a mixture of T1 and T2 cells and constituting only a minor subset of the B
cells.
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8.6.8 Differential expression between timepoints

Differential expression analysis between timepoints for a given celltype and patient was
performed using voom from the limma package for each patient and cell type separately,
with timepoint as the independent variable. Genes with low expression (< 500 UMIs in
total across all cells) were removed. P -values were adjusted with the Benjamini-Hochberg
method, and genes with Q ≤ 0.05 were considered differentially expressed. Differential
expression between malignant and nonmalignant B cells was performed similarly, but us-
ing the formula ~malignant_status + timepoint + malignant_status:timepoint to
control for timepoint and any interactions.

8.6.9 Reactome pathway enrichment analysis

Pathway analysis was performed for the top 50 most upregulated and top 50 most down-
regulated genes (separately) by log fold change from limma (where Q ≤ 0.05, filtering out
ribosomal and mitochondrial genes). Overrepresentation of Reactome [30] pathways was
assessed using the R package ReactomePA. Pathways were considered significantly over-
represented if the adjusted P -value ≤ 0.05 and at least 2 genes from the pathway were
present.

8.6.10 Comparing malignant cells between timepoints

Log fold change values from the findMarkers function (filtering out ribosomal and mito-
chondrial genes) from scran were used as input for gene set enrichment analysis with
the fGSEA R package, using default parameters with 10,000 permutations, and the hall-
mark pathway gene set [32]. Annotations for cell cycle-associated pathways (E2F targets,
G2M checkpoint, and mitotic spindle) and proliferation-associated pathways were taken
from [32]. BH-adjusted P -values for differences in replication-associated marker expres-
sion (MKI67 and TOP2A) were also computed with the findMarkers function from scran,
using default parameters.

8.7 Reactive lymph node data

8.7.1 Sample preparation

Cell suspensions from patients with reactive lymphoid hyperplasia but no evidence of ma-
lignant disease and collagen disease were used. Leftovers from clinical flowed samples
were collected and frozen in FCS containing 10%DMSO. The day of the experiment cell
suspensions were rapidly thawed at 37◦C, and washed according to the steps outlined in
the 10X Genomics Sample Preparation Protocol. Cells were stained with DAPI and viable
cells (DAPI negative) were sorted on a FACS ARIAIII or FACS Fusion (BD Biosciences)
instrument.
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8.7.2 Library preparation and sequencing

Approximately 8,700 cells per sample were loaded into a Chromium Single Cell 3’ Chip kit
v2 (PN-120236) and processed according to the Chromium Single Cell 3’Reagent kit v2
User Guide. Libraries were constructed using the Single 3’ Library and Gel Bead Kit v2
(PN-120237) and Chromium i7 Mulitiplex Kit v2 (PN-120236). Single cell libraries from two
samples were pooled and sequenced on one HiSeq 2500 125 base PET lane.

8.7.3 Preprocessing and normalization of single cell RNA-seq data

Preprocessing steps for the reactive lymph node data were identical to those for follicular
single-cell RNA-seq data, described in section 8.6.3.

8.7.4 scvis analysis

The identities of the top 1000 most variable genes and PCA loadings from follicular lym-
phoma data analysis were used to compute a 50-dimensional embedding for the reactive
lymph node data. Following this, the resultant 50 PCs were provided as input to scvis map
[26], using the model trained in section 8.6.4 and default settings.
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List of Figures

Figure 1. (a) Overview of CellAssign. CellAssign takes raw count data from a heteroge-
neous single-cell RNA-seq population, along with a set of known marker genes for var-
ious cell types under study. Using CellAssign for inference, each cell is probabilistically
assigned to a given cell type without any need for manual annotation or intervention, ac-
counting for any batch or sample-specific effects. (b) An overview of the CellAssign proba-
bilistic graphical model. (c) The random variables and data that form the model, along with
the distributional assumptions.
Figure 2. Performance of CellAssign on simulated data. (a) Accuracy and cell-level F1
score (Methods) for varying proportions of differentially expressed genes per cell type,
with other differential expression parameters set to MAP estimates determined from com-
paring naïve CD8+ and naïve CD4+ T cells (Methods). CellAssign was provided with
a set of marker genes (Methods); all other methods were provided with all genes. cel-
lassign_shrinkage refers to a version of CellAssign with a shrinkage prior on δ (Methods).
Asterisks indicate FDR-adjusted statistical significance (Wilcoxon signed-rank test) for pair-
wise comparisons between cellassign/cellassign_shrinkage and other methods. (b) Accu-
racy and cell-level F1 score for varying proportions of differentially expressed genes per cell
type, with other differential expression parameters set to MAP estimates determined from
comparing naïve CD8+ and naïve CD4+ T cells. All methods were provided with the same
set of marker genes. (c) Correspondence between true simulated log fold change values
and log fold change (δ) values inferred by CellAssign. R and Rs refer to the Pearson cor-
relation between true and inferred logFC values for cellassign and cellassign_shrinkage,
respectively. (d) Performance of CellAssign where a certain proportion of entries in the
marker gene matrix are flipped at random. Differential expression parameters used for
these simulations were based on those determined from comparing B and CD8+ T cells.

Figure 3. CellAssign infers the composition of the HGSC microenvironment. (a) UMAP
plot of HGSC single cell expression data, labeled by sample. (b) UMAP plot of HGSC
single cell expression data, labeled by maximum probability assignments from CellAs-
sign. (c) Proportions of CellAssign cell types in each sample. (d) Expression (log nor-
malized counts) of EPCAM (for epithelial cells), CD45 (PTPRC) (for hematopoietic cells),
MUM1L1 (for ovary-derived cells), and COL1A1 (for collagen-producing fibroblasts and
smooth muscle cells). Expression values were winsorized between 0 and 4. (e) Hallmark
pathway enrichment results for left ovary vs. right ovary epithelial cells (Methods). (f) Un-
supervised clustering of epithelial cells (Methods). (g) Expression (log normalized counts)
of epithelial-mesenchymal transition (EMT) associated markers, N-cadherin (CDH2) and
CD90 (THY1) in epithelial cells. (h) Expression (log normalized counts) of select HLA class
I genes in epithelial cells.
Figure 4. CellAssign infers the composition of the follicular lymphoma microenvironment.
(a) Sample collection times for FL1018 (transformed FL) and FL2001 (progressed FL).
FL1018 is alive while FL2001 was lost to followup (indicated by the red rectangle). The
number of cells collected for each sample is indicated. (b) UMAP plot of follicular lym-
phoma single cell expression data, labeled by sample. (c) UMAP plot of follicular lym-
phoma single cell expression data, labeled by maximum probability assignments from Cel-
lAssign. (d) Expression (log normalized counts) of select marker genes CD79A (for B
cells), CD3D (for T cells), CCL5 (for CD8+ T cells), and ICOS (for T follicular helper cells).
Expression values were winsorized between 0 and 3.
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Figure 5. Temporal changes in nonmalignant cells in the follicular lymphoma microenviron-
ment. (a) Left: UMAP plot of CellAssign-inferred B cells, labeled by sample. Right: UMAP
pot of CellAssign-inferred B cells, labeled by putative malignant/nonmalignant status. (b)
Expression (log normalized counts) of κ (IGKC) and λ (IGLC2 and IGLC3) light chain con-
stant region genes. Expression values were winsorized between 0 and 6. (c) Scvis plot of
follicular lymphoma data and single cell RNA-seq data of lymphocytes from reactive lymph
nodes from healthy patients. The follicular lymphoma data was used to train the variational
encoder and produce the two-dimensional embedding. Indicated cell types are B cell (non-
malignant B cell from FL), B cell (malignant) (malignant B cell from FL), T cell (T cell from
FL), RLN (reactive lymph node cell). (d) Relative proportion of B cell subpopulations over
time. (e) UMAP plots of FL T cells, labeled by sample and CellAssign-inferred celltype. (f)
Relative proportion of T cell subpopulations over time. (g) Normalized expression of CD8+
T cell activation markers over time. P -values computed with the Wilcoxon rank-sum test
and adjusted with the Benjamini-Hochberg method.
Figure 6. Temporal changes in malignant cells in the follicular lymphoma microenviron-
ment. (a,b) Pathway enrichment scores computed by fGSEA for differentially enriched
(adjusted P ≤ 0.05) and cell cycle-associated pathways among malignant cells between
timepoints for (a) FL1018 and (b) FL2001 (Methods). Pathways with a positive enrich-
ment score are upregulated in T2 compared to T1 samples. P -values were adjusted with
the Benjamini-Hochberg method. (c,e) UMAP plots, labeled by sample and proliferation
marker expression (MKI67 and TOP2A), for (c) FL1018 and (e) FL2001. Expression val-
ues were winsorized between 0 and 3. (d,f) Proportion of cells assigned to be in non-G1
cell cycle phases (S/G2/M) by cyclone across timepoints in (d) FL1018 and (f) FL2001.
(g) Normalized expression of HLA class I genes and select HLA class II genes across
timepoints in FL1018 and FL2001.
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List of Supplementary Figures

Supplemental Figure 1. Simulation performance across a range of proportions of dif-
ferentially expressed genes, using differential expression parameters derived from com-
paring B and CD8+ T cells. (a) Accuracy and cell-level F1 score (Methods) for varying
proportions of differentially expressed genes per cell type. CellAssign was provided with
a set of marker genes (Methods); all other methods were provided with all genes. Aster-
isks indicate FDR-adjusted statistical significance (Wilcoxon signed-rank test) for pairwise
comparisons between cellassign/cellassign_shrinkage and other methods. (b) Accuracy
and cell-level F1 score for varying proportions of differentially expressed genes per cell
type. All methods were provided with the same set of marker genes. (c) Correspondence
between true simulated log fold change values and log fold change (δ) values inferred by
CellAssign. R and Rs refer to the Pearson correlation between true and inferred logFC
values for cellassign and cellassign_shrinkage, respectively.
Supplemental Figure 2. Simulation performance across a range of proportions of ran-
domly flipped entries in the binary marker gene matrix, using differential expression pa-
rameters derived from comparing naïve CD8+ and naïve CD4+ T cells for (a) 5 marker
genes per cell type and (b) 20 marker genes per cell type.
Supplemental Figure 3. Performance (accuracy and cell type-level F1 score, Methods) of
CellAssign and the best-performing clustering methods evaluated by [6] on FACS-purified
H7 human embryonic stem cells in various stages of differentiation. t-SNE plots of (a)
ground-truth FACS annotations; (b) CellAssign-derived annotations; (c) SC3 clusters (us-
ing all genes); (d) Seurat clusters (resolution = 0.8, using all genes); (e) Seurat clusters
(resolution = 0.8, using the same marker gene set used by CellAssign); (f) Seurat clusters
(resolution = 1.2, using all genes); (g) Seurat clusters (resolution = 1.2, using the same
marker gene set used by CellAssign).
Supplemental Figure 4. Expression of select marker genes in HGSC single cell RNA-seq
data. (a) Expression (log normalized counts) of PECAM1 (for endothelial cells), CD3D (for
T cells), CD79A (for B cells), KLHDC8A (for ovary-derived cells), ACTA2 (for myofibroblasts
and smooth muscle), MYH11 (for smooth muscle), and MCAM (for vascular cell types
including endothelial cells, vascular smooth muscle, and pericytes). (b) Expression (log
normalized counts) of marker genes expressed in epithelial ovarian cancers but not in
normal ovarian tissue. Expression values were winsorized between 0 and 4.
Supplemental Figure 5. Comparison of clusters from CellAssign and state-of-the-art un-
supervised clustering approaches [6] on HGSC single cell RNA-seq data. (a) Expression
(log normalized counts) of key marker genes of hematopoietic subpopulations CD3D (for
T cells), CD79A (for B cells), and CD14 (for monocytes/macrophages). Expression values
were winsorized between 0 and 4. UMAP plots of (b) CellAssign-derived annotations; (c)
SC3 clusters (using all genes); (d) Seurat clusters (resolution = 0.8, using all genes); (e)
Seurat clusters (resolution = 0.8, using the same marker gene set used by CellAssign);
(f) Seurat clusters (resolution = 1.2, using all genes); (g) Seurat clusters (resolution = 1.2,
using the same marker gene set used by CellAssign).
Supplemental Figure 6. Cluster-specific HLA expression in HGSC epithelial cells. (a)
Expression (log normalized counts) of HLA class I genes in all HGSC cells. Expression
values clipped from 0 to 8. (b) Expression of HLA class I genes across cell types in all
HGSC cells. Epithelial (1): epithelial cells from cluster 1. Epithelial (other): epithelial cells
from all other clusters.
Supplemental Figure 7. Cluster-specific phenotypes in HGSC epithelial cells. (a) Hall-
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mark pathway enrichment results for epithelial clusters 3 vs. 1 from the left ovary sample.
(b) Gene-level differential expression for epithelial clusters 3 vs. 1. (c and d) Hallmark
pathway enrichment results for epithelial clusters (c) 2 vs. 0; and (d) 2 vs. 4. (e) Ex-
pression (log normalized counts) of select hypoxia-associated markers in HGSC epithelial
cells. Expression values were winsorized between 0 and 4.
Supplemental Figure 8. (a) Expression (log normalized counts) of select marker genes
CD2 (for T cells), MS4A1 (for B cells), CD8A and GZMA (for CD8+ T cells), CD4 (for T
follicular helper cells and other CD4+ T cells) and CXCR5 and ICOS (for T follicular helper
cells). Expression values were winsorized between 0 and 3. (b) Heatmap of marker gene
expression, labeled by maximum probability CellAssign-inferred cell types.
Supplemental Figure 9. Comparison of clusters from CellAssign and state-of-the-art
unsupervised clustering approaches [6] on follicular lymphoma single cell RNA-seq data
(showing only T cell subtypes). (a) Expression (log normalized counts) of key T cell sub-
population marker genes CD8A (for cytotoxic T cells), ICOS and CXCR5 (for T follicular
helper cells). Expression values were winsorized between 0 and 4. UMAP plots of (b)
CellAssign-derived annotations; (c) SC3 clusters (using all genes); (d) Seurat clusters
(resolution = 0.8, using all genes); (e) Seurat clusters (resolution = 0.8, using the same
marker gene set used by CellAssign); (f) Seurat clusters (resolution = 1.2, using all genes);
(g) Seurat clusters (resolution = 1.2, using the same marker gene set used by CellAssign).

Supplemental Figure 10. Expression (log normalized counts) of κ and λ light chain con-
stant region genes in nonmalignant B cells. Class assignments were determined by Cel-
lAssign (Methods).
Supplemental Figure 11. Expression (log normalized counts) of selected marker genes
(CD2, CD3D, and CD3E for T cells; CD79A, MS4A1, and CD19 for B cells) in scvis em-
bedding of reactive lymph node data. Expression values were winsorized between 0 and
3.
Supplemental Figure 12. Differential expression results for malignant vs. nonmalignant B
cells in (a) FL1018 and (b) FL2001. Comparisons was performed accounting for timepoint
and potential interactions between malignant status and timepoint using a multivariate lin-
ear model described in Methods. Genes upregulated among malignant cells have logFC
values > 0. P -values were adjusted with the Benjamini-Hochberg method.
Supplemental Figure 13. Significantly enriched Reactome pathways (BH-adjusted P -
value ≤ 0.05) among the top 50 most highly upregulated genes (ranked by log fold change)
in (a) FL1018 and (b) FL2001. Up to 30 pathways are shown in either plot (Methods).
Supplemental Figure 14. Differentially expressed genes for (a) T follicular helper and (b)
other CD4 T cells between T2 vs. T1. Genes upregulated in T2 have log fold change
values > 0. The activation marker CD69 is highlighted. P -values were adjusted with the
Benjamini-Hochberg method.
Supplemental Figure 15. Differentially expressed genes between malignant B cells from
T2 vs. T1 in (a) FL1018 and (b) FL2001. Genes upregulated in T2 have log fold change
values > 0. HLA class I genes and select HLA class II genes are highlighted. P -values
were adjusted with the Benjamini-Hochberg method.
Supplemental Figure 16. Significantly enriched Reactome pathways (BH-adjusted P -
value ≤ 0.05) among the top 50 most downregulated genes (ranked by log fold change) in
malignant B cells in FL1018. No pathways were significantly downregulated in FL2001.
Supplemental Figure 17. Fitting single cell RNA-seq simulation models to the Zheng
PBMC 68k dataset, using cell type annotations provided in [38]. (a) Log fold change val-
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ues computed from differential expression analysis between naïve CD8+ and naïve CD4+
T cells. (b) ‘Null’ log fold change values computed by randomly splitting naïve CD8+ T cells
into equally sized halves 10 times. (c) Quantile-quantile (QQ) plot comparing observed log
fold change values between naïve CD8+ and naïve CD4+ T cells and posterior predictive
samples from the splatter model (Methods). (d) Quantile-quantile (QQ) plot compar-
ing observed log fold change values between naïve CD8+ and naïve CD4+ T cells and
posterior predictive samples from the modified model (Methods).
Supplemental Figure 18. Fitting single cell RNA-seq simulation models to the Koh et
al. [12] dataset of FACS-purified cell types. (a) Log fold change values computed from
differential expression analysis between human embryonic stem cells (hESCs) and day
3 somite cells (ESMT). (b) ‘Null’ log fold change values computed by randomly splitting
anterior primitive streak cells into equally sized halves 10 times. (c) Quantile-quantile
(QQ) plot comparing observed log fold change values between hESC and ESMT cells and
posterior predictive samples from the splatter model (Methods). (d) Quantile-quantile
(QQ) plot comparing observed log fold change values between hESC and ESMT cells and
posterior predictive samples from the modified model (Methods).
Supplemental Figure 19. Benchmarking results for CellAssign across a range of simu-
lated data set sizes (number of cells), number of cell types being inferred, and number of
marker genes per cell type. (a) Runtime (to convergence, defined as a relative change in
log-likelihood < 10−3 between successive iterations, as a function of data set size and the
number of marker genes used per cell type, on simulated data (Methods). Two cell types
were used. (b) Runtime (to convergence, defined as a relative change in log-likelihood
< 10−3 between successive iterations, as a function of the number of cell types and the
number of marker genes used per cell type, on simulated data. One thousand cells were
used.
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Supplemental Table 1. Performance measures on simulated data.
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Supplemental Table 2. Marker gene matrices used in analysis.
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Supplemental Table 3. Pathway enrichment results for follicular lymphoma and HGSC
data.

59

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/521914doi: bioRxiv preprint 

https://doi.org/10.1101/521914
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Results
	CellAssign: probabilistic and automated cell type assignment
	Performance of CellAssign relative to unsupervised clustering and supervised classification methods
	Profiling the tumour microenvironment composition of spatially sampled HGSC
	Temporal immune microenvironment dynamics accompanying follicular lymphoma progression and transformation

	Discussion
	Acknowledgements
	Funding
	Author Contributions
	Competing Interests
	Methods
	Ethics
	The CellAssign model
	Model description
	Inference
	Availability

	Simulation
	Model description and rationale
	Model fitting
	Simulating multi-group data
	Clustering multi-group data
	Mapping clusters to true groups
	Evaluation
	Benchmarking

	Koh et al. dataset
	Preprocessing and normalization of single-cell RNA-seq data
	Identification of marker genes from bulk RNA-seq data
	CellAssign
	Unsupervised clustering
	Evaluation

	High-grade serous ovarian cancer
	Sample preparation
	Library preparation and sequencing
	Processing and normalization of single-cell RNA-seq data
	CellAssign
	Unsupervised clustering
	Differential expression

	Follicular lymphoma
	Sample preparation
	Library preparation and sequencing
	Preprocessing and normalization of single-cell RNA-seq data
	scvis analysis
	CellAssign
	Unsupervised clustering
	Classifying B cells
	Differential expression between timepoints
	Reactome pathway enrichment analysis
	Comparing malignant cells between timepoints

	Reactive lymph node data
	Sample preparation
	Library preparation and sequencing
	Preprocessing and normalization of single cell RNA-seq data
	scvis analysis



