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Abstract

A central question in human genetics is to find the proportion of variation in a trait that can be ex-
plained by genetic variation. A number of methods have been developed to estimate this quantity, termed
narrow-sense heritability, from genome-wide SNP data. Recently, it has become clear that estimates of
narrow-sense heritability are sensitive to modeling assumptions that relate the effect sizes of a SNP to
its minor allele frequency (MAF)and linkage disequilibrium (LD) patterns [3]. A principled approach to
estimate heritability while accounting for variation in SNP effect sizes involves the application of linear
Mixed Models (LMMs) with multiple variance components where each variance component represents
the fraction of genetic variance explained by SNPs that belong to a given range of MAF and LD val-
ues. Beyond their importance in accurately estimating genome-wide SNP heritability, multiple variance
component LMMs are useful in partitioning the contribution of genomic annotations to trait heritability
which, in turn, can provide insights into biological processes that are associated with the trait.

Existing methods for fitting multi-component LMMs rely on maximizing the likelihood of the variance
components. These methods pose major computational bottlenecks that makes it challenging to apply
them to large-scale genomic datasets such as the UK Biobank which contains half a million individuals
genotyped at tens of millions of SNPs.

We propose a scalable algorithm, RHE-reg-mc, to jointly estimate multiple variance components
in LMMs. Our algorithm is a randomized method-of-moments estimator that has a runtime that is
observed to scale as O( NMB

max(log3(N),log3(M))
+K3) for N individuals, M SNPs, K variance components, and

B ≈ 10 being a parameter that controls the number of random matrix-vector multiplication. RHE-reg-
mc also efficiently computes standard errors. We evaluate the accuracy and scalability of RHE-reg-mc for
estimating the total heritability as well as in partitioning heritability. The ability to fit multiple variance
components to SNPs partitioned according to their MAF and local LD allows RHE-reg-mc to obtain
relatively unbiased estimates of SNP heritability under a wide range of models of genetic architecture.
On the UK Biobank dataset consisting of ≈ 300, 000 individuals and ≈ 500, 000 SNPs, RHE-reg-mc
can fit 250 variance components, corresponding to genetic variance explained by 1 MB blocks, in ≈ 40
minutes on standard hardware.

1 Introduction

Heritability is a central parameter in understanding the contribution of genetic variation to trait varia-
tion [22]. Narrow-sense heritability refers to the maximal proportion of variation in a trait that can be
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explained by a linear function of genetic variation[22]. Over the last decade, there has been substantial
attention focused on estimating narrow-sense heritability from genome-wide SNP genotype data [25]. These
SNP heritability estimates are of great interest in understanding the genetic basis of complex traits and can
inform strategies for designing future genetic studies. While a number of methods have been developed to
estimate SNP heritability [25, 27, 11, 5, 19], recent studies have shown that the estimates of SNP heritability
from these methods can be highly sensitive to modeling assumptions such as the joint distribution of the
effect sizes at causal variants, their allele frequencies as well as the levels of correlation or linkage disequi-
librium (LD) between causal variants and the genotyped SNPs[19, 3]. An observation from these studies is
that methods that assume that the effect size of each SNP on a trait comes from the same distribution can
yield biased estimates of SNP heritability [3]. One potential strategy to relax the assumption of identically
distributed effect sizes consists of parametrizing the distribution of SNP effect sizes in terms of relevant
covariates that are expected to influence their distributions. For example, methods that partition SNPs
into bins based on minor allele frequency (MAF) and local LD patterns thereby allowing the distribution of
effect sizes to vary as a function of MAF and LD tend to be robust to variation in the underlying genetic
models [3]. Such partitioning strategies are also motivated by a number of recent studies suggest that the
distribution of effect sizes of SNPs on a trait can have a complex relationship with their allele frequencies
and LD [3, 4]. Beyond the dependency of SNP effect sizes on MAF and LD, the SNP effect sizes have been
observed to vary as a function of a number of genomic annotations such as whether a SNP lies in the protein
coding regions or in regions of open chromatin [7, 6, 4]. These observations, together, motivate statistical
models that allow for the flexible modeling of genetic effects on phenotype where the genetic effects vary as
a function of covariates such as MAF, LD or other genomic annotations.

Linear mixed models (LMMs) are an important class of models that permit the representation of flexible
relationships between genetic variation and complex traits, i.e., traits that are modulated by multiple genetic
and environmental factors. LMMs have been applied successfully in linkage analysis in family studies, in
genomic selection and risk prediction, as well as in association analysis to control for individual relatedness
and population stratification.

LMMs [15] have been applied to estimate SNP heritability attributed to genome-wide SNPs (h2SNP ) [25].
In the simplest setting, the LMM is endowed with two parameters, i.e., variance components, corresponding
to the phenotypic variance explained by genetic and residual factors respectively. These models, termed
single-component LMMs, as they employ a single variance component to capture all the genetic effects,
assume that the effect of each SNP on the phenotype is drawn independently from the same underlying
distribution. However, when this assumption is violated, these single component LMMs are expected to
yield biased estimates of SNP heritability. To overcome this limitation, multi-components LMMs have been
proposed which assign SNPs into one of several variance components and assume that the effect sizes at
SNPs assigned to a given variance component are drawn independently from the same distribution [24].
By binning SNPs according to their MAF and LD and assigning a variance component to each bin, these
multi-components LMMs have been shown to yield heritability estimates that are accurate across a range of
underlying genetic architectures.

While multi-component LMMs appear to be well-suited to estimate genome-wide SNP heritability, esti-
mating their parameters, i.e., the variance components, is computationally demanding. The most common
approach to estimate the variance components is to search for parameter values that maximize the likelihood.
Usually a particular form of maximum likelihood, the restricted maximum likelihood (REML) estimator [16],
is preferred due to a reduced bias relative to the full maximum likelihood estimator. Computing maximum
likelihood or REML estimators, however, can be challenging. Methods for computing maximum likelihood
or REML rely on iterative optimization algorithms. These algorithms do not scale well to large data sets
like the UK biobank which contains ≈ 100, 000 individuals and over a million SNPs. While a number of
algorithmic approaches have been proposed for efficient inference in LMMs, many of these are designed to
leverage the specific structure of single-component LMMs and cannot be applied to the multi-component
setting [13, 28]. Thus, efficient parameter estimation in multi-component LMMs remains a challenging
computational problem.
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1.1 Our contribution

We propose a fast multi-component variance components estimation algorithm for linear mixed models with
many variance components based on a randomized method-of-moments (MoM) estimator. Our estimator
can be viewed as a generalization of the classic Haseman-Elston (HE) regression [8] estimator to the multi-
component setting as well as of a recently proposed randomized version of HE regression for the single
component setting[23].

Being a Method-of-Moments estimator, our proposed estimator is statistically less efficient than REML
but it is computationally attractive. Recently, a scalable estimator of variance components for a single-
component LMM based on a randomized version of HE regression (RHE-reg), was proposed. This method
has a runtime complexity O( NMB

max(log3(N),log3(M)) ) for N individuals and M SNPs and a parameter B that

controls the number of random matrix-vector multiplications[23]. In this paper, we extend RHE-reg to
the multiple component setting where we assume that SNPs have been classified into one of K different
non-overlapping functional categories. Our method, RHE-reg-mc, estimates the variance component of each
category in time O( NMB

max(log3(N),log3(M)) +K3)

The time complexity of RHE-reg-mc scales with the size of the genotype matrix as long as the number of
components or partitions K is less than (MN)1/3 where M and N are the number of SNPs and individuals
respectively. For example, in the full set of UK Biobank genotypes (M ≈ 106, N ≈ 105), this allows us to
define 104 variance components while maintaining scalability.

We apply RHE-reg-mc to the problem of estimating genome-wide SNP heritability when the underlying
genetic architecture assumes that the effect sizes are a function of the MAF and LD patterns at the SNP. To
account for variation in the SNP effect sizes, we bin SNPs according to their MAF and LD patterns (following
previous approaches [26] and assign a distinct variance component for each bin. In small scale experiments
containing around 14, 000 individuals, we show that RHE-reg-mc yields approximately unbiased estimates
of SNP heritability albeit with larger standard errors relative to multi-component REML methods. RHE-
reg-mc remained relatively unbiased in large-scale experiments on about 337, 000 individuals. Importantly,
RHE-reg-mc was the only method that used individual-level genotypes that could run on these datasets. Our
bench-marking experiments show that RHE-reg-mc is around 400 times faster than other state-of-the-art
methods such as BOLT-REML on a dataset of 100, 000 individuals and 500, 000 SNPs even when the latter
were required to estimate only a single component. Therefore, RHE-reg-mc is the only method that used
individual-level genotypes that can run efficiently on large datasets such as full UK Biobank which contains
half a million individuals and millions of SNPs. Beyond estimating SNP heritability, we also show that
RHE-reg-mc accurately partitions heritability across 1 Mb regions which corresponds to jointly estimating
250 variance components.

2 Methods

2.1 Motivation

Various methods have been developed to estimate narrow sense heritability [1]. According to recent stud-
ies [18, 3], our assumptions about the levels of LD, MAF and effect sizes of underlying causal variants have
significant effects on the accuracy of estimates of narrow sense heritability. However,methods which partition
SNPs into bins based on minor allele frequency (MAF) and linkage disequilibrium (LD) [24] obtain reduced
bias in their estimates of heritability.

To understand why the estimation of narrow-sense heritability is sensitive to assumptions about the
underlying causal variants, and why single component LMMs are expected to yield biased estimates of SNP
heritability, consider the following single-component linear mixed model:

y|ε,β = Xβ + ε

ε ∼ N (0, σ2
eIN )

β ∼ N (0,
σ2
g

M
IM ) (1)
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Here y is a N -vector of phenotypes which is centered, andX is a N×M matrix of standardized genotypes
obtained by centering and scaling each column of the genotype matrix G where gi,j ∈ {0, 1, 2} denotes the
number of minor alleles carried by individual i at SNP j, N and M are the number of individuals and
SNPs respectively. β is a M -vector of SNP effect sizes. σ2

e is the residual variance while σ2
g is the variance

component corresponding to the M SNPs. In this model, the SNP heritability is defined as h2SNP =
σ2
g

σ2
g+σ

2
e
.

This model assumes that the variance of the effect size is the same across all SNPs. When effect sizes
are coupled with MAF or LD, the mismatch between the model assumptions and data can lead to biased
heritability estimates.

To tackle this problem, the LMM can be extended to include multiple components as follows:

y|ε,β1, . . . ,βK =
K∑
k=1

Xkβk + ε (2)

ε ∼ N (0, σ2
eIN )

βk ∼ N (0,
σ2
k

Mk
IMk

), k ∈ {1, . . . ,K} (3)

Here each of the M SNPs is assigned to one of K non-overlapping categories. Each category k contains Mk

SNPs, k ∈ {1, . . . ,K},
∑
kMk = M . Let Gk denote the N ×Mk genotype matrix for category k such that

gk,i,j ∈ {0, 1, 2} denotes the number of minor alleles carried by individual i at SNP j in category k. Let Xk

be a N ×Mk matrix of standardized genotypes obtained by centering and scaling each column of Gk so that∑
i gk,i,m = 0 and

∑
k g

2
k,i,m = N for m ∈ {1, 2, . . . ,M}. Let βk be a Mk-vector of SNP effect sizes for the

k-th category. In the above model, σ2
e is the residual variance, and σ2

k is the variance component of the k-th
category. In this model, the total SNP heritability is defined as :

h2SNP =

∑K
k=1 σ

2
k

(
∑K
k=1 σ

2
k) + σ2

e

(4)

The SNP heritability of category k is defined as:

h2k =
σ2
k

(
∑K
k=1 σ

2
k) + σ2

e

, k ∈ {1, . . . ,K} (5)

The model in Equation 3 has K partitions such that the variance of effect sizes can differ among the
partitions. We can partition SNPs into bins based on minor allele frequency (MAF) and local LD patterns
thereby allowing the distribution of effect sizes to vary as a function of MAF and LD tend to be robust to
variation in the underlying genetic models and achieve unbiased estimation of SNP heritability. However,
in this setting we have several challenges. First, can we estimate the parameters of the model efficiently?
Second, for a given genotype, what is the minimum value of K required for an accurate estimation of
heritability?

2.2 Method-of-moments for estimating multiple variance components

To estimate the variance components of the multi-component LMM, we use a Method-of-Moments (MoM)
estimator that searches for parameter values so that the population moments are close to the sample moments.
Since E [y] = 0, we derived the MoM estimates by equating the population covariance to the empirical
covariance. The population covariance is given by:

cov(y) = E[yyT ]− E[y]E[yT ] =
∑
k

σ2
kKk + σ2

eIN (6)

Here Kk =
XkX

T
k

Mk
is the genetic relatedness matrix (GRM) computed from all SNPs of k-th category. Using

yyT as our estimate of the empirical covariance, we need to solve the following least squares problem to find
the variance components.
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(σ̃2
1 , . . . , σ̃

2
K , σ̃

2
e) = argmin(σ2

1 ,...,σ
2
K ,σ

2
e)
||yyT −

∑
k

σ2
kKk + σ2

eI||2F (7)

It is not hard to see that the MoM estimator satisfies the following normal equations:

[
T b

bT N

]
σ̃2
1
...

σ̃2
k

σ̃2
e

 =

[
c
yTy

]
(8)

Here T is a K ×K matrix with entries Tk,l = tr(KkKl), k, l ∈ {1, . . . ,K}, b is a K-vector with entries
bk = tr(Kk) = N (because Xks is standardized ), and c is a K-vector with entries ck = yTKky.

Every GRM Kk can be computed in time O(N2Mk) and O(N2) memory. Given K GRMs, the quantities
Tk,l, ck, k, l ∈ {1, . . . ,K}, can be computed in O(NM). Given the quantities Tk,l, ck, the normal equation
8 can be solved in O(K3). Therefore, the total time complexity for estimating the variance components is
O(N2M +K3).

2.2.1 RHE-reg-mc: Randomized estimator of multiple variance components

The key bottleneck in solving the normal equation 8 is the computation of Tk,l, k, l ∈ {1, . . . ,K} which
takes O(N2M). Instead of computing the exact value of Tk,l, we use Hutchinson’s estimator of the trace [9].
This estimator uses the fact that for a given N × N matrix C, zTCz is an unbiased estimator of tr(C)
(E[zTCz] = tr[C]) where z be a random vector with mean zero and covariance IN . Hence, we can estimate
the values Tk,l, k, l ∈ {1, . . . ,K} as follows:

Tk,l = tr(KkKl) ≈ T̂k,l =
1

B

1

MkMl

∑
b

zTbXkX
T
kX lX

T
l zb (9)

Here z1, . . . ,zB are B independent random vectors with zero mean and covariance IN . In our method,
we draw these random vectors independently from a standard normal distribution. Note that computing
Tk,l by using the unbiased estimator involves four matrix-vector multiplications which is repeated B times.
Therefore, the total running time for estimating the values Tk,l is O(NMB).

Moreover, we can leverage the structure of the genotype matrix which only contains entries in {0, 1, 2}. For
a fixed genotype matrixXk, we can improve the per iteration time complexity of matrix-vector multiplication
from O(NM) to O( NM

max(log3N,log3M) ) by using the Mailman algorithm [12]. Solving the normal equations

takes O(K3) time so that the overall time complexity of our algorithm is O( NMB
max(log3(N),log3(M)) +K3).

2.3 Computing the Standard Errors of the estimates

We obtain standard errors for RHE-reg-mc using a block jackknife [10]. The jackknife is a useful resampling
technique for estimating the variance and bias of an estimator [21]. A jackknife subsample is created by
leaving out a subset of observations from a dataset. The jackknife estimate of a parameter can be found
by estimating the parameter for each subsample omitting the i-th jackknife block. A naive way to compute
jackknife estimate requires computing the estimator of the parameters for every subsample. For instance, in
our problem, if we define J jackknife blocks, then we need to run RHE-reg-mc for every subsample which
takes O(J( NMB

max(log3(N),log3(M)) + K3)). We propose an efficient way to compute the jackknife estimate in

time O( NMB
max(log3(N),log3(M)) + JK3).

Let X be a N ×M matrix of standardized genotypes where N and M are the number of individuals
and SNPs respectively. To generate J jackknife subsamples, we partition X into J non-overlapping blocks
X(1), . . . ,X(J) such that X = [X(1),X(2), . . . ,X(J)] . Note that for every j, X(j) is a N ×Mj matrix
where Mj is the number of SNPs in the j-th block.

We create the j-th jackknife subsample by removing the j-th block X(j) from X. To estimate the
variance components of the j-th jackknife subsample, we need to compute the corresponding quantities of
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the jth subsample in the normal equations 8. Let K
(−j)
k be the GRM of the k-th partition which is created

by removing the j-th block X(j) from X where k ∈ {1, . . . ,K}, j ∈ {1, . . . , J}. In Appendix A we show

that we can compute
̂

tr(K
(−j)
k K

(−j)
l ) and yTK

(−j)
i y, for all k, l ∈ {1, . . . ,K}, j ∈ {1, . . . , J}, in time

O( NMB
max(log3(N),log3(M)) ) which does not effect the total running time of the algorithm.

Therefore, for every jackknife subsample, we can estimate the corresponding variance components in
O(K3) by solving the corresponding normal equations 8. Given the estimates of variance components for
each jackknife subsamples, we can compute jackknife estimate of the variance, estimate the bias, and bias-
corrected jackknife estimate of the variance components.

2.4 Including covariates

We can extend our model in Equation 2 to include covariates as follows:

y|ε,β1, . . . ,βk = Wα+
∑
k

Xkβk + ε (10)

Here W is a N ×C matrix of covariates while α is a C-vector of fixed effects. In Appendix B, we show that
in this setting, we need to solve the following normal equations to estimate the variance components.

[
T b

bT N − C

]
σ2
1
...
σ2
k

σ2
e

 =

[
c

yTV y

]
(11)

Here V = IN−W (W TW )−1W T and T is a K×K matrix where Tk,l = tr(KkV KlV ), and b is a K−vector
where bk = tr(V Kk), and c is a K- vector where ck = yTV KkV y. Commonly, the number of covariates
C is small (tens to hundreds) so that including covariates does not significantly affect the computational
cost. The cost of computing of the elements of the normal equations 11 includes the cost of inverting W TW
which is a C ×C matrix and multiplying W by a real-valued N -vector which can be done in O(C3 +NC).

3 Results

3.1 Estimating total heritability by partitioning based on MAF and LD

3.1.1 Simulations

We performed simulations to compare the performance of RHE-reg-mc with several state-of-the-art methods
for heritability estimation that cover the spectrum of methods that have been proposed. These methods
include single-component as well as multi-component LMMs which use likelihood maximization for parameter
estimation. These methods require access to individual-level genotypes and phenotypes. We also compared
to methods that only require access to summary statistics and are typically quite scalable. GCTA and BOLT-
REML estimate heritability by maximizing the restricted maximum likelihood (REML). BOLT-REML is a
computationally efficient approximate method to compute the REML estimator. GCTA-ldms is the extension
of GCTA to a multi-component LMM where the variance components are typically defined by binning SNPs
according to their MAF as well as local LD. LDAK is similar to GCTA, except that it assumes allelic effects
are a function of LD scores. Among the summary statistic methods, LD score regression (LDSC) uses the
slope from the GWAS χ2 statistics regressed on the LD scores to estimate the h2SNP . Stratified LD score
method (S-LDSC) is an extension of LDSC for partitioning heritability from summary statistics. SumHer is
the summary statistic analog of LDAK [17].

We considered two simulation settings. The small-scale setting was designed so that we could compare
the accuracies of our method to state-of-the-art methods on the same data. In this setting, we simulated
phenotypes from a subsampled set of genotypes from the UK Biobank [20]. Specifically, we chose M = 14, 000
SNPs from chromosome 1 of the UK Biobank Axiom array and a subset of N = 9, 000 individuals. In the

6

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/522003doi: bioRxiv preprint 

https://doi.org/10.1101/522003


large-scale simulation setting, we simulated phenotypes for the full set of UK Biobank genotypes consisting
of M = 590, 000 array SNPs and N = 337, 000 unrelated white British individuals.

We simulated phenotypes from genotypes using the following model for the genetic architecture:

y = Xβ + ε

ε|σ2
e ∼ N (0, σ2

eIN )

βm ∼ N (0, c[fm(1− fm)]awbm),m ∈ {1, . . . ,M} (12)

where a ∈ {0, 0.75} ,b ∈ {0, 1}, c is a constant, βm, fm and wm are the effect size, the minor allele frequency
and LDAK score of mth SNP respectively. The LD score of a SNP is defined to be the sum of the squared
correlation of the SNP with all other SNPs that lie within a specific distance, and the LDAK score of a
SNP is computed based on local levels of LD such that the LDAK score tends to be higher for SNPs in
regions of low LD[19]. The above models relating genotype to phenotype are commonly used in methods
for estimating SNP heritability: the GCTA Model (when a = b = 0 in Equation 12), which is used by the
software GCTA [26] and LD Score regression (LDSC) [2], and the LDAK Model (where a = 0.75, b = 1 in
Equation 12) used by software LDAK [19]. Moreover, under each model, we varied the proportion and minor
allele frequency (MAF) of causal variants (CVs). Proportion of causal variants set to be either 100% or
1%, and MAF of causal variants drawn uniformly from [0, 1] or [0.01, 0.05] to consider genetic architectures
that are either infinitesimal or sparse as well genetic architectures that include a mixture of common and
rare SNPs as well as one that includes only common SNPs. The GCTA Model assumes that heritability
is independent of LD, while the LDAK Model assumes that heritability varies according to local levels of
LD[18].

We generated 100 sets of simulated phenotypes for each setting of parameters and report accuracies
averaged over these 100 sets.

3.1.2 Accuracy

We compared the accuracy of RHE-reg-mc with the most popular single component methods such as BOLT-
REML [14], GCTA [26], LDAK [19], LDSC [2], SumHer [17], as well as multi-components methods such as
GCTA-ldms and S-LDSC (BOLT-REML can also be estimate multi-component variance components but
we did not explore this option). In the small scale setting, we compared RHE-reg-mc with BOLT-REML,
GCTA, GCTA-ldms, and LDAK, each of which use individual-level phenotypes and genotypes[19, 2, 26,
17]. In the large scale setting, we only compared RHE-reg-mc with methods that use summary statistics
like SumHer,LDSC, and S-LDSC because the existing methods based on individual-level phenotypes and
genotype are not scalable to large data sets. For the multi-component methods, we applied GCTA-ldms
by binning SNPs into 8 bins based on 2 bins for MAF (MAF< 0.05, MAF> 0.05), MAF refers to the
frequency at which the second most common allele occurs in a SNP, and 4 bins based on quartiles of the
LD score of a SNP. The LD score of a SNP is defined to be the sum of the squared correlation of the
SNP with all other SNPs that lie within a specific distance. We used the default LD score computation
that is used by GCTA. For RHE-reg-mc, we used 16 bins formed by the combination of 4 bins based on
MAF (MAF< 0.009,0.009 <MAF< 0.011,0.011 <MAF< 0.05,0.05 <MAF< 0.5) as well as 4 bins based on
quartiles of the LDAK score of a SNP. The LDAK score of a SNP is computed based on local levels of LD
such that the LDAK score tends to be higher for SNPs in regions of low LD[19].

Figure 1 and Table 1 show that both multi-component methods, i.e., GCTA-ldms and RHE-reg-mc,
have the least bias across the settings considered. RHE-reg-mc tends to have larger standard errors relative
to GCTA-ldms consistent with the lower statistical efficiency of method-of-moments estimators relative to
REML estimators. In the large-scale setting (Figure 2 and Table 2), RHE-reg-mc has reduced bias as well
as low standard errors compared to other methods.
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Figure 1: RHE-reg-mc is relatively unbiased in small scale simulated data (M = 14, 000 array
SNPs and N = 9, 000 individuals): We ran 100 replicates where the true heritability of the phenotype is
0.5. We compared methods for heritability estimation under both GCTA and LDAK models with different
proportions of causal variants as well as MAF distributions. BOLT-REML (run with single component),
GCTA, and LDAK are single component methods. GCTA-ldms is a multi-component method that is applied
by binning SNPs to 8 bins based on 2 MAF bins and 4 bins based on quartiles of LD scores. RHE-reg-mc
is our proposed multi-component method that is applied by binning SNPs to 16 bins based on 4 MAF bins
and 4 bins based on LDAK weights, and b = 10 random vector. GCTA-ldms and RHE-reg-mc are relatively
unbiased.

Figure 2: RHE-reg-mc is relatively unbiased in large scale simulated data (M=590K array SNPs and
N=337K individuals): We ran 100 replicates where the true heritability of the phenotype is 0.5. We compared
methods for heritability estimation under both GCTA and LDAK models with different proportions of causal
variants and MAF. LDSC, S-LDSC and SumHer methods are based on summary statistics. RHE-reg-mc is
an individual-level method that is applied by binning SNPs to 16 bins based on 4 MAF bins and 4 LDAK
bins.RHE-reg-mc is relatively unbiased across the settings.

Method ave(|bias|),GCTA
model

ave(sd),GCTA
model

ave(|bias|),LDAK
model

ave(sd),LDAK
model

RHE-reg-mc(b=10,16bin) 0.001 0.027 0.005 0.031
GCTA-ldms 0.001 0.011 0.005 0.012
LDAK 0.059 0.015 0.025 0.014
GCTA 0.005 0.012 0.008 0.013
BOLT 0.004 0.011 0.006 0.013

Table 1: The average of standard errors and the average of absolute values of bias across all settings are
reported for each method for small scale data.
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Method ave(|bias|),GCTA
model

ave(sd),GCTA
model

ave(|bias|),LDAK
model

ave(sd),LDAK
model

RHE-reg-mc(b=10,16bin) 0.002 0.007 0.004 0.007
SumHer 0.024 0.006 0.027 0.007
S-LDSC 0.006 0.026 0.222 0.02
LDSC 0.048 0.008 0.038 0.008

Table 2: The average of standard errors and the average of absolute values of bias across all settings are
reported for each method for large scale data.

3.2 Computational Efficiency

We compared the running time and memory usage of RHE-reg-mc method with GCTA [26] and BOLT-
REML [14]. In this comparison, we used the UK Biobank genotypes consisting of around 500, 000 SNPs over
different sample sizes. For each data set, we ran RHE-reg-mc with B = 10 random vectors and 22 bins (SNPs
partitioned based on chromosomes). We ran GCTA and BOLT-REML for a single variance component. All
computations were restricted to a single core on a standard compute machine.

Figure 3: RHE-reg-mc is efficient: We compare the runtime and memory usage of methods for heritability
estimation. We vary the number of samples while fixing the number of SNPs to 500, 000. We run RHE-
reg-mc with 22 bins defined based on chromosomes. We ran GCTA and BOLT-REML assuming a single
variance component as multiple variance component versions tend to be more computationally intensive.

Figure 3 shows that we could not run single-component GCTA to sample sizes beyond 50, 000 due to
memory constraints. Single-component BOLT-REML took about 5 days to run on 100, 000 individuals while
the computation of RHE-reg-mc was about 20 minutes. Our bench-marking experiments show that RHE-
reg-mc is around 400 times faster than other state-of-the-art methods such as BOLT-REML on a dataset of
100k individuals and 500k SNPs. Extrapolating this result, we expect that RHE-reg-mc could run on large
datasets such as the full UK Biobank which contains half a million individuals genotyped at tens of millions
of SNPs efficiently. The memory usage of RHE-reg-mc is linear with respect to sample size. The running
time and accuracy of RHE-reg-mc relies on the choice of the number of random vectors B. In practice, it
turns out that the estimator is highly accurate with a small B ≈ 10 across all datasets analyzed.

3.3 Partitioning heritability

To examine the ability of RHE-reg-mc to partition the heritability explained across genomic regions, we
partition SNPs into 1 MB regions so that the first 50 bins each explains 1% of the variance (h2SNP = 0.5)
while the rest of the bins have zero heritability. Figure 4 shows that RHE-reg-mc accurately estimates
heritability in each partition on 100, 000 individuals and 460, 000 SNPs. Further, RHE-reg-mc computed the
partitioned heritability in 20 minutes.
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Figure 4: RHE-reg-mc accurately partitions heritability: We simulated phenotypes from 460, 000
SNPs of UK Biobank genotype over 100, 000 individuals. Each of the first 50 bins has a heritability of 1%
(h2SNP = 0.5) while the rest of the bins have zero heritability.

3.4 Application to phenotypes in the UK Biobank

Finally, we used RHE-reg-mc to partition the heritability of three phenotypes (trunk fat percentage, diastolic
blood pressure, and systolic blood pressure) on the UK Biobank dataset consisting of around 500, 000 SNPs
and 300, 000 individuals . Partitioning SNPs according to 22 chromosomes, we see that longer chromosomes
length have higher heritability consistent with studies in other traits such as height [25] (Figure 5).

Figure 5: RHE-reg-mc heritability estimates for trunk fat percentage, diastolic blood pressure,
and systolic blood pressure in the UK Biobank

4 Discussion

We have described RHE-reg-mc, a scalable estimator of multiple variance components in linear mixed mod-
els. RHE-reg-mc uses a randomized Method-of-Moments estimator to estimate a large number of variance
components on datasets with hundreds of thousands of individuals and SNPs in less than an hour. The abil-
ity to estimate multiple variance components efficiently is useful both in obtaining unbiased genome-wide
SNP heritability estimates as well as in heritability partitioning analyses.

There are several ways to further improve the runtime and memory usage of RHE-reg-mc method. First,
in the context of multiple phenotypes measured for a fixed genotype matrix, the matrix T in normal equation
8 is the same for every given phenotype. Hence, we just need to compute the sufficient statistics of matrix
T once in the multiple phenotype setting. Second, RHE-reg-mc can perform its computation in a streaming
version which can lead to a highly memory efficient implementation.
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A Computing jackknife standard errors

For simplicity, here we explain how we can estimate the corresponding parameters of jackknife subsamples
when we have only one variance component (one partition). It is easy to see how this approach can be
generalized to the multiple variance components setting.

Let X be a N × M matrix of standardized genotypes where N and M are the number of individu-
als and SNPs respectively. We partition X to J non-overlapping blocks X(1), . . . ,X(J) such that X =
[X(1), . . . ,X(J)]. Note that for every j, Xj is a N ×Mj matrix where Mj is the number of SNPs in the
j-th block.

Let K = 1
MXX

T be the GRM. Moreover, Let K(−j) be the GRM of the subsample created by removing

the j-th block from X. We will show how the values yTK(−j)y and tr(K(−j)2) can be computed for every
j ∈ {1, . . . , J} efficiently.

XTy = [X(1)Ty, . . . ,X(J)Ty]T (13)

(XTy)T (XTy) = (X(1)Ty)2 + . . .+ (X(J)Ty)2 (14)

Therefore, for every j we have :

yTK(−j)y =
1

Mj
[(XTy)T (XTy)− (X(j)Ty)2] (15)

yTKy =
1

M
yTXXTy =

1

M
(XTy)T (XTy) (16)

Therefore, we can compute yTK(j)y, for every j, and yTKy in O( BNM
max(log3N,log3M) ).

We rewrite ̂tr(K2) as:
̂tr(K2) =

1

BM2

∑
b

(XXTzb)
T (XXTzb) (17)

Assume that vb = XTzb, then we have:

XXTzb = Xvb = (vTbX
T )T (18)

Recall that vb is a vector of length M . We partition vb to J sub-vectors corresponding to the partitions of
X: vb1, . . . ,vbJ such that vb = [vb1, . . . ,vbJ ]T and vbj is a sub-vector of length Mj , for every j ∈ {1, . . . , J}.

Xvb = X(1)vb1 + . . .+X(J)vbJ (19)

Assume that cbj = X(j)vbj for every j ∈ {1, . . . , J} and b ∈ {1, . . . , B}. Let Ctotal =
∑
b(c

T
b1+. . .+cTbJ)(cb1+

. . .+ cbJ). We then have:
̂tr(K2) =

1

BM2
Ctotal (20)

Let db = cb1 + . . .+ cbJ for every b ∈ B. Now we can compute
̂

tr(K(−j)2) for every j ∈ {1, . . . , J} based
on the values of Ctotal,db, cbj in a way that does not effect the total running time :

̂
tr(K(−j)2) =

1

BM2
j

[Ctotal −
∑
b

(cTbjdb + (db − cbj)T cbj)]

=
1

BM2
j

[Ctotal −
∑
b

(cTbjdb + dTb cbj − cTbjcbj)]

=
1

BM2
j

[Ctotal −
∑
b

(2cTbjdb − cTbjcbj)]

=
1

BM2
j

[Ctotal − 2
∑
b

cTbjdb +
∑
b

cTbjcbj ] (21)
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It is not hard to see that we can compute Ctotal in O(BNM). Moreover, we can compute cbj for every
b = 1, . . . , B and j = 1, . . . , J in O(NMj), so all cbj can be computed in O(BNM). We can again use
the Mailman algorithm to speed up the vector-matrix multiplications. Therefore, the total running time for
computing the variance component of all jackknife subsamples is O( BNM

max(log3N,log3M) ).

B Including Covariates

y|ε,β1, . . . ,βk = Wα+
∑
k

Xkβk + ε (22)

Here W is a N × C matrix of covariates while α is a C-vector of coefficients. It is easy to see that the

matrix V = IN −W (W TW )
−1
W T is symmetric and idempotent (V 2 = V ) of rank N − C. Therefore,

we consider the eigendecomposition of V = EDET , where D is a diagonal matrix with N − C ones and C
zeros on the diagonal (we can assume that first N − C elements are one). Now let the matrix UN×(N−C)

represent the first N − C columns of E. It is not hard to see that U satisfies UTU = IN−C , UUT = V ,
UTW = 0. Now we multiplying by UT on both sides of the above equation:

UTy = UT
∑
k

Xkβk +UT ε (23)

cov(UTy) = E[UTy(UTy)T ]− E[UTy]E[UTy] (24)

The matrix UT is constant and the vector y is random. Therefore, we have E[UTy] = UTE[y].

UTy(UTy)T = (UT
∑
k

Xkβk +UT ε)(UT
∑
k

Xkβk +UT ε)
T

= (25)

∑
i

∑
j

UTXiβi(U
TXjβj)

T + (UT ε)
∑
i

(UTXiβi)
T +

∑
i

UTXiβi(U
T ε)T +UT ε(UT ε)

T

Hence

E[UTy(UTy)T ] =
∑
k

σ2
gk

Mk
(UTXk)(UTXk)T + σ2

εU
TU (26)

Using Kk =
XkX

T
k

Mk
, we have:

cov(UTy) = UT (
∑
k

σ2
gk
Kk)U + σ2

εIN−C (27)

The MoM estimator is obtained by solving the following ordinary least squares problem:

(σ̃2
1 , . . . , σ̃

2
K , σ̃

2
e) = argmin(σ2

1 ,...,σ
2
K ,σ

2
e)
||UTy(UTy)T −UT (

∑
k

σ2
kKk)U − σ2

εIN−C ||2F (28)
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