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Abstract 

Background: Single-cell RNA sequencing (scRNA-seq) enables the high-throughput quantification 

of transcriptional profiles in single cells. In contrast to bulk RNA-seq, additional preprocessing 

steps such as cell barcode identification or unique molecular identifier (UMI) deconvolution are 

necessary for preprocessing of data from single cell protocols. R packages that can easily 

preprocess data and rapidly visualize quality metrics and read alignments for individual cells 

across multiple samples or runs are still lacking. 

Results: Here we present scruff, an R/Bioconductor package that preprocesses data generated 

from the CEL-Seq or CEL-Seq2 protocols and reports comprehensive data quality metrics and 

visualizations. scruff demultiplexes, aligns, and counts the reads mapped to genome features 

with deduplication of unique molecular identifier (UMI) tags. scruff also provides novel and 

extensive functions to visualize both pre- and post-alignment data quality metrics for cells from 

multiple experiments. Detailed read alignments with corresponding UMI information can be 

visualized at specific genome coordinates to display differences in isoform usage. The package 

also supports the visualization of quality metrics for sequence alignment files for multiple 

experiments generated by Cell Ranger from 10X Genomics. scruff is available as a free and open-

source R/Bioconductor package. 

Conclusions: scruff streamlines the preprocessing of scRNA-seq data in a few simple R commands. 

It performs data demultiplexing, alignment, counting, quality report and visualization 

systematically and comprehensively, ensuring reproducible and reliable analysis of scRNA-seq 

data.  
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Background 

Single-cell RNA sequencing (scRNA-seq) technologies can profile the transcriptome of individual 

cells allowing for greater characterization of cellular heterogeneity in complex biological systems. 

In the past decade, the number of cells profiled by scRNA-seq technologies within a single 

experiment has grown from a single blastomere(1) to hundreds of thousands of cells(2). The high 

throughput is achieved by advanced multiplexing strategies where the mRNA molecules from 

each cell are barcoded with unique oligonucleotide tags embedded within the reverse 

transcription primers. After synthesis, the cDNA is subsequently amplified using PCR or in vitro 

transcription. These amplification steps prior to sequencing often introduce bias due to different 

amplification efficiencies for different molecules(3). To alleviate this problem, random molecular 

barcodes, usually referred to as unique molecular identifiers (UMIs), are often inserted into RT 

primers which enable the identification of PCR duplicates(4, 5). After barcoding, cells from 

multiple plates or droplets are sequenced together and then computationally deconvoluted to 

obtain counts for each individual cell. Samples within a study are often processed in different 

plates, batches, or runs but ultimately need to be assessed together. 

Available computational tools that preprocesses scRNA-seq data generated from CEL-Seq related 

protocols have limitations. For example, CEL-Seq pipeline(6), umis(7), and UMI-tools(8) do not 

report any data quality visualizations. zUMIs and scPipe only report limited QC metrics, have 
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limited plotting capabilities, and do not support parallelization(9, 10). Furthermore, there is no 

tool that can view detailed read alignments with UMI information on specified genomic 

coordinates in a single cell. For assessment of 10X Genomics data quality, Cell Ranger does not 

systematically generate and plot quality control metrics support across multiple experiments(2).  

scruff performs data preprocessing and reports comprehensive QC metrics and visualizations for 

data generated by CEL-Seq and CEL-Seq2 protocols. It also supports the visualization of read 

alignment statistics for BAM files from multiple runs generated by Cell Ranger from 10X protocol. 

scruff package reports detailed metrics on measurements on several different aspects of the data, 

providing a streamlined assessment of quality control.  

 

Implementation 

scruff stands for Single Cell RNA-seq UMI Filtering Facilitator and is an R/Bioconductor 

package(11) that demultiplexes cell barcodes, aligns reads to reference genome, and generate 

gene-level counts with UMI deduplication from scRNA-seq experiments. The main design aim of 

scruff is the ability to 1) preprocess scRNA-seq sequenced reads and generate gene-level count 

data for individual cells in parallel and 2) summarize and display of comprehensive data quality 

metrics. scruff supports the preprocessing and data quality visualization of sequenced reads from 

CEL-Seq(12), CEL-Seq2(6) and SORT-seq(13) protocols. Additionally, scruff package complements 

the report of Cell Ranger pipeline by providing the visualization of read alignment information in 

BAM files from 10X Genomics for multiple runs simultaneously. All functions and procedures in 

scruff package are implemented using R statistical framework. 
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Results and discussion 

Cell barcode demultiplexing 

The scruff pipeline starts with the demultiplexing of paired-end reads in FASTQ format (Figure 1). 

In the demultiplex function, cell barcode and UMI sequences are first trimmed from the reads 

and UMIs are appended to read headers. Reads are filtered according to the Phred quality 

scores(14, 15) of their corresponding cell barcode and UMI sequences. Reads with Phred scores 

lower than a user-defined threshold are removed. In the meantime, cell barcodes are mapped to 

a user-defined whitelist. Reads with cell barcode mismatches exceeding user-defined threshold 

are excluded. The remaining reads are stored in cell specific FASTQ files and an annotation table 

is used to keep track of which experiment the cell is from. scruff enables the trimming of read 

sequences by allowing users to only keep certain number of nucleotides for the reads. This is 

useful if the sequences at 3’ ends have poor quality scores. Parallelization using the 

BiocParallel(16) package is implemented to allow for simultaneous demultiplexing of multiple 

samples.  

scruff makes use of the SingleCellExperiment S4 object(17) as a container for both data and 

data annotation storage. This object keeps track of the directory to cell-specific demultiplexed 

FASTQ files and their corresponding cell barcodes. Metrics including the number and fraction of 

reads assigned to each cell are stored in the cell annotation table of the 

SingleCellExperiment object which is passed to the subsequent alignment step.  
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Read alignment 

By default, scruff package uses the aligner Subread(18) and its corresponding R package 

Rsubread(19) for read alignment. The function alignRsubread is a wrapper function to the 

align function in Rsubread. It parses the FASTQ file paths from the SingleCellExperiment 

object generated in the demultiplexing step and aligns those files to the reference genome. 

Sequence alignment files in BAM or SAM formats are generated for each cell and saved to user 

specified output folder. In the meantime, the locations of these cell specific sequence alignment 

files and their alignment quality metrics including the number and the fraction of aligned reads 

are collected and appended to the cell annotation table in the SingleCellExperiment object. 

Reads mapping to multiple genes are removed. Cells can be aligned in parallel to reduce the 

overall time for this step. 

 

UMI counting 

The SingleCellExperiment object containing the file paths to the sequence alignment files 

are passed to the countUMI function for quantification of cell specific gene expression. Genomic 

features are extracted from the input genome annotation file. scruff implements the same 

counting paradigm as the union counting mode of HTSeq(20). Specifically, read alignments 

overlapping the exonic regions of exactly one gene are used for transcript counting. After parsing 

the UMI sequences from the read headers, the number of unique UMIs are summarized for each 

gene to get the counts for gene-wise mRNA transcripts. External RNA Controls Consortium (ERCC) 

spike-in RNA controls are flagged by the isSpike method so they can be handled separately 
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during data analysis. Gene counting for each cell can be run in parallel. The resulting count matrix 

is saved in a tab delimited file and stored in the assay slot of the SingleCellExperiment 

object. Gene annotations including gene ID, gene name, and gene biotype are collected from the 

input gene annotation file and stored in the gene annotation table of the 

SingleCellExperiment object.  

In the UMI counting step, various quality metrics are collected for each cell including the number 

of reads mapped to the genome, number of reads mapped to genes, total number of transcripts 

(i.e. number of UMIs), number of transcripts from mitochondrial genes, number of transcripts 

from protein coding genes, number of transcribed genes detected with at least one count, and 

number of transcribed protein coding genes detected with at least one count. These metrics are 

appended to the cell annotation table of the SingleCellExperiment object. Finally, this 

SingleCellExperiment object containing the count matrix, cell and gene annotation 

information is returned at the end of the pipeline.  

 

Modular flexibility 

All three preprocessing functions (demultiplex, alignRsubread, and countUMI) are 

encapsulated in a single function called scruff to streamline the entire workflow. The user also 

has the ability to plug-and-play different methods to generate custom workflow. For example, 

instead of aligning the reads with Rsubread, users can run other aligners outside of R such as 

STAR or Bowtie on the demultiplexed FASTQ files. Because the UMI sequences are encoded in 

the read header in the demultiplexing step, the downstream UMI counting step can be applied 
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to sequence alignment files generated by any alignment algorithms that do not modify the read 

headers containing the UMI tag.  

 

Data quality visualization 

For scRNA-seq studies, fast and intuitive assessment of read preprocessing quality across 

experiments and cells is necessary to ensure the validity of downstream data analysis. scruff 

provides functions to visualize both pre- and post-alignment data quality for all cells using quality 

metrics information collected in demultiplexing, alignment, and UMI counting steps. The 

qcplots function parses the cell annotation table from the SingleCellExperiment object 

and automatically generates numerous boxplots showing various data quality metrics for 

individual experiments and cells. These metrics include total number of reads, number of reads 

mapped to reference genome, number of reads mapped to genes, fraction of mapped reads to 

total reads, fraction of reads mapped to genes to reads mapped to genome, fraction of reads 

mapped to genes to total number of reads, total number of transcripts, number of mitochondrial 

transcripts, fraction of mitochondrial transcripts, number of transcribed genes, fraction of 

protein coding genes, fraction of protein coding transcripts, median and average number of reads 

per corrected and uncorrected UMI counts, and the number of detected genes divided by total 

number of reads sequenced per million. These plots can be used for assessing the sample quality 

of the experiment and across individual batches. From these plots, poor-quality outlier cells can 

be identified and flagged for removal.  
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scruff package contains method to look at the detailed read alignment information for specific 

genes in a cell. The function rview visualizes all reads mapped at specific region of the 

chromosome. Function gview plots the exonic regions of all gene isoforms between specified 

genomic coordinates. By combining these two plots vertically using tracks function from the 

ggbio(21) package, users are able to visualize the exact locations of read alignments on the gene.  

Finally, scruff provides method to visualize read alignment statistics for sequence alignment files 

from multiple experiments generated by the Cell Ranger pipeline from 10X Genomics. 

tenxBamqc function parses read alignments from sequence alignment files in BAM format. A 

SingleCellExperiment object containing the number of mapped reads and the number of 

reads mapped to genes for filtered cells is returned. These metrics can be visualized by passing 

this object to the qcplots function.  

 

Application to example datasets 

We tested scruff on selected experiments from a publicly available scRNA-seq dataset(22) 

generated using the CEL-Seq protocol.  Raw FASTQ files containing reads from 1,417 single cells 

across 15 experiments were processed using the scruff function. It generates the final 

SingleCellExperiment S4 object containing the transcript count matrix and all cell and gene 

annotations in one function call. On average, 79,509 reads are sequenced per cell (Figure 2A) and 

46.78% of reads aligned to GRCm38 (Figure 2B). Cells in experiment mouse c library 2 have similar 

total number of reads compared with other experiments but significantly lower fraction of 

aligned reads (median is 4.41 %). This is consistent with the mappability (5%) reported in the 
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original study(22). 1,342 cells had greater than 80% nonmitochondrial transcripts (Figure 2C) with 

the median fraction of mitochondrial transcripts at 5.93% indicating that the majority of cells 

were high quality(23).  

scruff package also provides functions to visualize gene isoforms and UMI tagged read alignments 

at specific genomic coordinates. Figure 3 shows an example of 125 reads mapped to mouse gene 

Fos in cell 30 of mouse b library 1. In this case, all of the reads mapped to the 3’ end of transcript 

Fos-201, indicating the mRNAs transcribed from this gene in this cell are from the isoform Fos-

201. The fact that most of the reads are mapped to the 3’ end and forward strand demonstrates 

that reads sequenced by the CEL-Seq protocol are poly-A selected and maintain strand 

orientation(12).  

We also applied the read alignment quality visualization function from the scruff package to the 

BAM files of 6 PBMC data downloaded from 10X Genomics website. The number of reads mapped 

to reference genome, the number of reads mapped to genes, and the fraction of gene reads out 

of mapped reads were plotted (Figure 4). The mean number of aligned reads was 45,000, 92,000, 

and 56,000 for sequencing libraries prepared with the v1, v2, and v3 reagent kits, respectively. 

The total number of reads mapped to genes was significantly different between v1 and v2 (p <

2.2 × 10−16 , two-tailed t-test) and v2 and v3 (p < 2.2 × 10−16 , two-tailed t-test) chemistry 

methods. The proportions of reads mapped to genes were significantly different between v1 and 

v2 (p = 5.99 × 10−5, two-tailed t-test), v1 and v3 (p < 2.2 × 10−16, two-tailed t-test), and v2 

and v3 (p < 2.2 × 10−16, two-tailed t-test) methods. The mean proportion of reads mapped to 

genes from 1K and 10K PBMC v3 chemistry data is 10.20%  lower compared to v1 and v2 

chemistry data (p < 2.2 × 10−16, two-tailed t-test).  
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Conclusions 

scruff is an R/Bioconductor package that can preprocess scRNA-seq data including demultiplexing 

cell specific reads, aligning reads to a reference genome, counting the number of transcripts with 

UMI deduplication, and generating comprehensive plots for quality control across multiple 

batches or runs. Along with reporting gene expression count matrix as a tab delimited file, scruff 

also promotes data accessibility and portability by generating a SingleCellExperiment S4 

object which can be passed directly to downstream scRNA-seq data analysis packages including 

Celda and singleCellTK(24). scruff is fully modularized so users can plug and play different tools 

for performing demultiplexing or alignments. Overall, scruff improves single-cell analysis by 

streamlining preprocessing and quality control workflows. 

 

Availability and requirements 

Project name: scruff 

Project home page: http://bioconductor.org/packages/scruff 

Operating system: Linux, macOS, partially working on Microsoft Windows 

Programming language: R 

Other requirements: R >= 3.5, Rsubread. 

License: MIT License. 
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List of abbreviations 

UMI  Unique molecular identifier 

scRNA-seq Single-cell RNA sequencing 

PCR  Polymerase chain reaction 

SAM  Sequence Alignment Map 

BAM  Binary Alignment Map 

PBMC  Peripheral Blood Mononuclear Cells 

STAR  Spliced Transcripts Alignment to a Reference 
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available in the Gene Expression Omnibus repository with accession number GSE85755(22) 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE85755). All PBMC BAM files are 

downloaded from 10X Genomics website (https://support.10xgenomics.com/single-cell-gene-

expression/datasets).  
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Figure 1. scruff package workflow. Reads from FASTQ files are first demultiplexed into cell-

specific FASTQ files according to their cell barcodes. During this process, UMI tags are appended 

to the read header of the transcript sequences. scruff applies the Subread(18) algorithm for 

sequence alignment for each cell. Next, reads mapped to genes are counted according to their 

UMI. Within each gene, reads with identical UMI (red dashed circle) are counted only once. QC 

metrics are collected at each of these steps and are used for visualization of data quality. 
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Figure 2. Visualization of example data quality using scruff. These are boxplots with overlaying 

points showing (a) the total number of reads, (b) the fraction of aligned reads and (c) the fraction 

of mitochondrial transcripts for each experiment. Each point represents a well (unique cell 

barcode) and is colored by the number of cells sorted in the well by FACS. Each boxplot denotes 

a different experiment (i.e. plate).  
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Figure 3. Read alignment visualization with UMI information. 125 reads were mapped to the 

gene Fos in cell 30 of mouse b library 1 from the example CEL-Seq dataset(22). Upper panel shows 

the visualization of read alignments. Reads are represented by arrows and are colored by their 

UMIs. The direction of the arrow represents the mapping strand of the read. Lower panel shows 

the visualization of gene isoforms. Gene isoforms are labeled by their transcript names. Grey 

rectangles represent exons. 
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Figure 4. Read alignment quality metrics from 10X Genomics data. BAM files for 6 PBMC 

datasets were downloaded from 10X Genomics website and processed to obtain (a) the number 

of reads aligned to reference genome, (b) the number of reads mapped to genes, and (c) the 

fraction of reads mapped to genes out of total number of aligned reads. 

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 16, 2019. ; https://doi.org/10.1101/522037doi: bioRxiv preprint 

https://doi.org/10.1101/522037
http://creativecommons.org/licenses/by-nc-nd/4.0/

