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Phenotypic variation is a hallmark of cellular physiology. Metabolic heterogeneity, in particular, underpins single-cell
phenomena such as microbial drug tolerance and growth variability. Much research has focussed on transcriptomic
and proteomic heterogeneity, yet it remains unclear if such variation permeates to the metabolic state of a cell. Here
we propose a stochastic model to show that complex forms of metabolic heterogeneity emerge from fluctuations in
enzyme expression and catalysis. The analysis predicts clonal populations to split into two or more metabolically
distinct subpopulations. We reveal mechanisms not seen in deterministic models, in which enzymes with unimodal
expression distributions lead to metabolites with a bimodal or multimodal distribution across the population. Based
on published data, the results suggest that metabolite heterogeneity may be more pervasive than previously thought.
Our work casts light on links between gene expression and metabolism, and provides a theory to probe the sources of
metabolite heterogeneity.

INTRODUCTION

Cellular heterogeneity is ubiquitous across all domains of
life. In microbes, clonal populations display phenotypic vari-
ability as a result of multiple factors such as fluctuations in
the microenvironment, stochasticity in gene expression, or
asymmetric partitioning at cell division1–3. Variability is well
recognised at the transcriptional and translational levels. Yet
various single-cell phenomena result from the emergence of
distinct metabolic states within a clonal population. For ex-
ample, metabolic heterogeneity plays a key role in antibiotic
tolerance4–6, heterogeneous nutrient uptake7,8, and variations
in growth rate9,10. It has also been shown that nutrient shifts
can cause populations to split into two11,12 or more13 sub-
populations with distinct growth abilities. The emergence of
subpopulations has been theorised as a bet-hedging strategy
that gives an evolutionary advantage for survival in adverse
environments4,14.

A central challenge to quantify metabolic variability is the
lack of techniques for measuring metabolites with single-
cell resolution15. In contrast to single-cell measurements
of protein expression, for which powerful reporter systems
have been developed16,17, quantification of metabolites in
single-cells remains a major challenge. Some of the tech-
niques employed so far include Förster resonance energy
transfer (FRET) sensors18, metabolite-responsive transcrip-
tion factors19,20, RNA sensors21, and mass-spectrometry22,
yet most of these technologies are in early stages of
development15. As a result, metabolic heterogeneity is typ-
ically quantified indirectly via measurements of metabolic en-
zymes or growth rate in single-cells9,12,23.

Our objective in this paper is to characterise heterogene-
ity in metabolites as a result of stochastic enzyme expres-
sion and catalysis. Metabolic models traditionally assume
that enzymatic reactions behave deterministically on the basis
that both enzymes and metabolites appear in high molecule
numbers24. However, single-cell proteomics in Escherichia
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coli show that metabolic enzymes are as variable as any other
member of the proteome17, while metabolomics data suggest
that average metabolite abundances span several orders of
magnitude25. The few datasets on single-cell metabolite abun-
dance already suggest substantial variability in some metabo-
lites in E. coli19,26. Such evidence casts doubt on the tradi-
tional assumption of metabolism being a purely deterministic
process, suggesting a link between fluctuations in enzyme ex-
pression and metabolites.

The role of stochastic gene expression in protein variability
has been well studied2,3,27–29, but the impact of such random-
ness on metabolic reactions remains much less understood.
Various theoretical studies have analysed the impact of fluc-
tuations in the supply and consumption of metabolites30–32, or
the propagation of enzyme noise to a metabolite33. However,
despite the advancing experimental evidence of stochasticity
in metabolism, mathematical models still lack the sufficient
detail to integrate the processes that are known to shape pro-
tein heterogeneity, such as stochastic promoter switching and
transcriptional bursting.

In this paper we propose a model for metabolite heterogene-
ity in single-cells. The model integrates stochasticity in en-
zyme catalysis24 and expression27, two well-established pro-
cesses that so far have been studied in isolation. Our approach
includes a stochastic formulation of various relevant mech-
anisms in enzymatic reactions, including reversible cataly-
sis, stochastic switching of promoter activity, fluctuations in
mRNA transcripts, and consumption of the enzymatic prod-
uct by downstream processes.

We probe the model for various sources of stochasticity
using simulations and analytical solutions for the stationary
distribution of the metabolite. The analysis reveals intricate
patterns of heterogeneity that translate into bimodal and mul-
timodal distributions for the number of metabolite molecules.
These phenomena arise from the interplay between a lowly
abundant enzyme and its catalytic parameters. Under the sep-
aration of timescales typical of metabolic reactions, we show
that metabolite distributions can be accurately approximated
by a Poisson Mixture Model across large regions of the pa-
rameter space. The mixture model can be readily adapted to a
wide class of gene expression models and provides a quanti-
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tative tool to predict metabolite variability from enzyme mea-
surements in single-cells.

RESULTS

Stochastic model of an enzymatic reaction

We consider a model that combines enzyme kinetics and
enzyme expression into a single stochastic description (Figure
1A). The model includes an enzymatic reaction with standard
Michaelis-Menten kinetics, in which substrate and enzyme
bind reversibly to form a complex that undergoes reversible
catalysis into a metabolite. We assume that enzyme expres-
sion follows the well established three-stage model for gene
expression3,27, where a single copy gene switches stochasti-
cally between an inactive state (Doff) and active state (Don).
In the active state, mRNAs are transcribed and translated into
protein. The model also includes consumption of the metabo-
lite by downstream pathways, degradation of mRNA tran-
scripts, and dilution by growth of all species. Since metabolic
reactions operate far from thermodynamic equilibrium, we as-
sume that the substrate pool remains constant so that the sys-
tem reaches a non-zero flux, e.g. when the substrate is a highly
abundant extracellular carbon source or a slowly varying intra-
cellular metabolite. The model reactions are shown in equa-
tions (R1)–(R9) in the Methods section.

To investigate the emergence of metabolic heterogeneity,
we need to compute the stationary probability distribution
of metabolite molecules (np) for relevant combinations of
model parameters. Figure 1B shows a typical simulation of
the model obtained with Gillespie’s algorithm34. A key chal-
lenge for such simulations, however, is the multiscale nature
of enzymatic reactions: not only do metabolic reactions op-
erate in a much faster timescale (milliseconds) than enzyme
expression (tens of minutes)30,35,36, but also the average num-
ber of enzymes is much lower than the number of metabo-
lites. These multiple scales result in reaction propensities
that differ by several orders of magnitude, thus leading to ex-
tremely slow simulations which make the exploration of the
parameter space infeasible. An alternative is to use simu-
lation algorithms that exploit the separation of scales to in-
crease computational speed, such as tau-leaping or slow-scale
approximations37. Yet in our case it is unclear how such nu-
merical approximations impact the predictions drawn from the
simulations.

To determine the impact of genetic and catalytic param-
eters on metabolic heterogeneity, we obtained an analytic
approximation for the distribution of metabolite molecules
that can be evaluated efficiently without expensive stochas-
tic simulations. Our solution allows the exploration of pa-
rameter space to characterise the different regimes promoting
metabolic heterogeneity. The approximation follows from ex-
ploiting time scale separation in the Chemical Master Equa-
tion of the stochastic process38. In physiological regimes the
model has three timescales: a fast metabolic time scale, in
which substrate and enzyme bind and unbind; an intermedi-
ate time scale associated with the catalysis of the metabolite

(np); and a slow timescale associated with the expression of
the enzyme and dilution by cell growth.

The total amount of enzyme (free and substrate-bound,
denoted as ne and nc respectively) varies in the slowest
timescale, and therefore the binding/unbinding of substrate
and enzyme equilibrates quickly. As a result, in the timescale
of gene expression, the metabolite can be assumed to depend
directly on the the total enzyme netot = ne +nc rather than on
ne and nc individually. Under this approximation, it is conve-
nient to use the law of total probability:

P(np) =
∞∑

netot=0

P(netot)︸ ︷︷ ︸
gene expression

P(np|netot)︸ ︷︷ ︸
catalysis

. (1)

The formula in (1) decomposes the distribution of metabo-
lite P(np) into stochasticity originating from enzyme expres-
sion, P(netot), and from fluctuations in the catalytic reaction
itself, described by the conditional distribution of metabo-
lite given the amount of total enzyme, P(np|netot). In the
timescale of metabolite fluctuations, the total enzyme can be
assumed to be in a quasi-stationary state. Further, exploiting
the fast binding/unbinding between substrate and enzyme, we
showed that the metabolite follows a birth-death process with
effective propensities (details in Methods section):

keff
birth = kcatE(nc|netot, np)

≈ kcat
k−1

(k−1 + k1ns)
netot,

keff
death = krevE(ne|netot, np) + kc

≈ krev
k1ns

(k−1 + k1ns)
netot + kc,

(2)

where E(ne|netot, np) and E(nc|netot, np) are the conditional
expectations of the free enzyme (ne) and complex (nc) given
the total enzyme and metabolite. In equation (2), ns is the
constant number of substrate molecules, the parameters k1,
k−1, kcat, and krev are the rate constants of the Michaelis-
Menten mechanism (defined in Figure 1A), and kc is an ef-
fective first-order rate constant of metabolite consumption by
downstream pathways. The conditional distribution needed in
the model (1) can then be computed explicitly:

P(np|netot) ∼ Poisson (np;λ(netot)) , (3)

with Poisson parameter

λ(netot) =
λ∞

1 +K/netot
, (4)

and (λ∞, K) are two effective kinetic parameters

λ∞ = ns
kcatk1
krevk−1

, and K = kc
k1ns + k−1
krevk−1

. (5)

The parameters λ∞ and K are in units of molecules/cell and
depend on the interplay between substrate abundance, enzyme
kinetics, and downstream processes.
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FIG. 1. Stochastic model for an enzymatic reaction. (A) The model integrates reversible Michaelis-Menten kinetics with the three-stage
model for gene expression24,27. The model includes consumption of the metabolite by downstream pathways, degradation of mRNA transcripts,
and dilution of all chemical species by cell growth (not shown in diagram); rate constants are shown in the figure and model reactions are shown
in equations (R1)–(R9) of the Methods. The inset shows a typical simulation for a realistic parameter set shown in Table I. (B) Construction of
the Poisson Mixture Model (PMM) for the number of metabolite molecules (np). This approximation is valid under a separation of timescales
between enzyme expression and enzyme catalysis. The mixture model, shown in equation (1), comprises Poisson distributions weighted
by the distribution of enzyme expression P(netot). The Poisson parameter λ(netot) depends on enzyme kinetics via the nonlinear relation
in equation (4). In the irreversible case (krev = 0), the λ(netot) parameter scales linearly and produces equi-spaced Poisson modes. The
mode Poisson(np, 0) is highlighted as a bar. (C) The PMM provides an accurate approximation of the stationary distributions. Insets show
distributions for enzyme and metabolite, computed via Gillespie simulations and the PMM approximation for fixed λ∞ = 1080 molecules,
K = 8 molecules, and three different promoter switching parameters, shown in Table I.

As illustrated in Figure 1B, the distribution in (1) is a Pois-
son Mixture Model39–41 (PMM) that convolves the enzyme
distribution P(netot) with various Poisson modes P(np|netot)
arising from the catalytic activity. In our model, the analytical
distribution of the total enzyme abundance follows the stan-
dard solution of the three-stage model for gene expression27,
which can be computed explicitly in terms of model param-
eters. In certain limits, the three-stage model produces ap-
proximately Gamma or Normal distributions depending on the
the mean expression level and the half lives of mRNAs and
proteins3,27.

The decomposition in equation (1) shows that the PMM is
not limited to the model for gene expression we have consid-
ered here. Other models may be used, either by using closed-
form expressions for P(netot), or by inferring the enzyme dis-
tribution directly from single-cell protein expression data such
as flow cytometry or single-cell microscopy1,17. The PMM
thus provides a versatile tool to predict metabolite heterogene-
ity from modelled or measured enzyme heterogeneity viewed
as an upstream source of variation41. Figure 1C shows that the
PMM distribution provides a good approximation to Gillespie
simulations computed with typical parameter values.

Qualitative features of the Poisson Mixture Model

At the heart of the metabolite PMM is the interplay between
variability from gene expression and that originating from en-
zyme kinetics. Specifically, the Poisson parameter λ(netot) in
equation (4) controls the density and dispersion of the Poisson

modes, which in turn shape the overall pattern of variability.
As shown in Figure 1B, there are several cases of interest. For
example, for irreversible reactions (krev = 0), the Poisson pa-
rameter simplifies to

λ(netot) =
k1nskcat

(k1ns + k−1)kc
netot, (6)

which scales linearly with the enzyme abundance and thus the
Poisson modes have equidistant means. In reversible reac-
tions, on the other hand, the Poisson parameter saturates and
causes the Poisson modes to concentrate around λ∞. This ef-
fect is stronger for strong reversibility (high krev), in which
case the kinetic parameter K is small. Note also that in either
case, as the enzyme number netot grows, the Poisson modes
spread out since λ(netot) controls both their mean and vari-
ance.

From the construction of the PMM in (1), we observe that
the enzyme distribution weighs the various Poisson modes,
potentially producing metabolite distributions that are uni-
modal, bimodal or even multimodal. For example, for highly
expressed reversible enzymes, the distribution P(netot) is non-
negligible when netot is large. Hence most Poisson modes do
not contribute to the final metabolite distribution, except the
mode centred at λ∞, which leads to a unimodal metabolite
distribution with a mean close to the deterministic average.

Conversely, for lowly expressed enzymes, there is a non-
negligible probability of enzymes not being expressed, and
thus the first term of the PMM, i.e. P(0)Poisson(np, 0),
causes the metabolite distribution to peak at zero. However,
the metabolite distribution may also display a second peak
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FIG. 2. Mechanisms for metabolite bimodality. (A) We evaluated the Poisson Mixture Model across a broad range of promoter switching
timescale and promoter activity. Unimodal distributions for enzyme and metabolite (similar to those shown in Figure 1C) cover a large
fraction of the parameter space. We identified two regimes in which metabolites are bimodal: in the switching-induced regime, bimodality
propagate from the enzyme to metabolite. In the catalytically-induced regime, bimodality originates from a lowly abundant enzyme and the
strong separation of timescales between expression and catalysis. The small panels show model predictions for a fixed kinetic parameter
K = 0.1333 molecules, and increasing λ∞ = {300, 3000, 30000} molecules, obtained by increasing the turnover rate constant kcat. (B)
Exact simulations for two parameter sets verify the predictions drawn from the PMM approximation. We simulated over a long time horizon
to obtain accurate estimates for stationary distributions; insets shown only a small portion of the time courses. The parameter values for the
promoter switching rates are indicated in panel A and we fixed λ∞ = 500 molecules. Both types of bimodality can be clearly distinguished in
the time courses, but we note that they lead to almost identical distributions for the metabolite. In both cases, the PMM provides an accurate
approximation for the stationary distributions.

at λ∞ if, for example, the λ(netot) parameter causes many
Poisson modes to concentrate around λ∞. This results in a
bimodal metabolite distribution, whereby an isogenic pop-
ulation splits into metabolite producers and non-producers.
Similar reasoning can be used to understand the emergence
of multimodal metabolite distributions, which correspond to
three or more subpopulations with varying metabolic activ-
ities. This qualitative analysis suggests that metabolic sub-
populations can emerge even in cases where enzymes display
unimodal distributions across the population. Crucially, this
also indicates that metabolic subpopulations emerge through
mechanisms that do not follow trivially from transcriptional
heterogeneity alone, as we explore in more detail in next sec-
tion.

Mechanisms for metabolic bimodality

First, we explored the impact of stochastic promoter switch-
ing on the emergence of metabolite bimodality. Figure 2A
shows the summary of calculations when evaluating the PMM
for variations in two key characteristics of the promoter across
several orders of magnitude: the switching time scale ((kon +
koff)/δ) and the promoter activity (kon/koff), for various val-
ues of the kinetic parameter λ∞. We found three qualita-
tively distinct parameter regimes for the metabolite distribu-
tion that emerge from the combination of stochastic switching
and catalysis: (1) a regime where both enzyme and metabolite
have unimodal distributions, akin to the results shown earlier
in Figure 1C; (2) a regime where both enzyme and metabo-
lite have bimodal distributions; and (3) a regime in which the

enzyme is unimodal but the metabolite is bimodal.
It can be shown that the deterministic version of our model

in equations (R1)–(R9) has a single steady state. Hence
regime (1) can be thought of as a stochastic correction con-
sisting of unimodal distributions around a deterministic steady
state. This is the expected behaviour under the traditional
assumptions of high abundance of enzyme and metabolite
molecules.

The other two regimes, however, correspond to alterna-
tive routes of noise-induced bimodality that cannot be ex-
plained using deterministic models42–44. Regime (2) is a
highly stochastic regime dominated by the slow stochastic
switching of the promoter, which drives and entrains the
metabolic response. Hence we term it switching-induced bi-
modality. Slowly switching promoters are known to pro-
duce bimodal gene expression29,41, and thus this regime cor-
responds to a case in which bimodality propagates from en-
zymes to metabolites. Figure 2A shows that this behaviour
appears robustly for slow switching and high promoter activ-
ity across values of λ∞ kinetic parameter.

Regime (3), the second route for metabolite bimodality,
originates from a unimodal but weakly expressed enzyme
(low kon/koff) expressed from fast switching promoters. In
this case, the birth of a small number of enzyme molecules
is sufficient to kick-start catalysis and make it rapidly set-
tle in a quasi stationary regime. This distinct phenomenon
is a result of the separation of time scales between enzyme
expression and catalysis, and we refer to it as catalytically-
induced bimodality. From Figure 2A, we observe that this
form of bimodality appears for a narrow range of promoter
switching parameters corresponding to fast switching genes
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FIG. 3. Emergence of metabolic multimodality. We used the PMM approximation to find regimes for multimodality through perturbations
to the enzyme kinetics. We vary the kinetic parameter K to control the dependency of the Poisson parameter λ(netot) in equation (4) on the
total enzyme abundance. Parameter values are λ∞ = 750molecules and K = {10.0400, 2.1630, 0.4660} molecules obtained by variations
to the kinetic rate constants kcat and krev with a constant ratio kcat/krev. We shape the mean enzyme abundance with the promoter switching
rates kon = {1.56, 5.9, 20} × 10−4 s−1 and koff = {9.8, 9.3, 8} × 10−4 s−1. From the PMM we found intricate patterns of multimodal
distributions in the metabolite, all of which show an excellent match with the corresponding Gillespie simulations. The simulated time courses
show metabolite numbers traversing various quasi-stationary regimes.

with medium to low promoter activity. This behaviour disap-
pears altogether for a low λ∞ parameter, for example in case
of strong reversibility.

To validate the predictions of the PMM approximation, we
ran full Gillespie simulations over a long time horizon for dif-
ferent parameter sets. Figure 2B shows the simulation time
courses and resulting histograms. For switching-induced bi-
modality, we observe how slowly switching promoters causes
a single cells to lack the enzyme over several cell cycles, a pe-
riod during which the metabolite is not produced. In the case
of catalytic-induced bimodality, however, fast switching com-
bined with a low average expression level cause the metabolite
abundance to drop for shorter but more frequent intervals. In
both cases the PMM provides an excellent approximation to
the bimodal histograms obtained from the stochastic simula-
tions. Furthermore, we observe that the bimodal metabolite
distributions both regimes are almost indistinguishable from
each other, yet they are produced by enzymes with substan-
tially different time courses and distributions. These regimes
therefore correspond to distinct forms of bimodality, arising
from fundamentally different mechanisms.

Emergence of metabolic multimodality

To explore the emergence of multimodality, we examined
the analytical formula of the PMM in (1) to identify kinetic
regimes associated with distinct enzyme distributions. A nec-

essary condition for the emergence of multiple modes is that
the Poisson components do not overlap and are sufficiently
spaced from each other. From the definition of the λ(netot)
parameter in (5), this happens when the kinetic parameter K
is large. As discussed earlier, depending on the distribution
of the enzyme, the Poisson modes may appear or cancel in
the final metabolite distribution. We thus swept the parameter
K and evaluated the PMM across various enzyme expression
levels, including low expression with a skewed distribution
and high expression with a normally distributed enzyme.

As shown in Figure 3, we found intricate patterns of mul-
timodal distributions, depending on the interplay between the
heterogeneity of the enzyme, P(netot), and the enzyme kinet-
ics encapsulated by the K parameter. Multimodality appears
when the enzyme expression levels are low as compared to the
parameter K. For instance, the values of K in Figure 3 are
approximately 5-, 20-, and 100-fold those used in the bimodal
examples in Figure 2. For enzymes expressed at intermediate
levels, in the order of tens of molecules/cell on average, we
found metabolite distributions that are unimodal but highly
skewed. In the case of highly expressed enzymes, metabolites
followed approximately normal distributions for a wide range
of kinetic parameters.

The predictions are confirmed by Gillespie simulations of
the full stochastic model, which display a striking match with
the PMM approximation, even for complex multimodal distri-
butions. The simulation time courses (shown in the insets of
Figure 3) show that the multiple modes for weakly expressed
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enzymes correspond to cells remaining in a fixed metabolic
state over the scale of the cell cycle but fluctuate across other
states over longer time scales. For intermediate enzyme ex-
pression and large values for K, the metabolite does not settle
in the quasi-stationary states and displays a long-tailed distri-
bution. A decrease in K suppresses the tail of the distribution
driving the PMM towards an approximately normal distribu-
tion. Altogether, these results indicate that the relation be-
tween enzyme expression and the kinetic parameters λ∞ and,
in particular, K are key determinants for the emergence of
multimodality. This underscores the utility of the PMM to
guide the prediction of qualitative and quantitative features of
metabolite distributions for a wide range of parameter combi-
nations.

DISCUSSION

Metabolic reactions are the powerhouse of living systems,
fuelling the activity and dynamics of most cellular functions.
Yet metabolism has been traditionally considered as a static
process isolated from the rest of the cellular machinery. Cur-
rently, the accepted notion is that due to the large number of
molecules involved, metabolism is a deterministic process at
the cellular level, modulated by potentially random extrinsic
factors12,45. Here we integrated enzyme kinetics and enzyme
expression to propose a theoretical model for variability of
metabolites in single cells. The model suggests that cell-to-
cell metabolite variation can also arise as a result of intrinsic
sources such as stochastic fluctuations in enzyme expression.

The majority of work on non-genetic heterogeneity has fo-
cused on stochastic gene expression and the resulting variabil-
ity in protein levels1,2. This has produced a wealth of single-
cell data and models to understand the variability in transcrip-
tion and translation observed in clonal populations. Metabo-
lite heterogeneity, however, remains poorly understood theo-
retically and has been observed only indirectly (e.g., through
measurements of metabolic enzymes12,23 or growth rate9) due
to the lack of techniques to measure metabolite abundance in
single cells.

Using the separation of time scales characteristic of
metabolic reactions, we found that the stationary distribution
of a metabolite follows a Poisson Mixture Model (PMM). The
PMM can be efficiently evaluated across large domains of the
parameter space and provides excellent approximations to the
distributions computed from full stochastic simulations. Im-
portantly, the model can be readily adapted to include different
stochastic models for enzyme expression, beyond the three-
stage model considered here3,46, or even stochastic and time-
dependent enzyme expression modelled as upstream drives41.
The model can also be parameterised from experimentally
measured distributions for enzyme levels in single-cells17. In
combination with the enzyme kinetic parameters, the PMM
could provide a powerful tool to predict metabolite variability
from single-cell protein data obtained with established tech-
niques such as flow cytometry or time-lapse microscopy.

We found complex patterns of metabolite heterogeneity de-
pending on the interplay between the timescale of promoter

activation/deactivation, the enzyme expression level, and the
enzyme kinetics. The model predicts that bimodal and multi-
modal metabolite distributions can emerge in various param-
eter regimes. In such regimes single-cells spend several cell
cycles in a constant metabolic state, but in timescales as long
as tens of cell cycles, they switch stochastically across differ-
ent states. Such long-term fluctuations in single cells result
in highly heterogeneous populations containing several sub-
groups of metabolically distinct cells.

Bimodal metabolic phenotypes have been observed as
a result of transcriptional regulation14,23, post-translational
control11 and stochastic effects triggered by environmental
shifts12. Our model reveals two distinct regimes in which
metabolites display bimodality. One regime, which we call
switching-induced bimodality, corresponds to the intuitive
case in which a bimodal enzyme produces a bimodal metabo-
lite. In agreement with previous studies on stochastic gene
expression, this type of bimodality appears as a result of slow
switching between promoter states29,47. In addition, we iden-
tified a fundamentally different mechanism of catalytically-
induced bimodality, in which a unimodal enzyme produces
a bimodal distribution of metabolite. This phenomenon re-
sults from a combination of slow fluctuations of a weakly ex-
pressed enzyme and the comparatively faster timescale of en-
zyme catalysis. Catalytic timescales are typically in the order
of seconds or faster, so that slow fluctuations in enzyme ex-
pression levels produce two quasi-stationary metabolic states
in single cells. At a population level, this leads to two distinct
subpopulations of metabolite producers and non-producers.

As shown in Figure 4A, single-cell measurements in E. coli
suggest that metabolic enzymes appear in low copy numbers
across most cellular pathways17. In the specific growth con-
ditions of that experiment, the data did not reveal bimodal
expression of enzymes, which precludes the emergence of
switching-induced bimodality in the metabolites they catal-
yse. However, as illustrated by the three representative dis-
tributions in Figure 4A, a number of enzymes have a low
mean and a long-tailed distribution, akin to those required for
catalytically-induced bimodality and multimodality. This sug-
gests that enzyme distributions found in nature have the char-
acteristics needed for the emergence of subpopulations with
two or more distinct metabolite abundances.

Further requirements for metabolite bimodality and multi-
modality involve conditions on the parameters λ∞ and K in
equation (5). However, their computation requires rate con-
stants (k1, k−1 and krev) that are rarely measured separately,
and instead enzymology data typically provides values for kcat
and KM=(kcat + k−1)/k1 only48. In the Methods we show
that the ratio λ∞/K can be expressed as λ∞/K = ε × kcat/
kc, where ε is the saturation level of the enzyme and kc is the
first-order rate constant of metabolite consumption. As illus-
trated in Figure 4B, the ratio λ∞/K corresponds to a straight
line in a (λ∞, K)-space, and a specific enzyme (i.e. with spe-
cific values for k1, k−1 and krev) corresponds to a single point
on the line. In Figure 4B we compare model predictions for
a lowly abundant enzyme with different λ∞/K ratios com-
puted for kcat constants measured in E. coli49. Considering the
large spread in measured kcat values, of up to seven orders of
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FIG. 4. Model predictions and experimental data. (A) Single-cell
measurements reveal that metabolic enzymes are as variable as other
members of the proteome17. Data correspond to ∼80% of the E.
coli proteome, including 268 enzymes involved in various metabolic
functions50 (coloured circles). The coefficient of variation (CV) is
defined as standard deviation over mean of measured distributions.
Distributions with CV > 1 (dashed line) are long-tailed and peak
at zero, which resemble the distributions required for catalytically-
induced bimodality and multimodality (Figure 2B and 3); shown are
the distributions of three representative enzymes computed from fit-
ted Gamma distributions17.(B) Predictions of the Poisson Mixture
Model for combinations of parameters λ∞ and K in (5). For a
lowly abundant enzyme (distribution in inset), the model predicts
unimodality, catalytically-induced bimodality and multimodality in
large regions of the (λ∞, K) space. The red line represents a con-
stant ratio λ∞/K for the median kcat ≈ 16.5 s−1 across 752 en-
zymes in E. coli, see kcat distribution in inset49. Shaded red corre-
sponds to the lines obtained for kcat values within a range 0.5- and 2-
fold of the median (highlighted in green in the inset). The grey lines
and shaded areas correspond to perturbations to the consumption rate
constant (kc) and enzyme saturation (ε); more details in Methods.

magnitude, plus the multiple combinations of metabolite con-
sumption rates and enzyme saturation, the analysis suggests
that catalytically-induced bimodality and multimodality are
plausible within physiological regimes. Further validations
of our predictions require measuring metabolite distributions
directly, but this is still subject to a number of challenges in
single-cell measurement technologies15.

Our analysis shows that metabolite heterogeneity depends

on a delicate interplay between enzyme expression and en-
zyme kinetics. It is reasonable to expect that energy-critical
enzymes, such as those in central carbon metabolism, filter
away fluctuations through post-translational regulatory mech-
anisms commonly found in metabolism. However, this may
not be the case in pathways that are dynamically regulated
in response to changes in the environment or cellular con-
text. For example, transcriptional regulation in response to
nutrient shifts may steer enzyme levels into regimes of low
copy numbers where heterogeneity may dominate the result-
ing phenotypes. Such mechanism has been already shown
to produce growth bimodality in the gluconeogenic switch
of E. coli12, while a similar mechanism could underpin the
large variability observed in single-cell measurements of S-
Adenosyl methionine21. Noise-induced phenomena also have
implications for the design of dynamic control systems for
heterologous pathways, which are focus of much research in
synthetic biology and metabolic engineering51.

In our efforts to build a theory that includes components
shared by most enzymatic reactions, we have purposely over-
looked a number of processes that can shape metabolic ac-
tivity. For example, we have not addressed the impact of
feedback mechanisms that control enzyme activity, includ-
ing e.g. product inhibition and allostery, or transcriptional
mechanisms that control enzyme expression in response to
metabolites. Since post-translational regulation operates on
timescales much shorter than enzyme expression, with sim-
ilar timescale separation arguments it should be possible to
express the metabolite distribution as a mixture model akin
to ours. In such case the mixture components are not neces-
sarily Poisson and their distribution will depend on the par-
ticular mechanism under study. We expect that bimodal and
multimodal responses are likely to emerge in this setting, but
the precise parameter conditions would have to be studied on
a case-by-case basis. Transcriptional feedback control can
also display various mechanisms depending on the particular
pathway under study. One common motif relies on transcrip-
tion factors (TF) that up- or down-regulate enzyme expres-
sion upon binding to a specific metabolite20. These mecha-
nisms have been shown to play important roles on metabolic
activity52, but they also bring to the fore subtle questions that
require detailed examination, for example, on the role of fluc-
tuations coming from TF expression itself, or the impact of
negative TF autoregulation53. Our study paves the way for
these and other questions to be addressed and raises exciting
prospects for the future research in metabolic heterogeneity.

In this paper we laid theoretical foundations to study
metabolism in conjunction with stochastic enzyme expres-
sion. We brought together classic models for gene expres-
sion and enzyme kinetics, and discovered a rich array of dis-
tinct stochastic phenomena that underpin the emergence of
metabolic subpopulations. Our theory provides a quantitative
basis to draw testable hypotheses on the sources of metabo-
lite heterogeneity, which together with the ongoing efforts
in single-cell metabolite measurements, will help to re-think
metabolism as an active source of phenotypic variation.
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METHODS

Stochastic modelling and simulation

We built a fully stochastic model for the reaction scheme
describing a metabolic reaction coupled with gene expression
(Fig. 1A):

Substrate + Enzyme
k1
�
k−1

Complex (R1)

Complex
kcat

�
krev

Metabolite + Enzyme (R2)

mRNA ktl→ mRNA + Enzyme (R3)

DNAon
ktx→ DNAon + mRNA (R4)

DNAoff
kon

�
koff

DNAon (R5)

Metabolite kc→ ∅ (R6)

mRNA
kdeg→ ∅ (R7)

Enzyme δ→ ∅ (R8)

Complex δ→ ∅ (R9)

All reactions are assumed to follow mass action kinet-
ics. Model simulations were computed with Gillespie’s
algorithm34 over long time horizons, in the order of hundreds
of cell cycles for all simulations. Because of the complex
multimodality observed, long simulations are needed to ob-
tain accurate approximations of the stationary molecular dis-
tributions. The time courses shown in figures correspond to
a small time window of the overall simulation. Unless men-
tioned in the figure captions, all parameter values were fixed to
their nominal values shown in Table I. The parameters are se-
lected in a physiologically realistic range respecting the scale
separation of molecule numbers between mRNA (∼ 1 − 5
molecules), total enzyme abundance (∼ 100 molecules) and
metabolites (∼ 1000 molecules).

To identify bimodality in Figure 2, we detected the exis-
tence of one or two peaks in a distribution and defined it as
bimodal if the height of the smaller peak is a least 10% of the
larger peak and the trough between peaks is at most 10% of
the height of the smaller peak.

value unit
ns 3000 molecule
k1 1 s−1molecule−1

k−1 1000 s−1

kcat 3.6 s−1

krev 0.01 s−1molecule−1

kc 0.02 s−1

value unit
ktx 0.0270 s−1

ktl 0.2 s−1

kon 0.0225 s−1

koff 0.0075 s−1

kdeg 0.2 s−1

δ 0.00025 s−1

TABLE I. Nominal parameters for the stochastic model. Param-
eters correspond to the simulations of Figure 1A. We use realistic
enzyme kinetic parameters49 and fast promoter switching according
to measured ranges54. The dilution rate δ constant corresponds to a
doubling rate of approximately 46 minutes, typical in the Escherichia
coli bacterium. The distributions in Figure 1C were obtained with
perturbed promoter switching parameters kon = 0.01 s−1 and koff =
{0.03, 0.01, 0.0001} s−1. The parameter values for Figures 2 and
3 are shown in the respective captions.

Analytical expressions for the metabolite distribution

To derive an analytic approximation for the probability to
observe np metabolites in a cell, we first use the law of total
probability as shown in (1).

Distribution of the total enzyme — Because free enzymes
and complexes degrade at the same rate and netot = ne +nc is
conserved by the metabolic reaction, in the slow timescale the
enzyme distribution P(netot) follows the standard solution27

of the three-stage model for gene expression:

P(netot) =
Γ(α+ + netot)Γ(α− + netot)Γ(γ)

Γ(netot + 1)Γ(α+)Γ(α−)Γ(γ + netot)
×

(
b

1 + b

)netot
(

1− b

1 + b

)α+

×

2F1

(
α+ + netot, γ − α−, γ + netot;

b

1 + b

)
, (7)

where Γ is the Gamma function and 2F1 is the ordinary hyper-
geometric function. The parameters are γ = (kon+koff)/δ and
α± =

(
a+ γ ±

√
(a+ γ)2 − 4akoff/δ

)
/2, with a = ktx/δ

and b = ktl/kdeg.
Conditional distribution for the metabolite — To com-

pute the second term in (1), we observe that enzyme expres-
sion occurs on a much longer timescale than enzyme kinet-
ics, and thus metabolites can be considered to be in a quasi-
equilibrium state of the catalytic reactions (R1)–(R2) and
metabolite consumption (R6).

To explicitly compute the mixture components P(np|netot),
we assume that reversible binding between substrate and en-
zyme in reaction (R1) is much faster than the catalytic step
and metabolite consumption35. In this limit, the metabolite
number evolves according to the effective reactions:

∅
keff

cat

�
keff

rev

Metabolite kc→ ∅, (8)

where keff
cat and keff

rev are effective propensities averaged over the
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fast fluctuating variables nc and ne:

keff
cat = kcatE(nc|netot, np),

keff
rev = krevE(ne|netot, np),

(9)

where E denotes the expectation operator. The derivation of
the effective propensities in (9) corresponds to a particular
case of a more general methodology for timescale separation
in stochastic chemical systems29,55,56. Note that since the to-
tal enzyme levels are conserved in the catalytic timescale, it
follows that

E(ne|netot, np) + E(nc|netot, np) = netot. (10)

To derive the conditional expectations in (9), we write the
first-order moment equation for the free enzyme ne, which
according from equations (R1)–(R2) reads

d

dt
E(ne|netot, np) =

− k1nsE(ne|netot, np) + k−1E(nc|netot, np)

+ kcatE(nc|netot, np)− krevE(ne|netot, np)np. (11)

Under the assumption that the reversible binding of substrate
and enzyme is much faster than the other processes, the first
two terms dominate the right hand side of equation (11) and
determine the enzyme-complex quasi-equilibrium. Equating
these two terms and using the conservation relation in (10),
we obtain

E(ne|netot, np) ≈ k−1
(k−1 + k1ns)

netot,

E(nc|netot, np) ≈ k1ns

k−1 + k1ns
netot,

(12)

and thus both conditional expectations depend on netot and are
independent of the metabolite abundance. Therefore, the reac-
tions in (8) correspond to a birth-death process with a zero-th
order birth propensity keff

cat and two linear death propensities.
The mixture components P(np|netot) are thus Poissonian with
parameter λ(netot) as shown in (3)–(4).

Comparison of PMM predictions and measured kinetic
parameters

The PMM depends on the effective parameters λ∞ and K,
which are functions of five rate constants (kcat, k1, k−1, kc and
krev). Most of these parameters are not available, except kcat
and KM = (kcat + k−1)/k1. From equation (5) it follows

λ∞
K

=
kcat

kc
× k1ns

k1ns + k−1︸ ︷︷ ︸
saturation ε

, (13)

which allows the computation of λ∞/K for measured kcat val-
ues in different saturation conditions and consumption rate
constants. The red line in Figure 4B represents the λ∞/
K ratio for a saturated enzyme (ε = 1), fast consumption

(kc = 100 × δ) and the median kcat ≈ 16.5 s−1 in E. coli49.
The top grey line is the case without consumption, i.e. metabo-
lites are diluted by cell growth (kc = δ). Lower saturation
(ε = 0.2) moves the red line down the vertical axis (bot-
tom grey line). The enzyme distribution in Figure 4B was
produced with promoter switching parameters {kon, koff} =
{1.56, 3} × 10−4 s−1, ktx = 0.025 s−1, and ktl = 0.2 s−1.
The boundaries between unimodal, bimodal and multimodal
distributions were computed as follows. Unimodal distribu-
tions are those with a single maximum. Bimodal distributions
were detected as in Figure 2. Multimodal distributions are
those with at least one additional peak higher than a threshold
of 1 × 10−4 and the trough between neighbouring peaks at
most 90 % of its height.
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