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Abstract

Plant-pathogenic Xanthomonas bacteria secret transcription activator-like effectors
(TALEs) into host cells, where they act as transcriptional activators on plant target
genes to support bacterial virulence. TALEs have a unique modular DNA-binding
domain composed of tandem repeats. Two amino acids within each tandem repeat,
termed repeat-variable diresidues, bind to contiguous nucleotides on the DNA sequence
and determine target specificity.

In this paper, we propose a novel approach for TALE target prediction to identify
potential virulence targets. Our approach accounts for recent findings concerning TALE
targeting, including frame-shift binding by repeats of aberrant lengths, and the flexible
strand orientation of target boxes relative to the transcription start of the downstream
target gene. The computational model can account for dependencies between adjacent
RVD positions. Model parameters are learned from the wealth of quantitative data that
have been generated over the last years.

We benchmark the novel approach, termed PrediTALE, using RNA-seq data after
Xanthomonas infection in rice, and find an overall improvement of prediction
performance compared with previous approaches. Using PrediTALE, we are able to
predict several novel putative virulence targets. However, we also observe that no target
genes are predicted by any prediction tool for several TALEs, which we term orphan
TALEs for this reason. We postulate that one explanation for orphan TALEs are
incomplete gene annotations and, hence, propose to replace promoterome-wide by
genome-wide scans for target boxes. We demonstrate that known targets from
promoterome-wide scans may be recovered by genome-wide scans, whereas the latter,
combined with RNA-seq data, are able to detect putative targets independent of
existing gene annotations.

Author summary

Diseases caused by plant-pathogenic Xanthomonas bacteria are a serious threat for
many important crop plants including rice. Efficiently protecting plants from these
pathogens requires a deeper understanding of infection strategies. For many
Xanthomonas strains, such infection strategies depend on a special class of effector
proteins, termed transcription activator-like effectors (TALEs). TALEs may specifically
activate genes of the host plant and, by this means, re-program the plant cell for the
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benefit of the pathogen. Target sequences and, consequently, target genes of a specific
TALE may be predicted computationally from its amino acids. Here, we propose a
novel approach for TALE target prediction that makes use of several insights into TALE
biology but also of broad experimental data gained over the last years. We demonstrate
that this approach yields a higher prediction accuracy than previous approaches. We
further postulate that a strategy change from a restricted search only considering
promoters of annotated genes to a broad genome-wide search is feasible and yields novel
targets including previously neglected protein-coding genes but also non-coding RNAs
of possibly regulatory function.

Introduction 1

Many crop plants including rice can be infected by Xanthomonas bacteria causing 2

disease in the affected plants, which results in substantial yield losses. Many strains of 3

Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) 4

express a specific type of effector protein called transcription activator-like effectors 5

(TALEs). TALE proteins function as transcription factors in infected host cells [1], and 6

contain a nuclear localization signal, a DNA-binding domain, and an activation domain. 7

The DNA-binding domain consists of tandem repeats that bind to the promoter of plant 8

target genes. Each repeat consists of approximately 34 highly conserved amino acids 9

(AAs), except for the amino acids at position 12 and 13, which are termed repeat 10

variable diresdue (RVD) and are responsible for DNA specificity. The repeat domain 11

forms right-handed superhelical structure, while the RVD is situated within a loop 12

accessing the DNA [2,3]. Each RVD binds to one nucleotide of the target box [4, 5], 13

where amino acid 13 binds to the sense strand and amino acid 12 stabilizes the repeat 14

structure. Hence, the specificity of each TALE is determined by its RVD sequence. In 15

addition, most known target boxes are directly preceeded by a ’T’, while ’C’ and ’A’ 16

occur with decreasing frequencies, which is also referred to as “position 0” of the target 17

box. 18

Some repeats deviate from the common length of 34 AAs and have, for this reason, 19

been termed aberrant repeats. Aberrant repeats may loop out of the repeat array when 20

a TALE binds to its DNA target box and by this means allow for increased flexibility, 21

also binding to frame-shifted target boxes [6]. 22

Different Xoo and Xoc strains express different repertoires of TALEs, where a single 23

strain may host up to 27 TALEs [7–10]. 24

Naturally occurring TALEs may activate susceptibility (S) genes that are responsible 25

for bacterial growth, proliferation and disease development, but also disease resistance 26

(R) genes [1]. 27

The names of TALEs and TALE classes are based on the nomenclature introduced 28

by the tool AnnoTALE [11]. TALEs are clustered according to the similarity of their 29

RVD sequence and divided into classes. 30

Target boxes upstream of all known major virulence targets are located in forward 31

orientation relative to the transcription start site (TSS). Recently, target boxes of 32

TALEs have been reported to be also functional in reverse orientation relative to the 33

transcription start site (TSS) of their target gene [12,13]. However, reverse binding 34

seems to be rather an exception than a general rule [13]. Accurate predictions of target 35

boxes of TALEs are important for studying naturally occurring TALEs and determining 36

their virulence targets, but also for the identification of target and off-target sequences 37

of artificially designed TALEs. Over the last years, several tools have been designed for 38

the in-silico prediction of TALE target boxes based on the RVD sequence of a given 39

TALE and, subsequently, for the identification of target genes. 40

The TALE-NT suite includes “Target Finder”, a tool for predicting target boxes of 41
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TALEs based on their RVD sequence. It is available as online or command line 42

application (http://tale-nt.cac.cornell. edu/) [14,15]. In Target Finder, predictions are 43

based on a position weight matrix calculated from frequencies of naturally occurring 44

RVD-nucleotide associations. The user can choose whether the target box should start 45

with nucleotide T or C. 46

Talvez is another prediction tool that uses PWMs to model RVD-nucleotide 47

interactions [16]. It differs from Target Finder in deriving specificities of rare RVDs 48

from those of common RVDs with the same 13th amino acid. Target sequences may 49

only begin with nucleotide T or C, with a lower score assigned in the case of cytosine. 50

In addition, Talvez may explicitly model that mismatches are tolerated to a larger 51

degree if these are located near the C terminus [17]. Users of Talvez can choose between 52

web-based and command line applications. 53

TALgetter [18] uses a local mixture model to predict TAL target sequences. The 54

specificities were learned from 267 pairs of TALEs and target sites with qualitative 55

information whether the pair is functional or not. According to Streubel et al. [19], the 56

efficiencies of different RVDs are non-identical. The TALgetter model adapts a similar 57

concept using an importance term, which is learned independently from the specificity 58

of each RVD. TALgetter is implemented within the Java framework Jstacs [20], and is 59

available as online and command line program. 60

In the web tool SIFTED [21], specificity data from a large-scale study using 61

protein-binding microarrays (PBMs) were used for training model parameters. For this 62

purpose, 21 TALEs constructed exclusively from the most common four RVDs (NI, HD, 63

NN, NG) were designed and their binding specificity measured on ≈ 5,000-20,000 DNA 64

sequences per protein using PBMs. However, we will not consider SIFTED in the 65

remainder of this manuscripts, as the SIFTED web server is currently unavailable and 66

the limited set of RVDs included into SIFTED does not cover the entire spectrum of 67

those occurring in natural TALEs. 68

Predictions of all of these approaches still comprise a substantial number of false 69

positive predictions, whereas some of the known target genes cannot be detected by 70

these approaches, yet. During the last years, several quantitative studies of TALE 71

binding and transcriptional activation have been published. The studies included 72

quantitative analyses of target gene activation by TALEs spanning naturally occurring 73

RVDs [19,22], specificities at position 0 of target boxes [23], complete exploration of all 74

possible combinations of amino acids at RVD positions [24, 25], and systematic analyses 75

of those RVDs frequently used in designer TALEs [21]. 76

In this paper, we aim at developing a novel approach for modelling TALE target 77

specificities based on these quantitative data. This approach, called PrediTALE, 78

explicitly captures putative dependencies between adjacent RVDs, dependencies 79

between the first RVD and position 0 of the target box, and also includes positional 80

effects of mismatch tolerance. In contrast to previous approaches, model parameters are 81

adapted by minimizing the difference between prediction scores and quantitative 82

measurements for pairs of TALEs and target boxes. Like previous approaches, 83

PrediTALE also predicts target boxes in reverse strand orientation relative to the TSS, 84

but applies a small penalty term in this case, following the assumption that functional 85

reverse target boxes are rather rare in planta. PrediTALE is the first approach to 86

account for aberrant repeats when predicting TALE targets. 87
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Materials and methods 88

Training data 89

Pairs of TALEs and putative target boxes were collected from systematic, quantitative 90

experiments reported in [19,22–25]. Data were further processed as detailed in 91

Supplementary Text S1. Basically, data were grouped by TALE, and the global weight 92

was computed as the maximum assay value for the current TALE divided by the 93

maximum assay value reported for all TALEs with the same 13th AA at any position in 94

the current assay. Target values were computed as the assay value of the current pair of 95

TALE and target box divided by maximum assay value over all tested target boxes for 96

the current TALE. 97

While the normalization of target values has a mostly technical background as it 98

simplified the selection of initial values during numerical optimization of our model (see 99

below), the definition of global weights influences the optimization result. The choice of 100

global weights has been motivated by the observation that some TALE architectures 101

(e.g., those with long successions of identical RVDs, or 12th AAs not occurring in 102

nature) show a generally lower activity than others, which also affects the influence of 103

measurement noise and, hence, the reliability of assay values. With the choice of global 104

weights proposed here, the influence of such TALEs on the final optimization result is 105

reduced, while such TALEs do not need to be completely removed from the training set. 106

As detailed in Supplementary Text S1, PBM experiments from [21] were filtered for 107

apparent data quality, normalized log-intensities were used as target values, and global 108

weights were defined uniformly for all putative target boxes from a common PBM 109

experiment. 110

Bacterial growth conditions 111

Xanthomonas oryzae pv. oryzae (Xoo) strains PXO83, PXO142 and ICMP 3125T were 112

cultivated in PSA medium at 28°C. 113

Plant growth conditions & inoculation 114

Oryza sativa ssp. japonica cv. Nipponbare was grown under glasshouse conditions at 115

28°C (day) and 25°C (night) at 70% relative humidity (RH). Leaves of 4-week-old plants 116

were infiltrated with a needleless syringe and a bacterial suspension with an OD600 of 117

0.5 in 10 mM MgCl2 as previously described [26]. 118

RNA-seq data 119

Rice cultivar Nipponbare leaves were inoculated with Xoo strains PXO83, PXO142, 120

ICMP 3125T, or MgCl2 as mock control in five spots in an area of approx. 5 cm using a 121

needleless syringe. Two leaves of three rice plants each were inoculated for each strain 122

and control, respectively. 24h later, samples were taken, frozen in liquid nitrogen, and 123

RNA prepared. Three replicates of this experiment were done on separate days and 124

subjected to RNAseq analysis, separately. 125

RNA-seq data 48h after inoculation with different Xoc strains (BLS256, BLS279, 126

CFBP2286, B8-12, L8, RS105, BXOR1, CFBP7331, CFBP7341, CFBP7342), and mock 127

controls [9] were downloaded from Gene Expression Omnibus available under accession 128

number GSE67588. 129

RNA-seq data were adapter clipped using cutadapt (v1.15) [27] and quality trimmed 130

using trimmomatic (v0.33) [28] with parameters “SLIDINGWINDOW:4:28 131

MINLEN:50”. Transcript abundances were computed by kallisto [29] using parameters 132
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“–single -b 10 -l 200 -s 40” and the cDNA sequences available from 133

http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/ 134

annotation_dbs/pseudomolecules/version_7.0/all.dir/all.cdna. Differentially 135

expressed genes relative to the respective control samples were determined by the 136

R-package sleuth [30]. 137

For the Xoo strains and the respective mock control, replicates have been paired 138

during library preparation and sequencing. Hence, the replicate was considered as an 139

additional factor when computing p-values of differential expression for the Xoo samples 140

but not for the Xoc samples. Differential expression was aggregated on the level of 141

genes using the parameter target mapping of the sleuth function sleuth prep(), and 142

b-value, p-value, and Benjamini–Hochberg-corrected q-value were recorded. The b-value 143

reported by sleuth when applying a Wald test is actually a biased estimator of the 144

log-fold change. However, as this is a more commonly understood term, we refer to the 145

b-value as “log-fold change” in the remainder of this manuscript. Gene abundances, and 146

sleuth outputs with regard to differential expression are provided as Supplementary 147

Tables T and U, respectively. RNA-seq reads were also mapped to the rice genome 148

(MSU7) to obtain detailed information about transcript coverage. To this end, adapter 149

clipped and quality trimmed reads were mapped using TopHat2 v2.1.0 [31], and the 150

resulting BAM output files were processed in further analyes described below. 151

Model 152

Let r = r1r2 . . . rL denote the RVD sequence of length L of a TALE, where 153

r` ∈ {AA, . . . , Y Y,A∗, . . . , Y ∗} denotes a single RVD, and r`,12 and r`,13 denote the 154

12th and 13th AA of that RVD, respectively. Let x = x0x1 . . . xL denote a putative 155

target box of length L+ 1 of that TALE, where x` ∈ {A,C,G, T} and x0 denotes the 156

nucleotide bound by the zero-th, cryptic repeat. 157

The general idea of the model proposed here is to model the total binding score of a 158

putative target box x given the RVD sequence r of a TALE as a sum of contributions of 159

i) binding to the zero-th repeat, ii) binding to the first RVD, and iii) binding to the 160

remaining RVDs, where the latter two terms may be weighted by an additional, 161

position-dependent but sequence-independent term. 162

s(x|r,θ) = m0(x0|r1,θ0) +m1(x1|r1,θ1,θm) · p(1|θp) +

L∑
`=2

m(x`|r`−1, r`,θm) · p(`|θp) (1)

Here, θ = (θ0, θ1,θm,θp) denote the sets of real-valued parameters of the term for 163

binding to the zero-th, first, and remaining repeats, and the position-dependent term, 164

respectively. 165

The term m0(x0|r1,θ0) for binding to the zero-th repeat may depend on the first 166

RVD on the TALE, since dependencies between zero-th and first repeat have been 167

observed before [23]. However, our knowledge about such dependencies is limited to the 168

data presently available and, hence, we limit the RVDs for which a dependency is 169

considered to a set R0. Our data regarding systematic, quantitative analyses of the base 170

preference of the zero-th repeat is limited in general, although it is widely assumed that 171

position 0 in target boxes of natural TALEs is preferentially T and less frequently C. 172

We include this prior knowledge into a-priori parameters πx0
. 173

m0(x0|r1,θ0) = πx0 + θ0,x0 + δ(r1 ∈ R0) · θ0,x0|r1 (2)

In this paper, we set R0 = {HD,NN,NG,NI,NS} and 174

πT = log(0.6), πC = log(0.3), πA = πG = log(0.05). 175
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The term m1(x1|r1,θ1,θm) for binding to the first repeat depends on the 13th AA 176

r1,13 of the first RVD r1, but may be extended by additional terms that either model a 177

general dependency on the complete first RVD (including the 12th AA), and/or a 178

separate base preference for a given 13th AA at the first position. Again, this 179

modularity allows us to adapt the model to the resolution of data available, since a 180

substantial part of RVDs is only covered by the systematic but limited data reported 181

in [24,25]. 182

m1(x1|r1,θ1,θm) = θm,x1|r1,13 + δ(r1 ∈ R1) · θm,x1|r1 +

δ(r1,13 ∈ R2) · θ1,x1|r1,13 (3)

In this paper, we set R1 = {HD,NN,NG,HG,NI,NK} and R2 = {D,N,G, I}. 183

The term m(x`|r`−1, r`,θm) for binding to the remaining repeats again depends on 184

the 13th AA r`,13 of the current RVD r`, but may be extened by additional terms that 185

either model a dependency on the complete RVD (with parameters shared with the 186

correponding term used for the first RVD), and/or the complete RVD r` at the current 187

repeat and the 12th AA r`−1,12 at the previous repeat: 188

m(x`|r`−1, r`,θm) = θm,x`|r`,13 + δ(r`, r`−1 ∈ R1) · θm,x`|r` +

δ(r` ∈ R3) · θm,x`|r`,r`−1,12
(4)

In this paper, we set R3 = {HD,NN,NG,NI}. 189

Finally, we define the position-dependent term as a mixture of two logistic functions 190

and a constant term, where the logistic functions depend on the relative distance of ` 191

from the start and end of the putative target box, respectively: 192

p(`|θp) =
eθp,1∑3
j=1 e

θp,j

1

1 + e−θp,a,1(
`
L+θp,b,1)

+

eθp,2∑3
j=1 e

θp,j

1

1 + e−θp,a,2(
L−`
L +θp,b,2)

+
eθp,3∑3
j=1 e

θp,j
(5)

The parameters θp,a,1 and θp,a,2 denote the slopes, and θp,b,1 and θp,b,2 denote the 193

location parameters of the logistic functions. 194

Learning parameters 195

The training data D = (t1, . . . , tN ) comprise tuples ti = (ri,xi, vi, wi, gi) of TALE RVD 196

sequence ri, target box xi, target value vi, global weight wi and group gi (cf. sections 197

“Data” and “Model”). Given the current parameter values θ, we may further compute 198

for each pair of TALE and target box, the corresponding model score si = s(x|ri,θi). 199

The goal of the learning process is to adapt the parameter values θ such that the 200

differences between computed scores si and target values vi becomes minimal. However, 201

despite the normalization of target values described in section “Data”, target values 202

from different experimental setups (represented by the groups gi) may live on different 203

scales. Hence, we allow the learning process to linearly transform the computed scores 204

si before comparing them to the target values. The total error between target value and 205

prediction score is defined as 206

E(θ;D,β) :=
N∑
i=1

wi · (f(s(xi|ri,θ)|gi,β)− vi)2 (6)

where 207

f(si|gi,β) = exp(βa,gi) · si + βb,gi , (7)
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β = (βa,1, βb,1, . . . , βa,G, βb,G), βa,gi and βb,gi are group-specific scale and shift 208

parameters, respectively, and G is the total number of groups in the data set D. 209

In addition, we use an L2 regularization term on the model parameters θ to avoid 210

overfitting and explosion of parameter values: 211

L2(θ) := λ · ||θ||2 (8)

where the regularization parameter λ is set to 0.1 in this paper. 212

The number of model parameters for the different terms varies greatly, depending on 213

the number of conditions (e.g., 12th AA of previous RVD, separate parameters for 214

individual RVDs). This regularization also has the effect that more complex dependency 215

parameters assume values considerably different from 0 only if the modeled specificity 216

cannot be captured by the less complex sets of parameters. 217

The final objective function is then to minimize sum of the error term E(θ;D,β) 218

and the regularization term L2(θ) with respect to the parameter values: 219

(θ∗,β∗) = argmax
(θ,β)

E(θ;D,β) + L2(θ) (9)

Parameter optimization is performed by a gradient-based quasi-Newton method as 220

implemented in the Jstacs library [20]. 221

The final parameters θ∗ of the trained model may then be used to determine 222

prediction scores of previously unseen pairs of TALEs and putative target boxes, 223

whereas the value of β∗ is discarded after optimization. 224

Prediction of TALE target boxes 225

For predicting putative TALE target boxes for a given TALE with RVD sequence r of 226

length L, we follow a sliding window approach scanning input sequences x1, . . . ,xN . 227

Input sequences could, for instance, be promoter sequences of annotated genes but also 228

complete chromosomes. Each sub-sequence xi,`, . . . ,xi,`+L then serves as input of the 229

model to compute the corresponding score s(xi,`, . . . ,xi,`+L|r,θ∗). To allow for a rough 230

comparison of scores, even between TALEs of different lengths, we normalize this score 231

to the length of the input sequence, i.e., we compute a normalized score as 232

s′(xi,`, . . . ,xi,`+L|r,θ∗) := s(xi,`, . . . ,xi,`+L|r,θ∗)/(L+ 1) 233

For scanning promoter sequences, we also provide an option for penalizing 234

predictions of the reverse complementary strand, relative to the orientation of the 235

downstream gene. Specifically, a small constant c is subtracted from all prediction 236

scores s′ on the reverse complementary strand. Throughout this paper, we use c = 0.01. 237

The scanning process explicitly accounts for aberrant repeats, which may loop out of 238

the repeat array [6]. To this end, we search for putative target boxes with all repeats 239

present in the repeat array, but also all combinations of aberrant repeats removed from 240

the RVD sequence. Due to the normalization of scores by the number of repeats, 241

predictions based on these modified RVD sequences can still be ranked in a common list. 242

In addition, we provide a box-specific p-value as a statistical measure for the 243

significance of target box predictions. Those p-values may either be computed from a 244

dedicated background set of sequences or from a random sub-sample of the scanned 245

input sequences, where the latter option is used throughout this paper. In either case, 246

scores are computed for the sub-sequences given the current RVD sequences, then a 247

Gaussian distribution is fitted to those score values, and the p-value for a given score is 248

determined from that Gaussian distribution. While the Gaussian distribution does not 249

perfectly fit the true distribution of score values, it allows for computing p-values with 250

high resolution (as opposed to just using percentages of the scores themselves) and even 251

for score values larger than any of the scores in the random sample. 252
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Genome-wide predictions & filtering 253

We use PrediTALE for genome-wide prediction in the genome of Oryza sativa 254

Nipponbare (MSU7, 255

http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/ 256

annotation_dbs/pseudomolecules/version_7.0/all.dir/all.chrs.con). We 257

make predictions for each TALE of 3 Xoo strains and 10 Xoc strains. In order to 258

confirm that the predicted target boxes might indeed be bound by the respective TALE, 259

we use the above-mentioned RNA-seq data to determine if there are differentially 260

transcribed regions around a putative target box. For each of the top 100 predictions, 261

we search ± 3000 bp around the predicted site for regions of at least 400 bp that are 262

differentially expressed. Specifically, we count the number of mapped reads for each 400 263

bp window in replicates of treatment and control. Counts are then normalized relative 264

to the total number of reads within each library, and replicated are averages separately 265

for treatment and control. Here, we consider a region as differentially expressed if the 266

mean normalized number of reads after infection (treatment) is at least 2-fold larger 267

than the mean normalized number of reads in the control experiment. If several, 268

adjacent 400 bp regions meet this criterion, those are joined to a common, longer region. 269

This procedure is implemented in a tool called DerTALE. As input, DerTALE 270

expects genomic positions, i.e., the position of predicted target boxes, and BAM files of 271

mapped reads for replicates of treatment and control. Region width, thresholds and 272

averaging methods may be adjusted by user parameters. 273

For each predicted target box, a profile output is generated if there is at least one 274

differential expressed region with a minimum length of 400 bp that does not overlap the 275

target box, or if it overlaps, the differential region starts or ends at most 50 bp 276

upstream or downstream of the target box. 277

The obtained profiles may be visualized using an auxiliary R script. In addition to 278

the profile data, this R script requires annotations data of already known transcripts in 279

gff3 format. By this means, users may then investigate whether the predicted binding 280

site may activate the transcription of a gene that has not been annotated yet. Here, we 281

use the MSU7 annotation 282

(http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/ 283

annotation_dbs/pseudomolecules/version_7.0/all.dir/all.gff3). 284

For differentially expressed regions without annotated MSU7 transcript, we searched 285

for similar sequences using blastx of NCBI BLAST+ version 2.7.1 286

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/ and choose the 287

non-redundant protein sequence (nr) database. In cases, where we did not receive a 288

convincing hit, we additionally compared sequences with blastn against the reference 289

RNA sequences (refseq rna) database. 290

Implementation & scanning speed-up 291

The model and learning process are implemented using the open-source Jstacs 292

library [20] and will be part of the next Jstacs release. 293

For scanning large input sequences, e.g., complete genomes of host plant species, an 294

acceptible runtime is essential. Since the parameters at each position of the proposed 295

model depend on the RVD sequence of the TALE of interest but do not include 296

dependencies between different nucleotides of a putative target box, we may convert the 297

model given a fixed TALE RVD sequence into an position weight matrix 298

(PWM) [32,33]. This allows for a quick computation of prediction scores that may be 299

formulated as the position-wise sum of values stored in the TALE-specific PWM model. 300

We further speed-up the scanning process by pre-computing indexes of overlapping 301

k-mers in the same manner as proposed for the TALENoffer application earlier [34]. 302
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Evaluation of prediction results 303

We compare the performance of the approach presented in this paper to those of 304

established tools for predicting TALE target sites, namely TALESF [14], Talvez [16], 305

and TALgetter [18], based on RNA-seq data after inoculation with different Xoo and 306

Xoc strains described above. 307

To this end, we collect the promoter sequences of all transcripts based on the MSU7 308

assembly and gene models [35] available from 309

http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/ 310

annotation_dbs/pseudomolecules/version_7.0/all.dir/. We consider as 311

promoter the sequence spanning from 300 bp upstream of the transcription start site to 312

200 bp downstream of the transcription start site or the start codon, whichever comes 313

first, as proposed before [18]. We then run each of the tools using default parameters on 314

the extracted promoter sequence providing the RVD sequences of the TALEs present in 315

the respective Xanthomonas strain. Predictions in promoters of different transcripts 316

belonging to the same gene are merged by considering only the prediction yielding the 317

best prediction score. 318

Assessment of prediction performance based on in-planta inoculation experiments 319

with Xanthomonas strains harboring multiple TALEs has the inherent complications 320

that i) putative target genes cannot be attributed to one specific TALE based on the 321

RNA-seq data alone and ii) genes showing increased expression after inoculation may 322

either be regulated directly by a TALE binding to their promoter or indirectly via other, 323

regulatory target genes. Hence, we define true positives as those genes that have a 324

predicted target box in their promoter and are also up-regulated after inoculation with 325

the respective Xanthomonas strain relative to control as derived from RNA-seq data. 326

By contrast, we cannot clearly define false negatives, since genes that are up-regulated 327

after inoculation but do not contain a predicted target box in their promoter could be 328

indirect target genes. False positives, in turn, would be genes with a predicted target 329

box in their promoter that are not up-regulated after Xanthomonas inoculation. 330

A further issue hampering performance assessment by standard methods like receiver 331

operating characteristic (ROC) [36] or precision-recall (PR) curves [37,38] is that for 332

two of the tools considered (TALESF and Talvez), none of the reported prediction 333

scores is comparable between different TALEs, especially TALEs of different lengths. 334

Hence, we decide to use varying cutoffs on the number of predicted target genes per 335

TALE to establish a common ground for comparing all four approaches. 336

Following these considerations, we collect for each of the four approaches the number 337

of true positive predictions (TPs) for cutoffs on the number of predictions per TALE 338

from 1 (i.e., the top prediction) to 50. We then plot for each approach the number of 339

true positives against this cutoff to obtain a continuous picture of its prediction 340

performance. In addition, we collect for the same cutoffs the number of TALEs with at 341

least one predicted target gene among the true positives. 342

The area under these curves may serve as a further measure of general prediction 343

performance in analogy to, for instance, the area under the ROC curve. 344

Finally, we compare the TPs at distinct cutoffs (1, 10, 20, 50) between the four tools. 345

For a specific cutoff, we collect the TPs (or, in analogy, number of TALEs with at least 346

one predicted target) for each of the four tools. Statistical significance of the differences 347

in observed TPs is then assessed by a Quade test [39] using the quade.test function in 348

R [40] and pairwise comparisons are performed by the post-hoc test implemented in 349

function quadeAllPairsTest of the PMCMRplus R-package [41]. 350
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Availability 351

PrediTALE is available as a web-application based on Galaxy at 352

http://galaxy.informatik.uni-halle.de. Both PrediTALE and DerTALE are 353

available as command line application from http://jstacs.de/index.php/PrediTALE 354

and have also been integrated in AnnoTALE 1.4. Source code is available from 355

https://github.com/Jstacs/Jstacs in packages projects.tals.linear, 356

projects.tals.predictions and projects.tals.rnaseq. 357

Results/Discussion 358

Benchmarking PrediTALE against previous approaches 359

In this section, we benchmark the predictions of PrediTALE against those made by one 360

of the previous approaches, namely Target Finder [14], Talvez [16], and TALgetter [18]. 361

To this end, we consider different Xanthomonas oryzae pv. oryzae (Xoo) and 362

Xanthomonas oryzae pv. oryzicola (Xoc) strains for which we have an experimental 363

support of up-regulated genes in Oryza sativa after infection based on RNA-seq data. 364

Specifically, we consider the Xoo strains ICMP 3125T, PXO142 and PXO83 with 365

in-house RNA-seq data available, and the Xoc strains B8-12, BLS256, BLS279, BXOR1, 366

CFBP2286, CFBP7331, CFBP7341, CFBP7342, L8 and RS105 based on public 367

RNA-seq data [9]. For the TALEs from the repertoires of these three Xoo and ten Xoc 368

strains, we determine target gene predictions for each of the previous approaches and 369

for PrediTALE. Predicted target genes are ranked by the corresponding prediction 370

scores of the different approaches per TALE. 371

First, we study the overlaps between the sets of predicted target genes per approach 372

to investigate how strongly predictions are affected by conceptual differences of these 373

approaches. In Figure 1A, we show Venn diagrams of predicted target genes for the 374

three Xoo strains based on the top 20 predictions per TALE, while the corresponding 375

diagrams for the ten Xoc strains are available as Supplementary figure S1. In general, 376

we observe a substantial number of unique predictions for each of the four approaches, 377

but especially for Talvez and PrediTALE. By contrast, the overlapping predictions 378

between all four approaches amount to less than a quarter of the total predictions per 379

approach. This demonstrates that prediction results strongly depend on the employed 380

approach. However, prediction accuracy cannot be assessed without an experimental 381

knowledge about genes that are up-regulated in planta upon Xanthomonas infection. 382

For this reason, we filter predictions based on the corresponding RNA-seq data in the 383

following. 384

RNA-seq data for the three Xoo strains including previously unpublished data for 385

PXO83, have been collected 24 hours after infection. Collection at this early time point 386

has the advantage that the number of secondary targets, i.e., genes that are up-regulated 387

as a secondary effect of direct TALE targets with regulatory function, should still be 388

low. However, as the infection might not be fully established, yet, the variation between 389

replicates and, hence, the number of significantly differentially expressed genes based on 390

standard FDR-based criteria is rather low (cf. Supplementary table A). As we aim at 391

sensitivity for the benchmark study, i.e., we want to avoid predictions to be erroneously 392

counted as false positives, we consider genes as differentially up-regulated if they obtain 393

an uncorrected p-value below 0.05 and are at least 2-fold up-regulated in this case, 394

which results in 43 (PXO142) to 107 (ICMP 3125T) differentially up-regulated genes. 395

In case of the ten Xoc strains, RNA-seq data have been recorded 48 hours after 396

infection. Here, infection should be fully established, but we expect a substantial 397

number of secondary targets to be up-regulated already. Hence, we resort to rather 398

standard thresholds with a FDR-corrected q − value < 0.01 and log fold change greater 399
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Fig 1. Venn diagrams of predictions of the four approaches considered. (A) For each Xoo strain and each
approach, we consider the set of target genes obtained as the union of the top 20 predictions per TALE. For
Xoo ICMP 3125T harboring 17 TALEs, this results in a total number of 340 raw predictions per approach,
where the actual number in the diagram may be slightly lower if two TALEs are predicted to target the
same gene. For Xoo PXO142 (19 TALEs), we obtain 380 raw predictions and for Xoo PXO83 (18 TALEs),
we obtain 360 raw predictions per approach. (B) Venn diagrams of the subsets of genes from sub-figure A
that are also up-regulated according to RNA-seq data.

than 2 in this case. Notably, this still results in a larger number of differentially 400

up-regulated genes than for the Xoo strains with numbers between 202 (CFBP2286) 401

and 672 (L8). 402

Given these up-regulated genes as a ground truth, we may now count predictions of 403

TALE target boxes in promoters of up-regulated genes as true positives, and predictions 404

without observed up-regulation as false positives. In Figure 1B, we plot Venn diagrams 405

of the true positives among the top 20 predictions of all four approaches. Notably, we 406

find that the intersection of the predictions of all four approaches constitutes (one of) 407

the largest set(s) in each of the three Venn diagrams. Among the predictions that are 408

unique to one of the four approaches, we consistently find the largest number of true 409

positive predictions for PrediTALE, which indicates the utility of our novel approach. 410

Turning to the ten Xoc strains (Supplementary figure S2), we again find the same 411

tendency with regard to the predictions overlapping among all four approaches. 412

However, the number of true positives among the unique predictions shows a less clear 413

picture with a slight advantage towards Talvez, while predictions of PrediTALE often 414

overlap with TALgetter and/or Target Finder. Together, the Venn diagrams for the Xoo 415

and Xoc strains also illustrate why it is generally beneficial to complement in silico 416

TALE target predictions with experimental data about gene regulation. 417

The results presented so far strongly depend on the thresholds of the ranks of the 418

target predictions but also on the thresholds applied to the RNA-seq data. To address 419

the former problem, we aim at an assessment of target predictions over all rank 420

thresholds, while we will handle the latter by separate evaluations applying different 421

criteria to the RNA-seq data. 422

As detailed in section “Evaluation of prediction results”, standard performance 423

measures like the area under the ROC curve [36] or the area under the precision-recall 424

curve [37,38] are inappropriate under this setting. Briefly, we cannot attribute an 425

up-regulated gene to a specific TALE from the TALE repertoire of the strain under 426
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Fig 2. Performance evaluation on the level of target genes for three Xoo strains. For
each approach, we plot the number of predicted target genes that are also up-regulated
in the infection against the number of predicted target sites per TALE. In the legends,
we further report the areas under the curves after the name of the individual approaches.

study. In addition, genes that are up-regulated in the RNA-seq experiment might also 427

be due to secondary effects of TALE targets, due to general plant response to the 428

bacteria, or due to other classes of effector proteins. Thus, we may not consider 429

up-regulated genes without a matching prediction of a TALE target box in their 430

promoter as false negatives. Hence, we decide to compare the performance of different 431

approaches by means of the number of true positive predictions at different rank cutoffs, 432

i.e., considering the top N predicted target genes of each approach. 433

In Figure 2, we plot the number of true positives for the three Xoo strains and each 434

of the four approaches against the total number of predictions per TALE, considering 435

only the highest-ranking prediction up to 50 target predictions per TALE, which we 436

consider a reasonable cutoff under the scenario of manual inspection. In addition, we 437

compute the area under this curve as an overall performance statistic across all rank 438

cutoffs. For ICMP 3125T, we find that PrediTALE yields the largest number of rank 1 439

predictions (4), but also dominates the other three tools for all other rank cutoffs. With 440

regard to the area under the curve (AUC), we find that PrediTALE yields the best 441

overall performance, followed by TALgetter, Talvez, and finally Target Finder. For 442

PXO142, PrediTALE yields a better prediction performance than the other tools 443

starting from rank 4, while Target Finder and TALgetter achieve a larger number of 444

true positive predictions (3) at rank 1. We also observe that the previous approaches do 445

not gain many additional targets above a rank cutoff of 20, whereas PrediTALE still 446

reports additional predictions with up-regulation in the RNA-seq experiment when 447

increasing the rank cutoff. The ranking according to AUC again shows the best 448

performance for PrediTALE, followed by TALgetter, Talvez and Target Finder. The 449

general picture for PXO83 is similar, where PrediTALE yields the largest number of 450

true positive predictions starting from rank 5, but also the largest number of rank 1 451

predictions (3). This is also reflected by the AUC values, which rank the approaches in 452

the order of PrediTALE, TALgetter, Talvez and Target Finder. 453

We take a different perspective on prediction results by assessing prediction 454

performance on the level of TALEs. Specifically, we count the number of TALEs with at 455

least one true positive target prediction for the same rank cutoffs as before. Again, 456

PrediTALE identifies targets for a larger number of TALEs than the other approaches 457

for the majority of rank cutoffs (Figure 3). However, we see notable differences between 458

the different Xoo strain. For ICMP 3125T, PrediTALE is able to identify putative 459

targets for 10 of its 17 TALEs. By contrast, the number of TALEs with a true positive 460

prediction is lower for PXO142, where PrediTALE finds targets for at most 7 out of 19 461

TALEs, and for PXO83, where PrediTALE find targets for at most 7 out of 18 TALEs. 462

As ICMP 3125T has also been the strain with the largest number of differentially 463
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Fig 3. Performance evaluation on the level of TALEs for three Xoo strains. For each
approach, we plot the number of TALEs with at least one predicted target gene that is
also up-regulated in the infection against the number of predicted target sites per TALE.

up-regulated genes (cf. Supplementary table A), the lower number of TALEs in PXO142 464

and PXO83 with a predicted target might be due to a different progression of the 465

Xanthomonas infection. 466

We further summarize the data behind Figures 4 and 3 in Supplementary tables C 467

and D, where we also report the average ranks of the four approaches across all three 468

Xoo strains. 469

For sake of completeness, we also evaluate the four approaches for differentially 470

up-regulated genes after Xoo infection based on the same FDR-based thresholds as for 471

the Xoc experiments (Supplementary figure S3 and S4). 472

Although it has been shown that TALEs may activate transcription in both strand 473

orientations relative to the transcription start site (TSS) of target genes [12,13], a 474

preference for the forward orientation has been postulated [13]. This is reflected by the 475

strand penalty of PrediTALE, but no similar parameter exists for the previous 476

approaches. Hence, above comparison might be perceived as partially unfair in favor of 477

PrediTALE. For this reason, we repeat the benchmarking after restricting the 478

predictions of all four appraoches to a forward orientation relative to the TSS 479

(Supplementary figure S5 and S6). While the restriction to the forward strand has an 480

effect on the number of target genes and TALEs with at least one true positive target, 481

PrediTALE still yields an improved performance compared with the previous 482

approaches over a wide range of rank cutoffs and, hence, achieves the largest AUC value 483

of the four approaches in all cases. 484

For the ten Xoc strains, we find an improved prediction performance for PrediTALE 485

as well. On the level of true positive target genes (Figure 4), PrediTALE yields the 486

largest number of true positives for a rank cutoff of 1 for seven of the ten Xoc strains 487

(cf. Table I). We also find an improved performance for the majority of the remaining 488

rank cutoffs and Xoc strains. This improvement is especially pronounced for strains Xoc 489

BLS279, CFBP7331, CFBP7341, and L8, whereas PrediTALE performs similar to or 490

slightly worse than at least one of the previous approaches for Xoc CFBP7342 and 491

RS105. For the remaining strains (B8-12, BLS256, BXOR1, CFBP2286), the 492

improvement by PrediTALE is either rather small or mostly restricted to rank cutoffs of 493

20 or larger. This is also reflected by the areas under the curves, where PrediTALE 494

yields the largest areas for B8-12, BLS256, BLS279, BXOR1, CFBP2286, CFBP7331, 495

CFBP7341, L8, and also RS105, but nor for CFBP7342. Results are largely similar on 496

the level of TALEs with at least one true positive predicted target (Supplementary 497

figure S7), where PrediTALE yields the largest area under the curve for the same 498

strains. 499

To obtain a more condensed overview on the results for the Xoc strains, we finally 500

compute the average performance ranks across all ten Xoc strains for each of the four 501
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Fig 4. Performance evaluation on the level of target genes for 10 Xoc strains. For each
approach, we plot the number of predicted target genes that are also up-regulated in the
infection against the number of predicted target sites per TALE.
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approaches and fixed rank cutoffs of 1, 10, 20, and 50, and for the area under the curve 502

both on the level of target genes and on the level of TALEs (Table 1 and Supplementary 503

tables I and J). For all rank cutoffs and the area under the curve, we observe that 504

PrediTALE yields the best average rank with values betwen 1.1 and 1.5. We further 505

assess the statistical significance of differences between the different tools by a Quade 506

test, and the pairwise differences between tools by the associated post-hoc test (see 507

Methods). This assessment is partly limited by the fact that pairs of Xoc strains may 508

have identical TALEs in their TALEomes, which also means that the performance values 509

of those strains are not truly independent. However, we did not find a clear relationship 510

between the similarity of performance values obtained for the different strains and the 511

similarity of the corresponding TALEomes. For this reason, we consider this dependency 512

rather mild and favor this limited statistical assessment over the complete lack of it. 513

Consistent with the previous observations, we find that PrediTALE never performs 514

significantly worse then any of the three previous approaches, whereas in many cases it 515

performs significantly better, often with p-values below 0.001. Notable exceptions are a 516

rank cutoff of 1, where PrediTALE does not perform significantly different from Target 517

Finder, a rank cutoff of 10, where PrediTALE does not perform significantly different 518

from Talvez, and on the level of TALEs, a rank cutoff of 20, where PrediTALE does not 519

perform significantly different from TALgetter. 520

Repeating the same analysis for varied q-value threshold (Supplementary figures S8 521

and S9, Supplementary tables K, L, and M), for varied log fold change threshold 522

(Supplementary figures S10 and S11, Supplementary tables N, O, and P), and for 523

predictions restricted to the forward strand relative to the TSS (Supplementary 524

figures S12 and S13, Supplementary tables Q, R, and S), benchmarking results are 525

essentially similar to our previous findings. One notable exception is the Quade test for 526

rank 1 predictions restricted to the forward strand (Supplementary table S), which is no 527

longer significant. This means that none of the approaches studied yields significantly 528

better rank 1 predictions than any other under this scenario. 529

In summary, we find i) that PrediTALE produces several unique predictions that 530

might not have been considered based on previous approaches, ii) although low in 531

absolute terms, the number of true positives among these predictions is often larger 532

than for the previous aproaches, and iii) an assessment of the performance of 533

PrediTALE across a wide range of rank cutoffs demonstrates that in most of the cases 534

the application of PrediTALE yields a larger number of true positive target predictions 535

than any of the three previous approaches. 536

PrediTALE predicts novel putative target genes 537

As we have seen from Figure 1B, putative target genes with up-regulation after Xoo 538

infection are often found in the intersection of the predictions of all four approaches. In 539

addition, PrediTALE predicts several putative target genes of TALEs from the three 540

Xoo strains that might have been neglected using one of the previous tools. In the 541

following, we scrutinize the predictions for the Xoo strains with a focus on novel 542

predictions, while we give a complete list of top 20 predictions of all four approaches 543

including the ten Xoc strains in Supplementary table V. 544

In Table 2, we collect further information about those target genes including the 545

corresponding log fold change and prediction ranks for all four approaches. 546

The target genes in the intersections of the predictions of all four approaches 547

comprise several well known targets: Os09g29820 (OsTFX1), a bZIP transcription 548

factor, is targeted by TALEs from class TalAR with members in all three Xoo strains 549

(Supplementary figure S14) and has been proposed as a TALE target early [5, 42]. 550

Os01g40290 [5], an expressed protein without annotated function, is targeted by TalAA 551

members, which are also present in all three Xoo strains. However, this gene is not in 552
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Table 1. Testing the significance of differences in prediction performance.
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Genes R1 1.8 3.1 2.4 1.5 ** — - +++ ++

Genes R10 3.6 2.5 1.6 1.5 *** + +++ + +++ +

Genes R20 3.3 2.1 2.9 1.3 *** +++ + +++ ++ +++

Genes R50 2.3 3 3 1.1 ** +++ +++ +++

Genes AUC 3.1 2.8 3 1.1 *** +++ +++ +++

TALEs R1 1.8 3.1 2.4 1.5 ** — - +++ ++

TALEs R10 3.5 2.1 1.6 1.5 *** + +++ ++ +++ +

TALEs R20 3.5 1.8 2.6 1.2 *** +++ + - +++ +++

TALEs R50 2.6 2.6 2.8 1.4 ** ++ ++ +++

TALEs AUC 3.4 2.6 2.8 1.1 *** ++ + +++ +++ +++

For each tool and each measure (TALEs/Genes; rank cutoff), we report the average
performance rank per tool, the significance of the Quade test (*:< 0.05; **:< 0.01;
***:< 0.001), and the significance of the pairwise comparison in a post-hoc test. Here, ’+’
and ’-’ indicate that the first tool has gained a significantly better or worse performance
than the second one, respectively. The number of symbols encodes the significance level
in analogy to the Quade test.
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the list of predictions for Xoo PXO83, because the corresponding p-value was larger 553

than the threshold of 0.05 (Supplementary table T). Os01g73890 (TFIIAγ) [5], that has 554

been shown to promote TALE function [43], is targeted by TalBM2 in ICMP 3125T. In 555

concordance to TalBM class members missing in PXO142 and PXO83, Os01g73890 556

shows no up-regulation in these two strains. Os07g06970 (HEN1) has also been among 557

the first TALE target genes proposed [5] and is targeted by TalAP members present in 558

all three Xoo strains, but falls below the threshold on the log fold change by a small 559

margin in ICMP 3125T (Supplementary figure S15). Os06g29790 [18], a phosphate 560

transporter, has been predicted as a target of TalAO16 from PXO142 by all four 561

approaches, but not for the TalAO members from PXO83 and ICMP 3125T, which have 562

a slightly different and longer RVD sequence. In the RNA-seq data, however, we find 563

the strongest up-regulation for ICMP 3125T, although Os06g29790 appears only on 564

rank 49 of the PrediTALE predictions for TalAO15 from that strain. Hence, 565

experimental data and computational predictions are partly contradictory in this case. 566

In addition, we find several putative target genes in the intersection that have not 567

been reported before: Os02g06670, a retrotransposon protein, is predicted as a target of 568

TalBA8 and TalBA2 in ICMP 3125T and PXO83, respectively, whereas PXO142 lacks a 569

TalBA member. Nonetheless, Os02g06670 is up-regulated after PXO142 infection, 570

although to a lesser degree than in the other two strains (cf. Supplementary figure S15). 571

Os11g26790 (RAB21), a dehydrin that has been shown to play a role in drought 572

tolerance related to pathogen infection [44], is predicted to be targeted by TalAH11 573

from ICMP 3125T. Os11g26790 is up-regulated for ICMP 3125T but also for PXO142 574

(Supplementary figure S15), although in the latter case, the corresponding p-value is 575

again not significant. Os02g49350, a plastocyanin-like protein, is strongly up-regulated 576

only in PXO142 and predicted as a target of TalBH2, where class TalBH is exclusive to 577

PXO142 among the strains studied. 578

Finally, we find several putative target genes that have been predicted only by a 579

subset of approaches: For ICMP 3125T, Os04g43730 (OsWAK51) is among the top 20 580

predictions for TalES1 only for Target Finder and Talvez. In turn, PrediTALE predicts 581

Os06g03710 (DELLA protein SLR1) as a TalES1 target on rank 19, which appears on 582

later ranks for the other approaches. Os04g43730 is induced more strongly than 583

Os06g03710 and exclusively in ICMP 3125T, which renders this the more likely target. 584

Os03g51760 (OsFBX109) is among the top 20 predictions for TalAD members only for 585

PrediTALE. Due to variations in their RVD sequence, TALgetter has this in the top 20 586

predictions only for TalAD22 in ICMP 3125T, but not for the other strains. As 587

Os03g51760 is clearly up-regulated after infection with any of the three Xoo strains 588

(Supplementary figure S15), this is likely a true TalAD target. 589

Talvez and TALgetter have Os03g03034, annotated as a flavonol synthase, among 590

their top 20 predictions for TalAQ members in ICMP 3125T and PXO83, while this 591

gene is among the top 20 predictions of PrediTALE only for TalAQ3 in PXO83 due to 592

differences in RVD sequence. In PXO142, TalAQ15 is annotated as a pseudo gene and 593

this pattern is also reflected by the RNA-seq data. Os03g03034 has been proposed to be 594

a TALE target before [5]. 595

Os04g05050, annotated as a pectate lyase, is only among the top 20 predictions of 596

PrediTALE in ICMP 3125T (TalAB16) and PXO83 (TalAB5), whereas this gene is 597

ranked substantially lower (rank 83) for TalAB8 from PXO142 by PrediTALE as well. 598

From the RNA-seq data, we find that Os04g05050 is up-regulated in all three Xoo 599

strains, although the level of up-regulation is lower for PXO142 than for the other two 600

strains. 601

Os05g45070, annotated as hairpin-induced protein 1, is predicted only by PrediTALE 602

as an alternative target of TalAO15 in ICMP 3125T and shows clear up-regulation only 603

after infection with this Xoo strain. Os10g28240, a calcium transporting ATPase, is 604
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predicted by TALgetter and PrediTALE as target of TalAR13 of ICMP 3125T but, on 605

later ranks, also by the other two approaches, and is up-regulated exclusively after 606

ICMP 3125T infection. Os09g07460, a kelch repeat protein, is only among the top 20 607

predictions of Talvez for TalBA and on later ranks for the other approaches. This gene 608

is up-regulated only in ICMP 3125T, although not strongly. 609

For PXO142, we find two further putative targets of TalBH2 that are predicted 610

exclusively by PrediTALE: Os03g09150 (pumilio-family RNA binding) is up-regulated 611

in PXO142 but also in PXO83, for which it does not appear among the top 20 612

predictions of any approach. Os11g31190 (Os11N3, OsSWEET14) is a well known 613

target [45, 46], which is predicted here also for TalBH exclusively by PrediTALE due to 614

its ability to adequately handle the aberrant repeat [6] of TalBH2. Os11g31190 is also 615

known to be targeted by TalAC members (previously termed AvrXa7) [42] including 616

TalAC5 in PXO83 and, hence, is strongly up-regulated after PXO83 infection as well. 617

However, in this case all approaches fail to predict this target due to the large number 618

of mis-matches in the target box [6], even accounting for the aberrant repeat in TalAC5. 619

Instead, another retrotransposon protein (Os04g19960) is the top prediction of 620

PrediTALE for TalAC5 from PXO83, which is confirmed by RNA-seq data as this gene 621

is strongly up-regulated after PXO83 infection but not after infection with one of the 622

other strains. 623

In summary, we find several novel putative target genes of which 6 are highly 624

promising (Os11g26790, Os02g49350, Os03g51760, Os04g05050, Os05g45070, 625

Os04g19960), where 4 of these (Os03g51760, Os04g05050, Os05g45070, Os04g19960) are 626

predicted on high ranks exclusively by PrediTALE. Recently, we could experimentally 627

validate the targets Os04g43730 (OsWAK51), Os06g29790 (phosphate transporter), 628

Os03g51760 (OsFBX109), Os03g03034 (flavonol synthase), and Os04g05050 (pectate 629

lyase) by qRT-PCR using a TALE-less strain (Roth X1-8) complemented with 630

individual TALEs [47]. : 631

Orphan TALEs 632

We also observe from Figure 3 and Supplementary figure S7 that for many strains, 633

neither of the approaches considered is able to identify a putative target genes for all 634

TALEs present in their TALEome. We term such TALEs without reasonable target 635

prediction orphan TALEs, and we will discuss these in more detail in the following. 636

More precisely, we call a TALE or a TALE class orphan if there is no up-regulated 637

gene among the top 50 predictions of any of the four approaches. Furthermore, we check 638

if this pattern is consistent for the TALEs from a common TALE class across almost all 639

Xoo and Xoc strains studied. 640

We find as orphan the TALE classes present in all three Xoo strains TalAF, TalAI 641

and TalAN. In addition, TalAG (PXO142, PXO83), TalAL (PXO142), TalAS (PXO142, 642

PXO83), TalBJ (PXO83), TalCA (PXO83) , TalET (ICMP 3125T), and TalDR 643

(PXO142) are orphan TALE classes in individual Xoo strains. The TALEs from class 644

TalAI and TalDR are truncTALEs that are lacking large parts of the C-terminus 645

including the activation domain and, for this reason, do not act as transcriptional 646

activators. TruncTALEs have been found to function as suppressors of resistance 647

mediated by an immune receptor [48]. 648

In the Xoc strains, however, TalAF is not orphan as we find putative target genes 649

among the top 50 predictions for the class members present in B8-12 and L8. For 650

TalAZ, we find a target for TalAZ7 from Xoc L8, but not for the other 7 Xoc strains 651

harboring TalAZ TALEs. In addition, we consider TalCQ1 from BXOR1 and TalCR1 652

(CFBP7331) and TalCR2 (CFBP7341) as orphan. 653

Reasons for orphan TALEs could be manifold. First of all, we cannot be sure that 654

these TALEs are indeed expressed by the bacteria and are secreted into the host plant 655
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Table 2. Putative TALE target genes that are among the top 20 predictions per TALE
for any of the four approaches.

Gene lfc Target Finder Talvez Talgetter PrediTALE annotation

ICMP 3125T

Os04g43730 5.762 TalES1 (9) TalAR13 (19);
TalES1 (10)

TalAR13 (564);
TalES1 (67)

TalAR13 (472);
TalES1 (108)

OsWAK51

Os02g06670 3.815 TalBA8 (1) TalBA8 (2) TalBA8 (1) TalBA8 (1) retrotransposon
protein

Os09g29820 2.819 TalAR13 (2) TalAR13 (1) TalAR13 (3) TalAR13 (2) bZIP transcrip-
tion factor

Os03g51760 2.734 TalAD22 (21) TalAB16 (407);
TalAD22 (209)

TalAD22 (17) TalAD22 (9) OsFBX109 -
F-box protein

Os04g05050 2.221 TalAB16 (490) NA TalAB16 (63) TalAB16 (11);
TalAH11 (824)

pectate lyase

Os01g40290 1.894 TalAA15 (3) TalAA15 (12) TalAA15 (1) TalAA15 (1) expressed protein
Os05g45070 1.704 NA NA TalAO15 (214) TalAF17 (559);

TalAO15 (15)
harpin-induced
protein 1

Os11g26790 1.695 TalAH11 (3) TalAH11 (1) TalAH11 (1);
TalAQ14 (559)

TalAH11 (1) dehydrin

Os06g03710 1.591 TalES1 (44) TalES1 (81) TalES1 (41) TalES1 (19) DELLA protein
SLR1

Os03g03034 1.295 TalAO15 (404);
TalAQ14 (125)

TalAO15 (396);
TalAQ14 (9)

TalAB16 (600);
TalAO15 (566);
TalAQ14 (15)

TalAB16 (220);
TalAO15 (556);
TalAQ14 (32)

flavonol synthase

Os01g73890 1.079 TalBM2 (3) TalBM2 (14) TalBM2 (2) TalBM2 (1);
TalET1 (477)

transcription initi-
ation factor IIA
gamma

Os10g28240 0.918 TalAR13 (71) TalAR13 (47) TalAR13 (16) TalAR13 (6) calcium-
transporting
ATPase

Os09g07460 0.746 TalBA8 (88) TalBA8 (17) TalBA8 (48) TalBA8 (22) kelch repeat pro-
tein

PXO142
Os02g49350 5.163 TalBH2 (1) TalBH2 (2) TalBH2 (5) TalBH2 (8) plastocyanin-like
Os03g09150 2.530 NA NA TalBK2 (805) TalBH2 (4);

TalBK2 (239)
pumilio-family
RNA binding

Os11g31190 2.514 TalAN15 (681) TalAE16 (530);
TalBH2 (848)

TalAQ15 (660);
TalBH2 (144)

TalBH2 (3) SWEET14
(nodulin MtN3)

Os09g29820 2.272 TalAR14 (1) TalAR14 (2) TalAR14 (1) TalAR14 (3) bZIP transcrip-
tion factor

Os03g51760 1.368 TalAD23 (77) TalAD23 (288) TalAD23 (48) TalAD23 (13);
TalAS12 (421)

OsFBX109 -
F-box protein

Os01g40290 0.887 TalAA16 (3) TalAA16 (7) TalAA16 (1) TalAA16 (1) expressed protein
Os06g29790 0.833 TalAO16 (17) TalAO16 (11) TalAO16 (3) TalAO16 (4);

TalAP15 (799)
phosphate trans-
porter 1

Os07g06970 0.824 TalAP15 (1);
TalAQ15 (521)

TalAP15 (1);
TalAQ15 (319)

TalAP15 (1);
TalAR14 (563)

TalAI17 (889);
TalAP15 (1)

HEN1

PXO83
Os09g29820 2.82 TalAR3 (1) TalAR3 (2) TalAR3 (1) TalAR3 (5) bZIP transcrip-

tion factor
Os02g06670 2.74 TalBA2 (1) TalBA2 (2) TalAR3 (996);

TalBA2 (1)
TalAR3 (83);
TalBA2 (1)

retrotransposon
protein

Os03g51760 1.91 TalAD5 (77) TalAB5 (407);
TalAD5 (288)

TalAD5 (48) TalAD5 (13) OsFBX109 -
F-box protein

Os04g19960 1.70 NA TalAN3 (668);
TalAP3 (365)

TalAP3 (588) TalAC5 (1);
TalAN3 (846)

retrotransposon
protein

Os04g05050 1.62 TalAB5 (490) TalAP3 (931) TalAB5 (63) TalAB5 (11) pectate lyase
Os07g06970 1.40 TalAP3 (1) TalAP3 (1);

TalAQ3 (512)
TalAP3 (1);
TalAR3 (988)

TalAP3 (1) HEN1

Os03g03034 1.18 TalAO3 (404);
TalAQ3 (70)

TalAO3 (396);
TalAQ3 (2)

TalAB5 (600);
TalAO3 (566);
TalAQ3 (5)

TalAB5 (220);
TalAO3 (556);
TalAQ3 (5)

flavonol synthase

For each Xoo strain, we list the gene ID (MSU7) and the log fold change (lfc) in the
corresponding RNA-seq experiment. For each of the four approaches, we further list
the TALE(s), for which a gene has been predicted as a target and in parentheses the
corresponding prediction rank. An “NA” entry for a combination of gene and prediction
approach indicates that this gene has not been among the top 1000 predictions for any
TALE.

January 16, 2019 19/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522458doi: bioRxiv preprint 

https://doi.org/10.1101/522458
http://creativecommons.org/licenses/by-nc-nd/4.0/


cells. Second, some TALEs might activate target genes slower or to a lesser degree than 656

others and, for this reason, target gene activation might not be detectable, yet, in the 657

RNA-seq experiments, especially at the 24h timepoint chosen for Xoo. Third, these 658

TALEs might target specific variants of boxes in promoters of rice lines that are not 659

represented by the O. sativa Nipponbare reference genome, or might even target genes 660

in alternative host plants, e.g., grasses in the vicinity of fields where rice is grown. 661

Fourth, these TALEs might target genes that are missing from the current gene 662

annotations of rice. Such targets would be neglected by the current approach to 663

specifically scan promoter sequences of annotated genes for putative TALE boxes. To 664

address the latter issue, we switch to an alternative approach in the following. Here, we 665

perform genome-wide scans for putative target boxes instead, and search for 666

differentially expressed regions in the vicinity of putative target boxes predicted 667

anywhere in the reference genome. 668

Genome-wide prediction profiles discover potential novel target 669

genes 670

We perform genome-wide predictions of TALE target boxes in Oryza sativa Nipponbare 671

(MSU7) for the 256 Xoc TALEs from 10 strains and 54 Xoo TALEs from 3 strains and 672

check for differentially expressed regions near the predicted target boxes. Differential 673

expression is based on the mapped RNA-seq data after infection with the respective 674

Xoo and Xoc strains. 675

After infection with Xoo strains, 14 TALEs are found to have differentially expressed 676

regions near at least one predicted target box. Table 3 lists the total number of 19 677

TALE target boxes together with MSU7 gene annotations overlapping the differentially 678

expressed regions. Notably, 15 of these targets have already been reported in subsection 679

“PrediTALE predicts novel putative target genes” when restricting the search to 680

promoter regions of annotated genes. However, for two genes, target boxes from other 681

TALs were predicted in case of genome-wide scan. The expression of the pectate lyase 682

precursor (Os04g05050) was up-regulated by TalAB5 according to promotor prediction, 683

but the genome-wide prediction contains the same gene up-regulated by TalAD22. The 684

same scenario for the phosphate transporter 1 (Os06g29790), which according to 685

promotor predictions is up-regulated by TalAO16 and TalAP15. However, in the 686

genome-wide scans, a target box of TalAH11 was predicted. The genome-wide scan i) 687

does not make use of gene annotations, and ii) could be expected to be more prone to 688

false positive predictions than the restricted search in promoters. Hence, the fact that 689

many predictions re-occur in the genome-wide scan demonstrates the general utility of 690

this approach. 691

In addition to those targets reported previously, we find three novel target boxes in 692

the vicinity of differentially expressed regions that overlap annotated genes, including a 693

wound-induced protein and an oxidoreductase. For TalAO16 from PXO142, we find a 694

differentially expressed region next to a predicted target box on chromosome 7 with no 695

annotation in MSU7 (Supplementary Figure S16; complete list in Supplementary 696

Table W). For this reason, we extracted the sequence under the differentially expressed 697

region, and first compared it against the NCBI protein database ’nr’ using blastx but 698

received no matching result. We additionally compared this sequence against the NCBI 699

reference RNA sequences (refseq rna) using blastn, which resulted in a highly significant 700

hit for XR 001547425.2, a predicted long non-coding RNA. 701

Upon infection of rice with Xoc strains, differentially expressed regions near at least 702

one predicted target box were found for 26 of 28 (B8-12), 28 of 28 (BLS256), 25 of 26 703

(BLS279), 26 of 27 (BXOR1), 22 of 28 (CFBP2286), 19 of 22 (CFBP7331), 19 of 21 704

(CFBP7341), 18 of 23 (CFBP7342), 27 of 29 (L8) and 19 of 24 (RS105) TALEs. 705
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Table 3. Genome-wide prediction of Xoo TALE targets with PrediTALE.
TALE Chr Pos. box Gene Annotation PiP

ICMP 3125T

TalAA15 Chr1 22747303 Os01g40290 expressed protein yes
TalAD22 Chr3 29685233 Os03g51760 OsFBX109 - F-box protein yes
TalAD22 Chr4 2486797 Os04g05050 pectate lyase precursor TalAB5
TalAH11 Chr6 17129738 Os06g29790 phosphate transporter 1 TalAO16,

TalAP15
TalAN14 Chr2 31931460 Os02g52170 expressed protein no
TalAN14 Chr8 19950534 Os08g32160 oxidoreductase, 2OG-FeII oxygenase no
TalAR13 Chr10 14685398 Os10g28240 calcium-transporting ATPase yes
TalAR13 Chr9 18123472 Os09g29820 bZIP transcription factor yes
TalBA8 Chr2 3353526 Os02g06670 retrotransposon protein yes
TalBM2 Chr1 42819000 Os01g73890 transcription initiation factor IIA gamma yes
PXO142
TalAO16 Chr7 22546154 – – NA
TalAR14 Chr5 16047774 Os05g27580 wound-induced protein WI12 no
TalAR14 Chr9 18123472 Os09g29820 bZIP transcription factor yes
TalBH2 Chr11 18174482 Os11g31190 SWEET14 (nodulin MtN3 family) yes
TalBH2 Chr2 30158664 Os02g49350 plastocyanin-like yes
PXO83
TalAC5 Chr4 11130506 Os04g19960 retrotransposon protein yes
TalAP3 Chr7 3434725 Os07g06970 HEN1 yes
TalAQ3 Chr3 1245017 Os03g03034 flavonol synthase/flavanone 3-hydroxylase yes
TalAR3 Chr9 18123472 Os09g29820 bZIP transcription factor yes

Genome-wide prediction of Xoo TALE targets using PrediTALE filtered for differentially
expressed regions within 3000 bp surrounding the target box. For each Xoo strain, we
list the TALE name, Chromosome number and position of the target box (Pos. box) in
Oryza sativa Nipponbare genome, and the annotated MSU7 Gene ID and description (if
present). In addition, the last column contains the information, whether predictions in
promoters (PiP) also report this target.

Supplementary Table X lists all genome-wide predicted targets in the vicinity of 706

differentially expressed regions of these Xoc strains. 707

In the following, we will discuss two example regions in detail. As discussed in the 708

previous section, TalAZ appears to be an orphan TALE based on the promoterome-wide 709

scans for target boxes. However, based on genome-wide scans, we find a differentially 710

expressed region, which could constitute a target gene of TalAZ, on Chr4 (Figure 5). 711

Only 8 of the 10 Xoc strains studied have a TalAZ member in their TALEome. The 712

profile plots clearly show that the region of interest is only differentially expressed after 713

infection with these 8 strains harbouring TalAZ members. Performing blast searches of 714

the differentially expressed sequences, we received a hit for XP 015634381.1, a sulfated 715

surface glycoprotein 185 [Oryza sativa Japonica Group], which has been added to the 716

IRGSP-1.0 annotation at NCBI but was not present in MSU7. 717

As a second example, we consider a putative TalBD target on Chr6. The profile 718

plots (Figure 6) show differentially expressed regions in all 10 strains. However, a blastx 719

search of the respective sequences, spanning two larger differentially expression regions, 720

provides no clear result. Matches include an Auxin-responsive protein IAA22 721

(Q69TU6.1) and different bromodomain-containing factors (XP 006659043.1, 722

XP 025882131.1 XP 015650662.1). As drops in the coverage profiles and split reads in 723

the mapping indicate the existence of introns within the differentially expressed regions, 724

we additionally compare the spliced sequence using blastn against the NCBI reference 725

RNA sequences. The result contains a predicted non-conding RNA (XR 003242961.1) 726

and different transcript variants of a predicted mRNA, coding for 727

bromodomain-containing factors (XM 015840709.1, XM 015840708.1, XM 006658980.2, 728

XM 026026346.1, XM 015795177.2, XM 015795176.2). 729

In summary, our results demonstrate that genome-wide prediction of target boxes 730

using PrediTALE enables us to identify novel targets independently of existing gene 731

annotations including previously missing non-coding RNAs. 732
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Fig 5. Genome-wide predictions of TalAZ in Oryza sativa Nipponbare profile for 10
Xoc strains in the area of the TalAZ target box. RNA-seq coverage after inoculation
(green line) is compared with mock control (red line). In addition, we show the average
of individual replicates of control and treatment are summarized as thick lines. The
blue shaded boxes mark the differentially expressed regions. The arrows under the
profiles reflect the MSU7 annotation within the genomic region. The genomic position
of the TALE target box is marked by a vertical blue line.
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Fig 6. Genome-wide predictions of TalBD in Oryza sativa Nipponbare profile for 10
Xoc strains in the area of the TalBD target box. RNA-seq coverage after inoculation
(green line) is compared with mock control (red line). In addition, we show the average
of individual replicates of control and treatment are summarized as thick lines. The
blue shaded boxes mark the differentially expressed regions. The arrows under the
profiles reflect the MSU7 annotation within the genomic region. The genomic position
of the TALE target box is marked by a vertical blue line.
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Conclusion 733

Accurate computational predictions of TALE target boxes are required for elucidating 734

virulence targets of TALEs that support bacterial infection of host plants. In this paper, 735

we present PrediTALE, a novel approach for predicting target boxes based on a TALE’s 736

RVD sequence. Since the publication of all previous approaches [14,16,18], our 737

understanding of mechanisms and principles of TALE targeting has increased 738

substantially. Specifically, it has been shown that repeats of aberrant lengths may 739

compensate for frame shifts in target boxes [6], that activation of gene expression by 740

TALEs binding to the reverse strand is possible, but rare [13]. In addition, quantitative 741

data about virtually all combinations of AAs at RVD positions have been 742

collected [19,21–25]. All these insights have been integrated into PrediTALE either as 743

part of the model or as training data that are used to adapt model parameters. Here, 744

we demonstrate that PrediTALE predicts TALE targets with improved accuracy 745

compared with previous approaches, where ground truth is derived from in-house and 746

public RNA-seq data after Xoo and Xoc infection. However, our results also confirm 747

that any of the current computational approaches suffers from false positive predictions 748

and, hence, experimental support of predicted targets is inevitable. 749

PrediTALE predicts several unique target genes, several of which are highly 750

promising for further experimental validation. While RNA-seq data supports that these 751

are activated by TALEs in planta, their importance for the infection process still needs 752

to be investigated. 753

Given the improved accuracy and acceptable runtime of PrediTALE, we broaden the 754

scope of computational predictions. Previously, predictions have been mostly limited to 755

putative promoter regions of annotated genes. Here, we consider genome-wide 756

predictions instead. We demonstrate that targets reported from promoterome-wide 757

predictions are also recovered in genome-wide scans, but we also find differentially 758

expressed regions at loci that do not overlap with annotated genes. These could be 759

either protein-coding genes that are missing from the current annotation, but also 760

include putative non-coding RNAs, which might have regulatory activity or other 761

functions that foster bacterial infection. 762

To promote future research in plant-pathogen interactions related to TALEs, we 763

make our methods available to the scientific community as open-source software tools. 764
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42. Römer P, Recht S, Strauß T, Elsaesser J, Schornack S, Boch J, et al. Promoter
elements of rice susceptibility genes are bound and activated by specific TAL
effectors from the bacterial blight pathogen, Xanthomonas oryzae pv. oryzae.
New Phytologist. 2010;187(4):1048–1057.

43. Yuan M, Ke Y, Huang R, Ma L, Yang Z, Chu Z, et al. A host basal transcription
factor is a key component for infection of rice by TALE-carrying bacteria. eLife.
2016;5:e19605.

44. Lee H, Cha J, Choi C, Choi N, Ji HS, Park SR, et al. Rice WRKY11 plays a role
in pathogen defense and drought tolerance. Rice. 2018;11(1):5.

45. Antony G, Zhou J, Huang S, Li T, Liu B, White F, et al. Rice xa13 recessive
resistance to bacterial blight is defeated by induction of the disease susceptibility
gene Os-11N3. The Plant Cell Online. 2010;22(11):3864–3876.

46. Yu Y, Streubel J, Balzergue S, Champion A, Boch J, Koebnik R, et al.
Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv.
oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3
gene. Molecular Plant-Microbe Interactions. 2011;24(9):1102–1113.

January 16, 2019 27/28

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted January 17, 2019. ; https://doi.org/10.1101/522458doi: bioRxiv preprint 

https://www.R-project.org
https://CRAN.R-project.org/package=PMCMRplus
https://doi.org/10.1101/522458
http://creativecommons.org/licenses/by-nc-nd/4.0/
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